FUJITSU MB3874, MB3876 DATA SHEET

查询MB3874供应商
FUJITSU SEMICONDUCTOR
DATA SHEET
ASSP
For Po wer Supply Applications (Lithium ion battery charger)
DS04-27704-2E
DC/DC Con verter IC f or Parallel Char ging
MB3874/MB3876
The MB3874 and MB3876 are parallel charging DC/DC converter ICs suitable f or do wn-con version, which uses pulse width modulation (PWM) for controlling the output voltage and current independently.
These ICs can dynamically control the secondary batter y’s charge current by detecting a voltage drop in an AC adapter in order to keep its power constant (dynamically-controlled charging).
The charging method enables quick charging, f or example, with the A C adapter during operation of a notebook PC. The IC also enable parallel charging, or charging two batteries at the same time, dramatically reducing the charging
time. With an on-chip output voltage setting resistor which allows the output voltage to be set at high precision, these
ICs are best suited as internal battery chargers for notebook PCs. The MB3874 support 3-cell battery and the MB3876 support 4-cell battery.
FEATURES
• Detecting a voltage drop in the AC adapter and dynamically controlling the charge current (Dynamically-con­trolled charging)
• High efficiency : 93 %(In rev erse-current preventive diode)
• Wide range of operating supply voltages : 7 V to 25 V
• Output voltage precision (Built-in output voltage setting resistor ) : ± 0.8 % (Ta = + 25 °C)
• High precision reference voltage source : 4.2 V ± 0.8 %
(Continued)
PACKAGE
24-pin plastic SSOP
(FPT-24P-M03)
MB3874/MB3876
(Continued)
• Support for frequency setting using an external resistor (Frequency setting capacitor integrated) :100 kHz to 500 kHz
• Built-in current detector amplifier with wide in-phase input voltage range : 0 V to V
• Built-in standby current function : 0 µA (Typ.)
• Built-in soft start function
• Capable of parallel charging (Charging the two battery packs at a time)
• Internal totem-pole output stage supporting P-channel MOS FETs devices
CC
2
PIN ASSIGNMENT
INC1 :
FB2 :
INE2 :
+INE2 :
MB3874/MB3876
(TOP VIEW)
: +INC1
1
2
3
4
24
23
22
21
: GND
: CS
: V
CC
VREF :
CTL :
FB1 :
INE1 :
+INE3 :
INE3 :
FB3 :
INC2 :
10
11
12
5
6
7
8
9
20
19
18
17
16
15
14
13
: OUT
: VH
: OUTM
: RT
: INE4
: FB4
: INE5
: +INC2
(FPT-24P-M03)
3
MB3874/MB3876
PIN DESCRIPTION
Pin No. Symbol I/O Descriptions
1 –INC1 I Output voltage feedback input pin. 2 FB2 O Error amplifier (Error Amp. 2) output pin. 3 –INE2 I Error amplifier (Error Amp. 2) inverted input pin.
4+INE2 I 5 VREF O Reference voltage output pin. 6CTL I 7 FB1 O Error amplifier (Error Amp. 1) output pin. 8–INE1 I
9+INE3 I
10 –INE3 I Error amplifier (Error Amp. 3) inverted input pin. 11 FB3 O Error amplifier (Error Amp. 3) output pin. 12 –INC2 I Output voltage feedback input pin. 13 +INC2 I Current detection amplifier (Current Amp. 2) input pin . 14 –INE5 I Error amplifier (Error Amp. 5) inverted input pin. 15 FB4 O Error amplifier (Error Amp. 4, 5) output pin. 16 –INE4 I Error amplifier (Error Amp. 4) inverted input pin. 17 RT Triangular-wave oscillation frequency setting resistor connection pin.
18 OUTM O
Error amplifier (Error Amp. 2) non-inverted input pin. Input pin for charge current setting voltage
Power supply control pin. Setting the CTL pin low places the IC in the standby mode.
Error amplifier (Error Amp. 1) inverted input pin Input pin for dynamically-controlled charging voltage setting
Error amplifier (Error Amp. 3) non-inverted input pin. Input pin for charge current setting voltage
Output pin for dynamically controlled charging identification signal “H” level: Constant-voltage or constant-current charging mode
“L” level: Dynamically controlled charging mode 19 VH O Power supply pin for FET drive circuit (VH = Vcc 5 V). 20 OUT O High-side FET gate drive pin. 21 V 22 CS Soft-start capacitor connection pin. 23 GND Ground pin. 24 +INC1 I Current detection amplifier (Current Amp. 1) input pin .
4
CC Power supply pin for reference power supply and control circuit.
BLOCK DIAGRAM
MB3874/MB3876
INE1
FB1
INE2 +INC1
INC1
+INE2
FB2
INE3 +INC2
INC2
+INE3
FB3
INE4
INE5
FB4
8
V
7 3
<Current Amp.1>
24
1
4 2
10
<Current Amp.2>
13 12
9
11
R1
16
R2 50 k
14
15
<SOFT>
VREF
CC
+ × 25
+ × 25
R1
R2 50 k
1 µA
208 k
100 k
100 k
<Error Amp.1>
− +
42 k
<Error Amp.2>
− +
<Error Amp.3>
− +
<Error Amp.4>
− + +
<Error Amp.5>
− + +
VREF
(4.2 V)
VREF
VREF
VREF
VREF
VREF
<PWM Comp.>
+ + + +
Bias voltage block
(V
<MASK Comp.>
− +
2.5 V
V
CC
<OUT>
V
CC
<VH>
<UVLO>
CC
UVLO)
215 k
+
0.91 V
(0.77 V)
VREF ULVO
Drive
(VCC 5 V)
CC
V
35 k
18
21
20
19
OUTM
CC
V
OUT
VH
CS
22
2.5 V
1.5 V
(45 pF)
bias
<OSC>
17 5 23
RT
<Ref> <CTL>
VREF
:
CTL
6
GND
MB3874 100 k MB3876 150 k
5
MB3874/MB3876
ABSOLUTE MAXIMUM RATINGS
Parameter Symbol Conditions
Unit
Min. Max.
Rating
Power supply voltage V Output terminal current I Peak output current I OUTM terminal output voltage V Power dissipation P
CC ——28V OUT ——60mA OUT Duty ≤ 5% (t =1 / fOSC × Duty) 500 mA OUTM ——17V
D Ta +25°C 740* mW
Storage temperature Tstg –55 +125 °C
*: The package is mounted on the dual-sided epoxy board (10 cm × 10 cm). WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
RECOMMENDED OPERATING CONDITIONS
Value
Parameter Symbol Conditions
Unit
Min. Typ. Max.
Power supply voltage V Reference voltage output
current
CC —725V
REF —–10mA
I
VH pin output current IVH —030mA
-INC –INC1, –INC2 0 17 V
V
Input voltage
CTL pin input voltage V Output current I Peak output current I OUTM pin output voltage V OUTM pin output current I Oscillator frequency f Timing resistor R Soft-start capacitor C VH pin capacitor C Reference voltage output
capacitor
INE –INE1 to –INE5, +INE2 0 VCC – 1.8 V
V
+INC +INC1, +INC2 0 VCC V
V
CTL —025V OUT OUT pin –45 45 mA OUT Duty ≤ 5% (t =1 / fOSC × Duty) –450 450 mA
OUTM ——315V
OUTM ——1mA
OSC 100 290 500 kHz
T 33 47 130 k S 2200 100000 pF
VH ——0.11.0µF
REF ——0.11.0µF
C
Operating ambient temperature Ta –30 +25 +85 °C
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the
semiconductor device. All of the device’s electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.
6
ELECTRICAL CHARACTERISTICS
Parameter
Symbol
Pin No. Conditions
MB3874/MB3876
(MB3874 : Ta = +25°C, VCC = 16 V, VREF = 0 mA) (MB3876 : Ta = +25°C, V
Value
Min. Typ. Max.
CC = 19 V, VREF = 0 mA)
Unit Remarks
Output voltage V
Input stability Line 5 V Load stability Load 5 VREF = 0 mA to –1 mA 1 10 mV
block (Ref)
Short-circuit
Reference voltage
output current
Threshold voltage
Hysteresis width V
Under voltage
Threshold
lockout protection
voltage
circuit block (UVLO)
Hysteresis width V
REF 5
Ta = –30°C to +85°C 4.158 4.200 4.242 V
Ta = +25°C 4.167 4.200 4.233 V
CC = 7 V to 25 V 3 10 mV
I
OS 5 VREF = 1 V –25 –15 –5 mA
V
TLH
V
CC = 6.3 6.6 6.9 V
21
V
THL VCC = 5.3 5.6 5.9 V
H 21 0.7 1.0 1.3 V
V
TLH
VREF = 2.6 2.8 3.0 V
5
V
THL VREF= 2.4 2.6 2.8 V
H 5 0.05 0.20 0.35 V
Charge current ICS 22 –1.3 –0.8 –0.5 µA
block
(SOFT)
Soft-start
Oscillation frequency
Frequency tem-
block (OSC)
oscillator circuit
perature stability
Triangular waveform
*: Standard design value.
OSC
f
f/fdt
20
RT = 47 k 260 290 320 kHz
20
Ta = –30°C to +85°C 1* %
(Continued)
7
MB3874/MB3876
(Continued)
Parameter Symbol Pin No Conditions
(MB3874 : Ta = +25°C, VCC = 16 V, VREF = 0 mA) (MB3876 : Ta = +25°C, V
CC = 19 V, VREF = 0 mA)
Value
Unit Remarks
Min. Typ. Max.
Threshold voltage
Input pin current IIN Voltage gain A Frequency
bandwidth
(Error Amp.1)
Output voltage
Error amplifier block
Output source current
Output sink current
Input offset voltage
Input pin current
Common mode input voltage range
FB1 = 2 V, –INE1 = 2.35 V
V
TH 21
FB1 = 2 V, –INE1 = 2.83 V
8
–INE1= 0 V –100 –30 nA
V 7 DC 100* dB
14.00 14.20 14.40 V
16.80 17.10 17.40 V
MB3874
MB3876
BW 7 AV = 0 dB 2.0* MHz
FBH 7—3.94.1V
V
VFBL 7 20 200 mV
I
SOURCE 7 FB1 = 2 V –2.0 –0.6 mA
I
SINK 7 FB1 = 2 V 150 300 µA
VIO
I
INE 4,9 +INE2 = +INE3 = 0 V –100 –30 nA
V
CM
3,4
9,10
3,4
9,10
FB2 = FB3 = 2 V 1* mV
—0VCC–1.8 V
Voltage gain A Frequency
bandwidth
(Error Amp.2, 3)
Error amplifier block
Output voltage
Output source current
Output sink current
*: Standard design value.
8
V 2, 11 DC 100* dB
BW 2, 11 A
V = 0 dB 2.0* MHz
VFBH 2, 11 3.9 4.1 V
V
FBL 2, 11 20 200 mV
I
SOURCE 2, 11 FB2 = FB3 = 2 V –2.0 –0.6 mA
ISINK 2, 11 FB2 = FB3 = 2 V 150 300 µA
(Continued)
(Continued)
Parameter Symbol Pin No Conditions
Threshold voltage
Input current
Input resistor
(Current Amp.4, 5)
Error amplifier block
Voltage gain A Frequency
bandwidth
MB3874/MB3876
(MB3874 : Ta = +25°C, VCC = 16 V, VREF = 0 mA) (MB3876 : Ta = +25°C, V
Value
Min. Typ. Max.
12.500 12.600 12.700 V
16.666 16.800 16.934 V
12.474 12.600 12.726 V
16.632 16.800 16.968 V
V
TH 1, 12
FB4 = 2 V, Ta = +25 °C
FB1 = 2 V, Ta = –30 °C to +85 °C
–INC1 = –INC2 = 12.6 V 84 150 µA
INEH 1, 12
I
–INC1 = –INC2 = 16.8 V 84 150 µA V
CC = 0 V,
–INC1 = –INC2 = 12.6 V
—0 1µA
IINEL 1, 12
VCC = 0 V, –INC1 = –INC2 = 16.8 V
—0 1µA 70 100 130 k
1 1, 12
R
105 150 195 k
R2 14, 16 355065k
V 15 DC 100* dB
BW 15 AV = 0 dB 2.0* MHz
CC = 19 V, VREF = 0 mA)
Unit Remarks
MB3874 MB3876 MB3874 MB3876 MB3874 MB3876
MB3874
MB3876
MB3874 MB3876
Output voltage
Output source current
Output sink current
*: Standard design value.
V
FBH 15 3.9 4.1 V
V
FBL 15 20 200 mV
I
SOURCE 15 FB4 = 2 V –2.0 –0.6 mA
ISINK 15 FB4 = 2 V 150 300 µA
(Continued)
9
MB3874/MB3876
(Continued)
Parameter
Symbol
Pin No. Conditions
(MB3874 : Ta = +25°C, VCC = 16 V, VREF = 0 mA) (MB3876 : Ta = +25°C, V
CC = 19 V, VREF = 0 mA)
Value
Unit Remarks
Min. Typ. Max.
I
+INCH 13, 24
Input current
I+INCL 13, 24
-INE1 3, 10
V
Current detection voltage
V-INE2 3, 10
V-INE3 3, 10
(Current Amp.1, 2)
Common mode
Current detection amplifier block
input voltage range
Voltage gain A
V
-INE4 3, 10
V
CM
V 3, 10
1, 12,
13, 24
+INC1= +INC2=12.7 V, –INC1= –INC2=12.6 V
+INC1= +INC2=16.9 V, –INC1= –INC2=16.8 V
+INC1= +INC2= 0.1 V, –INC1= –INC2= 0 V
+INC1= +INC2=12.7 V, –INC1= –INC2=12.6 V
+INC1= +INC2=16.9 V, –INC1= –INC2=16.8 V
+INC1= +INC2=12.63V, –INC1= –INC2=12.6 V
+INC1= +INC2=16.83 V, –INC1= –INC2=16.8 V
+INC1= +INC2= 0.1 V , –INC1= –INC2= 0 V
+INC1= +INC2= 0.03 V, –INC1= –INC2= 0 V
—0VCC V
+INC1= +INC2=12.7 V, –INC1= –INC2=12.6 V
+INC1= +INC2=16.9 V, –INC1= –INC2=16.8 V
—1020µA
—1020µA
–130 –65 µA
2.25 2.50 2.75 V
2.25 2.50 2.75 V
0.50 0.75 1.00 V
0.50 0.75 1.00 V
1.25 2.50 3.75 V
0.125 0.750 1.375 V
22.5 25 27.5 V/V
22.5 25 27.5 V/V
MB3874
MB3876
MB3874
MB3876
MB3874
MB3876
MB3874
MB3876
Constant power
10
OUTCH 3, 10 3.9 4.1 V
V
Output voltage
VOUTCL 3, 10 20 200 mV
Threshold voltage
block
(PWM Comp.)
PWM comparator
VTL
TH
V
V
TLH 18 FB1 = 2.7 2.8 2.9 V
2, 7,
11, 15
2, 7,
11, 15
Duty cycle = 0 % 1.4 1.5 V
Duty cycle = 100 % 2.5 2.6 V
Threshold voltage
V
THL 18 FB1 = 2.4 2.5 2.6 V
Hysteresis width V Output leak current I
detection block
(MASK Comp.)
H 18 0.2 0.3 0.4 V
LEAK 18 OUTM = 5 V 0 1 µA
Output voltage VOL 18 OUTM = 1 mA 0.15 0.4 V
(Continued)
(Continued)
Parameter
Output source current
Output sink current ISINK 20
(OUT)
Output block
Output ON resistor
Rise time tr1 20
Fall time tf1 20
CTL input voltage
MB3874/MB3876
(MB3874 : Ta = +25°C, VCC = 16 V, VREF = 0 mA) (MB3876 : Ta = +25°C, V
Value
Symbol
Pin No. Conditions
Min. Typ. Max.
OUT = 11 V, Duty ≤ 5 %
–200* mA
(t = 1/fosc × Duty )
I
SOURCE 20
OUT = 14 V, Duty ≤ 5 %
–200* mA
(t = 1/fosc × Duty )
OUT = 16 V, Duty ≤ 5 %
200* mA
(t = 1/fosc × Duty )
OUT = 19 V, Duty ≤ 5 %
200* mA
(t = 1/fosc × Duty )
OH 20 OUT = 45 mA 8.0 16.0
R R
OL 20 OUT = 45 mA 6.5 13.0
ON 6
V
V
OFF 6
OUT = 3300 pF
(Equivalent to Si4435DY)
OUT = 3300 pF
(Equivalent to Si4435DY)
Active mode Standby mode
—70*—ns
—60*—ns
2.0 25.0 V 0—0.8V
CC = 19 V, VREF = 0 mA)
Unit Remarks
MB3874
MB3876
MB3874
MB3876
(CTL)
Input current
Control block
Output voltage VH 19
Bias
voltage
block (VH)
Standby current I Power supply
current
General
*: Standard design value
I
CTLH 6
CTLL 6
I
CCS 21
CC 21
I
CTL = 5 V CTL = 0 V
V
= 7 V to 25 V,
CC
VH = 0 to 30 mA
CTL = 0 V
CTL = 5 V
100 200 µA —0 1µA
VCC
5.5
VCC
5.0
VCC
4.5
V
—010µA —6.09.0mA —6.59.5mA
MB3874 MB3876
11
MB3874/MB3876
TYPICAL CHARACTERISTICS
Power supply current vs. power supply voltage
10
8
6
4
2
Ta = +25 °C CTL = 5 V
Power supply current ICC (mA)
0
0 5 10 15 20 25
Power supply voltage VCC (V)
Reference voltage vs. VREF load current
REF (V)
10
8
6
4
2
Ta = +25 °C VCC = 16 V (MB3874) VCC = 19 V (MB3876) CTL = 5 V
Reference voltage V
0
0 5 10 15 20 25 30
Reference voltage vs. power supply voltage
10
8
6
4
2
Ta = +25 °C CTL = 5 V VREF = 0 mA
Reference voltage VREF (V)
0
0 5 10 15 20 25
Power supply voltage V
CC (V)
Reference voltage vs. ambient temperature
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
Reference voltage ∆VREF (%)
-2.0
-40 -20 0 20 40 60 80 100
VCC = 16 V (MB3874) VCC = 19 V (MB3876) CTL = 5 V VREF = 0 mA
12
VREF load current I
Reference voltage vs. CTL pin voltage
10
8
6
4
2
Ta = +25 °C V VCC = 19 V (MB3876) VREF = 0 mA
Reference voltage VREF (V)
0
0 5 10 15 20 25
CTL pin voltage VCTL(V)
REF (mA)
CC = 16 V (MB3874)
Ambient temperature Ta (°C)
CTL pin current vs. CTL pin voltage
1.0
0.8
0.6
0.4
0.2
Ta = +25 °C VCC = 16 V (MB3874) VCC = 19 V (MB3876)
CTL pin current ICTL (µA)
0.0 0 5 10 15 20 25
CTL pin voltage V
CTL (V)
(Continued)
(Continued)
MB3874/MB3876
Triangular wave oscillator frequency vs.
timing resistor
1 M
100 k
10 k
10 k 100 k 1 M
Triangular wave oscillator frequency fOSC(Hz)
Timing resistor RT ()
Ta = +25 °C V
CC = 16 V (MB3874)
VCC = 19 V (MB3876) CTL = 5 V
Triangular wave oscillator frequency vs.
ambient temperature
350 340
330 320 310 300 290 280 270 260 250
40 20 0 20 40 60 80 100
Triangular wave oscillator frequency fOSC(kHz)
Ambient temperature Ta (°C)
VCC = 16 V (MB3874) V
CC = 19 V (MB3876)
CTL = 5 V RT = 47 k
Triangular wave oscillator frequency vs.
power supply voltage
350 340 330
320 310
300 290
280 270 260 250
0 5 10 15 20 25
Triangular wave oscillator frequency fOSC(kHz)
Power supply voltage V
Ta = +25 °C CTL = 5 V RT = 47 k
CC (V)
Error amplifier threshold voltage vs.
ambient temperature
5.0
4.0
3.0
VCC = 16 V (MB3874)
CC
= 19 V (MB3876)
V CTL = 5 V
2.0
1.0
0.0
1.0
2.0
3.0
4.0
5.0
Error amplifier threshold voltage VTH(%)
40 20 0 20 40 60 80 100
Ambient temperature Ta (°C)
13
MB3874/MB3876
(Continued)
Error amplifier gain and phase vs. frequency
AV
Ta = +25 °C
180
90
0
90
180
Phase φ (deg)
Gain AV (dB)
40
20
0
20
40
100 1 k 10 k 100 k 1 M 10 M
φ
Frequency f (Hz)
Current detection amplifier gain and phase vs. frequency
40
20
AV
0
φ
Ta = +25 °C
180
90
0
Gain AV (dB)
20
90
Phase φ (deg)
40
180
IN
1 µF
+
IN
0.1 V
4.2 V
10 k
2.4 k
10 k
∗ :
MB3874 12.6 V MB3876 16.8 V
VCC = 16 V (MB3874) V
CC = 19 V (MB3876)
240 k
3
(10)
+
4
(9)
2.088 V
CC = 16 V (MB3874)
V V
CC = 19 V (MB3876)
24
1
+
× 25
Current Amp.1
(Current Amp.2)
(13)
(12)
2
(11)
Error Amp.2
(Error Amp.3)
100 k
OUT
3
(10)
OUT
14
100 1 k 10 k 100 k 1 M
Frequency f (Hz)
Power dissipation vs. ambient temperature
800 740
700 600 500 400 300 200 100
Power dissipation PD (mW)
0
40 20 0 20 40 60 80 100
Ambient temperature Ta (°C)
MB3874/MB3876
FUNCTIONAL DESCRIPTION
1. DC/DC Converter Unit
(1) Reference voltage block (Ref)
The reference voltage gener ator uses the v oltage supplied from the Vcc terminal (pin 21) to generate a temper­ature-compensated, stable voltage ( := 4.2 V) used as the reference supply voltage for the IC’s internal circuitry.
The reference voltage can be output, up to 1 mA, to an external device through the VREF terminal (pin 5).
(2) Triangular wave oscillator block (OSC)
The triangular wave oscillator generates a triangular waveform with a frequency setting resistor connected to the internal frequency setting capacitor via the RT terminal (pin 17).
The triangular wave is input to the PWM comparator on the IC.
(3) Error amplifier block (Error Amp.1)
This error amplifier (Error Amp.1) detects a voltage drop in the AC adapter and outputs a PWM control signal as well as a signal to the dynamically controlled charging detection block (MASK Comp.).
In addition, an arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the FB1 terminal (pin 7) to the INE1 terminal (pin 8) of the error amplifier, enabling stable phase compensation to the system.
(4) Error amplifier block (Error Amp.2, 3)
These error amplifiers (Error Amp.2, Error Amp .3) detect the output signals from the current detector amplifiers (Current Amp.1, Current Amp .2), compare them with the +INE2 terminal (pin 4) and +INE3 terminal (pin 9), and output PWM control signals to control the charge current.
In addition, these amplifiers allow an arbitrary loop gain to be set by connecting a feedbac k resistor and capacitor from the FB2 terminal (pin 2) to INE2 terminal (pin 3) and from the FB3 terminal (pin 11) to −INE3 terminal (pin
10) of the error amplifiers, enabling stable phase compensation to the system.
(5) Error amplifier block (Error Amp.4, 5)
This error amplifier (Error Amp.4, Error Amp .5) detects the output voltage from the switching rerulator and outputs the PWM control signal. The error amplifier inverted input pin is connected to the output voltage setting resistor in the IC, eliminating the need f or an external resistor f or setting the output voltage. The MB3874 and MB3876 are set to output voltage of 12.6 V (for a 3-cell battery) and 16.8 V (for a 4-cell battery), respectively; these ICs are suitable for use in equipment that uses a lithium-ion battery.
In addition, an arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the FB4 terminal (pin 15) to the INE4 terminal (pin 16) to the INE5 ter minal (pin 14) of the error amplifier, enabling stable phase compensation to the system.
Connecting a soft-start capacitor to the CS terminal (pin 22) prevents surge currents when the IC is turned on. Using an error amplifier for soft start detection makes the soft start time constant, independent of the output load.
(6) Current detector amplifier block (Current Amp.1, 2)
The current detection amplifier (Current Amp.1, Current Amp.2) detects a voltage drop which occurs between both ends of the output sense resistor (RS1) due to the flow of the charge current, using the +INC1 terminal (pin 24) and
INC1 terminal (pin 1). Then it outputs the signal amplified by 25 times to the error amplifier (Error Amp.2) at the next stage.The amplifiers also detect a voltage drop which occurs at both ends of the output sense resistor
15
MB3874/MB3876
(RS2) using the +INC2 terminal (pin 13) and INC2 terminal (pin 12) and output the signal amplified by 25 times to the error amplifier (Error Amp. 3) at the next stage.
(7) PWM comparator block (PWM Comp.)
The PWM comparator circuit is a voltage-pulse width conver ter for controlling the output duty of the error amplifiers (Error Amp. 1 to Error Amp. 5) depending on their output voltage.
The PWM comparator circuit compares the triangular wave generated by the triangular wave oscillator to the error amplifier output voltage and turns on the external output transistor during the interval in which the triangular wave voltage is lower than the error amplifier output voltage.
(8) Output block (OUT)
The output circuit uses a totem-pole configuration capable of driving an external P-channel MOS FET. The output “L” level sets the output amplitude to 5 V (typical) using the voltage generated by the bias voltage
block (VH). This results in increasing conversion efficiency and suppressing the withstand v oltage of the connected external
transistor in a wide range of input voltages.
(9) Control block (CTL)
Setting the CTL terminal (pin 6) low places the IC in the standby mode. (The supply current is 10 µA at maximum in the standby mode.)
(10) Bias voltage block (VH)
The bias voltage circuit outputs Vcc 5 V (typical) as the minimum potential of the output circuit. In the standb y mode, this circuit outputs the potential equal to Vcc.
2. Protection Functions
Low-Vcc malfunction preventive circuit (UVLO)
The transient state or a momentary decrease in supply voltage or internal reference voltage (VREF), which occurs when the power supply is turned on, may cause malfunctions in the control IC, resulting in breakdown or degradation of the system. To prevent such malfunction, the low-Vcc malfunction preventive circuit detects a supply voltage or internal reference voltage drop and fixes the OUT terminal (pin 20) to the “H” level. The system restores voltage supply when the supply voltage or internal reference voltage reaches the threshold voltage of the low-Vcc malfunction preventive circuit.
3. Soft Start Function
Soft start block (SOFT)
Connecting a capacitor to the CS terminal (pin 22) prevents surge currents when the IC is turned on. Using an error amplifier for soft start detection makes the soft start time constant, independent of the output load of the DC/DC converter.
4. Additional Functions
Dynamically controlled charging detection block (MASK Comp.)
The dynamically controlled charging detection block (MASK Comp.) usually output the “H” level signal. The OUTM signal becomes low (“L” level) when the output voltage of the error amplifier (Error Amp. 1) that detects the input voltage (Vcc) becomes lower than the crest v alue (2.5 V) of the triangular wa veform generator (OSC).
The OUTM signal return high (“H” level) when the input voltage reaches 2.8 V or more.
16
MB3874/MB3876
METHOD OF SETTING THE CHARGING CURRENT
The charge current (output control current) value can be set with the voltage at the +INE2, +INE3 terminal. If a current exceeding the set value attempts to flo w , the charge v oltage drops according to the set current value. Battery 1 charge current setting voltage : +INE2 +INE2 (V) = 25 × I1 (A) × R
S1 (Ω)
Battery 2 charge current setting voltage : +INE3 +INE3 (V) = 25 × I2 (A) × R
METHOD OF SETTING THE SOFT START TIME
S 2 ()
Upon activation, the IC starts charging the capacitor (Cs) connected to the CS terminal . The error amplifier causes soft start operation to be performed with the output voltage in proportion to the CS
pin voltage regardless of the load current of the DC/DC converter. Soft start time ts (Time taken for the output voltage to reach 100 %) ts (s) := 4.2 × C
METHOD OF SETTING THE TRIANGULAR W AVE OSCILLAT OR FREQUENCY SETTING
S (µF)
The trianguar wave oscillator frequency can be set b y the timing resistor (RT) connected the RT terminal (pin 17). Triangular wave oscillator frequency fOSC fOSC (kHz) := 14444 / RT (kΩ)
AC ADAPTER VOLTAGE DETECTION
When partial potential point A of the AC adapter voltage (Vcc) becomes lower than the voltage at the –INE1 pin, the IC enters the constant-power mode to reduce the charge current in order to keep AC adapter power constant.
AC adapter detected voltage setting Vth Vth (V) = (208k + 42k) / 42k × − INE1 := 5.95 × − INE1
INE1 setting voltage range : 1.176 V to 4.2 V (equivalent to 7 V to 25 V for Vcc)
INE1
8
VCC
A
208 k
<Error Amp.1>
+
42 k
17
MB3874/MB3876
OPERATION TIMING DIAGRAM
2.8 V
2.5 V
Err Amp.2, 3 Err Amp.4, 5
Err Amp.1
OUT
OUTM
FB2,3 FB4
FB1
AC adapter dynamically-
controlled charging
Constant voltage control
Constant current control
1.5 V
AC adapter dynamically­controlled charging
About the OUTM signal The OUTM signal becomes low when the output voltage of the error amplifier (Error Amp. 1) that detects the
AC adapter voltage (Vcc) becomes lo wer than the crest value (2.5 V) of the triangular wav eform generator (OSC). If the sum of the current consumption by the system and that by the charger e xceeds the current capacity of the
AC adapter, the IC detects a voltage drop in the AC adapter output and switches to the dynamically-controlled charging mode from C.V.C.C (constant-voltage/constant-current charging control) mode.
In the dynamically-controlled charging mode, the OUTM pin outputs the L level signal to distinguish between the case in which the charge current has become small as the system current consumption has increased and the case in which it has become small as battery charging has been finished.
L: Dynamically-controlled charging H: C.V.C.C (constant-voltage/constant-current charging control) or IC standby mode
Battery
V
IN
AC Adaptor
Mode Signal
Charger MB3874 MB3876
Ichg
Battery
18
ISYS
System Power
MB3874/MB3876
NOTE ON AN EXTERNAL REVERSE-CURRENT PREVENTIVE DIODE
If there is an imbalance in charge current (I1, I2) under constant-voltage control, voltage is controled at the side with a lower battery voltage and thus the battery voltage at one side is higher than that at the other by the voltage difference between the re verse-current preventive diodes (D1, D2) and between the sense resistors (Rs
Pay attention to the voltage/current characteristics of the reverse-current preventive diode (D1, D2) not to let it exceed the overcharge stop voltage.
VIN (16 V/19 V)
to 24 pin
to 1 pin
21
VCC
1, Rs2)
20
19
OUT
VH
A B
I1
D1
to 13 pin
C D
I2
D2
BATT1
12.6 V/16.8 V
RS1
to 12 pin
BATT2
12.6 V/16.8 V
RS2
Battery 1
Battery 2
19
MB3874/MB3876
APPLICATION EXAMPLE
R19 200 k
Q2
R18 200 k
Q3
VIN
R10 2
R11 30 k
R16 22 k
R14
5.6 k
0.1 µF C13
33 k R12
R17
SW1
22 k
R15
5.6 k
0.1 µF C12
33 k R13
SW2
3
C6 3900 pF
R4 200 k
3900 pF
R9 150 k
3900 pF
R7 150 k
C
S
2200 pF
6800 pF C8
R8 47 k
C9
C7
INE1
FB1
INE2 +INC1
A B
INC1
+INE2
FB2
INE3
+INC2
C D
INC2
+INE3
FB3
INE4
INE5
C5 3900 pF
R3 200 k
FB4
CS
8
CC
V
7 3
<Current Amp.1>
24
1
4
2
10
<Current Amp.2>
13 12
9
11
1
16
50 k
14
15
<SOFT>
VREF
22
+ × 25
+ × 25
1
50 k
1 µA
208 k
100 k
100 k
<Error Amp.1>
− +
42 k
<Error Amp.2>
− +
<Error Amp.3>
− +
<Error Amp.4>
+ +
<Error Amp.5>
+ +
VREF
(4.2 V)
2.5 V
1.5 V
(45 pF)
VREF
VREF
VREF
VREF
VREF
<OSC>
17 5 23
RT R
T
47 k
<MASK Comp.>
2.5 V
(2.8 V)
VCC
<PWM Comp.>
+ + + +
Bias voltage block
CC UVLO)
(V
bias
<Ref> <CTL>
VREF
− +
<OUT>
CC
V
<VH>
<UVLO>
0.91 V
(0.77 V)
VREF ULVO
GND
Drive
(VCC 5 V)
215 k
+
35 k
R6 330 k
18
OUTM
C1
V
21
C14
0.1 µF
20
CC
OUT
22 µF
Q1
C2 22 µF
+
+
C10
0.1 µF
Pin 24
Pin 1
A B
L1
VH
19
27 µH
C3 100 µF
+
D1
V
CC
I1
D2
C4 100 µF
+
Battery 1
Pin 13
RS1
0.075
Pin 12
BATT1
4
C D
RS2
0.075
BATT2
4
I2
D3
Battery 2
CTL
6
MB3874 100 k
1 :
MB3876 150 k MB3874 22 k
2 :
MB3876 15 k MB3874 16 V
3 :
MB3876 19 V MB3874 12.6 V
4 :
MB3876 16.8 V
20
MB3874/MB3876
PARTS LIST
COMPONET ITEM SPECIFICATION VENDOR PARTS NO.
Q1
Q2, Q3
D1
D2, D3
L1 Coil 27 µH 2.8 A, 80 m SUMIDA CDRH127-27µH
FET FET
Diode Diode
Si4435DY
2N7002
MBRS130LT3
RB151L-40F
VISHAY SILICONIX VISHAY SILICONIX
MOTOROLA
ROHM
Si4435DY
2N7002
MBRS130LT3
RB151L-40F
C1, C2 C3, C4
C5, C6
C7 C8 C9
C10
C
S
C12, C13
C14
R1, R2 R3, R4
R
T
R6 R7 R8 R9
R10
R11, R12
R13 R14, R15 R16, R17 R18, R19
OS Condensor OS Condensor
Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor Ceramics Condensor
Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor
22 µF
100 µF
3900 pF 3900 pF 6800 pF 3900 pF
0.1 µF
2200 µF
0.1 µF
0.1 µF
0.075 200 k
47 k 330 k 150 k
47 k 150 k
22 k
30 k
30 k
5.6 k 22 k
200 k
25 V (10 %) 16 V (10 %) 25 V (10 %)
10 % 10 % 10 % 10 %
25 V
10 %
16 V 16 V
1.0 %
1.0 %
1.0 % 5 %
1.0 %
1.0 %
1.0 %
0.5 %
0.5 %
0.5 %
0.5 %
0.5 % 5 %
——
——
Note: VISHAY SILICONIX : VISHAY Intertechnology, Inc.
MOTOROLA : Motorola Japan Ltd. ROHM : RHOM CO., LTD SUMIDA : SUMIDA ELECTRIC CO., Ltd.
21
MB3874/MB3876
REFERENCE DATA
MB3874
Conversion efficiency vs. charge current
(Fixed voltage mode)
100
BATT1 charge voltage = 12.6V,
fOSC = 286.37kHz, BATT2 = OPEN
98
η(%)=(VBATT1 × IBATT1)/(Vin × Iin) × 100
96 94 92 90 88
86 84
82
Conversion efficiency η(%)
80
10 m 100 m 1 10
Vin = 16 V
BATT1 charge current I
BATT1 (A)
Conversion efficiency vs. charge current
(Fixed voltage mode)
100
Paralle charging, BATT1 charge voltage = 12.6V
98
fOSC = 286.37kHz η(%)=((V
96
I
BATTI
94 92 90 88
86 84
82 80
Conversion efficiency η(%)
10 m 100 m 1 10
= I
BATT1
BATT2
Vin = 16 V
× I
BATT1
)+(V
BATT2
BATT2
× I
))/(Vin × Iin) × 100
BATT1 charge current IBATT1 (A)
Conversion effciency η(%)
Conversion effciency η(%)
Conversion efficiency vs. charge voltage
(Fixed current mode)
100
98 96 94 92 90 88 86 84 82 80
0 2 4 6 810121416
Vin = 16 V R10 = 22 k
BATT2= OPEN, BATT1: Electronic load,
(Product of KIKUSUI PLZ-150W)
BATT1 charge voltage VBATT1 (V)
Conversion efficiency vs. charge voltage
(Fixed current mode)
100
Paralle charging,
98
BATT1: Electronic load,
(Product of KIKUSUI PLZ-150W),
96
BATTI
BATT2
I
= I
94 92 90 88 86 84 82 80
Vin = 16 V R10 = 22 k
0 2 4 6 810121416
BATT1 charge voltage V
BATT1 (V)
BATT voltage vs. BATT charge current
18 16
14 12
BATT1 (V)
10
8 6 4 2
BATT1 voltage V
0
0.0
Vin = 16V, BATT2= OPEN, BATT1 : Electronic load, (Product of KIKUSUI PLZ-150W)
Dead Battery MODE DCC MODE
DCC : Dynamically-Controlled Charging
0.40.2 0.80.6 1.21.0 1.61.4 2.01.8
BATT1 charge current I
Note: KIKUSUI : KIKUSUI Electronics Corp.
22
BATT1 (A)
BATT1 voltage VBATT1 (V)
BATT voltage vs. BATT charge current
18 16
14 12 10
8 6 4 2 0
0.0
Paralle charging, Vin = 16V, BATT1 : Electronic load,
(Product of KIKUSUI PLZ-150W), I
BATTI=IBATT2
Dead Battery MODE DCC MODE
DCC : Dynamically-Controlled Charging
0.40.2 0.80.6 1.21.0 1.61.4 2.01.8
BATT1 charge current IBATT1 (A)
(Continued)
MB3874/MB3876
BATT1 (V)
CTL (V)
20 15 10
Soft start operating waveforms
Vin = 16 V Load : BATT1 = 20
INE1 = 0 V BATT2 = OPEN
20 15 10
5 0
5 V
5 0
5 V 20 ms
0 80 120 160 200
40
t (ms)
DC/DC converter switching waveforms
Vin = 16 V FOSC = 286.7 kHz Load : BATT1 = 1A BATT2 = OPEN
OUT (V)
20 15 10
5
5 V
5 0
046810
2
1 µs
t (µs)
23
MB3874/MB3876
MB3876
Conversion efficiency vs.charge current
(Fixed voltage mode)
100
98 96 94 92 90 88
86 84
82
Conversion efficiency η(%)
80
10 m 100 m 1 10
BATT1 charge voltage =16.8V,
OSC
f
= 282.71kHz, BATT2 = OPEN,
η(
BATT1
%)=(V
BATT1
× I
)/(Vin × Iin) × 100
Vin = 19 V
BATT1 charge current I
BATT1 (A)
Conversion efficiency vs.charge current
(Fixed voltage mode)
100
Parallel charging, BATT1 Charge voltage =16.8 V,
OSC
f
98 96
= 282.71 kHz,
η(
%)=((V
I
= I
BATTI
BATT1
BATT2
× I
BATT1
)+(V
BATT2
BATT2
× I
))/(Vin × Iin) × 100,
94 92
Vin = 19 V
90 88
86 84
82
Conversion efficiency η(%)
80
10 m 100 m 1 10
BATT1 charge current I
BATT1 (A)
BATT voltage vs. BATT charge current
Conversion efficiency vs. charge voltage
(Fixed current mode)
100
98 96 94 92 90 88 86 84 82
Conversion efficiency η(%)
80
0 2 4 6 81012141618
BATT2 = OPEN, BATT1 : Electronic load, (Prouct of KIKUSUI PLZ-150W)
Vin = 19 V R10 = 15 k
BATT1 charge voltage VBATT1 (V)
Conversion efficiency vs. charge voltage
(Fixed current mode)
100
98 96 94 92 90 88 86 84 82
Conversion efficiency η(%)
80
0 2 4 6 81012141618
Parallel charging, BATT1 : Electronic load, (Prouct of KIKUSUI PLZ-150W),
I
= I
BATTI
BATT2
Vin = 19 V R10 = 15 k
BATT1 charge voltage VBATT1 (V)
BATT voltage vs. BATT charge current
20 18
16 14 12
10
Dead Battery MODE DCC MODE
8 6 4 2
BATT1 voltage VBATT1 (V)
0
0.0
0.40.2 0.80.6 1.21.0 1.61.4 2.01.8
DCC : Dynamically-Controlled Charging
BATT1 charge current IBATT1 (A)
Note: KIKUSUI : KIKUSUI Electronics Corp.
24
Vin = 19V, BATT2 = open, BATT1:Electronic load, (Product of KIKUSUI
PLZ-150W)
BATT1 voltage VBATT1 (V)
20 18
16 14 12
10
Parallel charging, Vin = 19V, BATT1: Electronic load,
(Product of KIKUSUI PLZ-150W), I
= I
BATTI
BATT2
Dead Battery MODE DCC MODE
8 6 4 2 0
0.0
0.40.2 0.80.6 1.21.0 1.61.4 2.01.8
DCC : Dynamically-Controlled Charging
BATT1 charge current IBATT1 (A)
(Continued)
MB3874/MB3876
BATT1 (V)
CTL (V)
20 15 10
Soft start operating waveforms
Vin = 19 V Load : BATT1 = 50
INE1 = 0 V BATT2 = OPEN
10 V
20 10
0
5 0
5 V 20 ms
0 80 120 160 200
40
t (ms)
DC/DC converter switching waveforms
Vin = 19 V F
OSC = 282.6 kHz
Load : BATT1 = 1 A BATT2 = OPEN
1 µs
OUT (V)
20 15 10
5 0
5
5 V
046810
2
t (µs)
25
MB3874/MB3876
USAGE PRECAUTIONS
1. Never use settings exceeding maximum rated conditions.
Exceeding maximum rated conditions may cause permanent damage to the LSI. Also, it is recommended that recommended operating conditions be observed in normal use. Exceeding recommended operating conditions may adversely affect LSI reliability.
2. Use this device within recommended operating conditions.
Recommended operating conditions are values within which normal LSI operation is warranted. Standard elec­trical characteristics are warranted within the range of recommended operating conditions and within the listed conditions for each parameter.
3. Printed circuit board ground lines should be set up with consideration for common imped­ance.
4. Take appropriate static electricity measures.
• Containers for semiconductor materials should hav e anti-static protection or be made of conductive material.
• After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.
• Work platforms, tools, and instruments should be properly grounded.
• Working personnel should be grounded with resistance of 250 k to 1 MΩ between body and ground.
5. Do not apply negative voltages.
The use of negative voltages below –0.3 V may create parasitic transistors on LSI lines, which can cause abnormal operation
ORDERING INFORMATION
Part number Package Remarks
MB3874PFV MB3876PFV
24-pin plastic SSOP
(FPT-24P-M03)
26
PACKAGE DIMENSION
0.20
MB3874/MB3876
24-pin plastic SSOP
(FPT-24P-M03)
*
7.75±0.10(.305±.004)
*
7.75±0.10(.305±.004)
INDEX
INDEX
0.65±0.12(.0256±.0047)
0.65±0.12(.0256±.0047)
7.15(.281)REF
7.15(.281)REF
*
*
(.220±.004) (.299±.008)
(.220±.004) (.299±.008)
+0.10
+0.10
–0.05
0.22
–0.05
0.22
+.004
+.004
.009
–.002
.009
–.002
7.60±0.20
7.60±0.20
* : These dimensions do not include resin protrusion.
+
+0.20
–0.10
"A"
"A"
1.25
1.25
.049
.049
0.15
0.15
.006
.006
(Mounting height)
–0.10
+.008
(Mounting height)
+.008
–.004
–.004
0.10(.004)
0.10(.004)
6.60(.260)5.60±0.10
6.60(.260)5.60±0.10
NOM
NOM
+0.05
+0.05
–0.02
–0.02
+.002
+.002
–.001
–.001
Details of "A" part
Details of "A" part
0 10°
0 10°
0.10±0.10(.004±.004)
0.10±0.10(.004±.004)
(STAND OFF)
(STAND OFF)
0.50±0.20
0.50±0.20
(.020±.008)
(.020±.008)
C
C
1994 FUJITSU LIMITED F24018S-2C-2
1994 FUJITSU LIMITED F24018S-2C-2
Dimensions in: mm (inches)
27
MB3874/MB3876
FUJITSU LIMITED
For further information please contact:
Japan
FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-8588, Japan Tel: 81(44) 754-3763 Fax: 81(44) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, USA Tel: (408) 922-9000 Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608 Fax: (408) 922-9179
http://www.fujitsumicro.com/
Europe
FUJITSU MICROELECTRONICS EUR OPE GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122
http://www.fujitsu-fme.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220
http://www.fmap.com.sg/
All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.
FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).
CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.
F0001
FUJITSU LIMITED Printed in Japan
Loading...