Endress+Hauser Proline Prosonic Flow 93W Specifications

Technical Information
Proline Prosonic Flow 93W
Ultrasonic flow measuring system Volume flow measurement for standard applications with drinking water, wastewater and process water

Applications

• Suitable for pipe diameters up to DN 15 to 4000
½ to 160")
(
• Can be used with all metal and plastic pipes lined or unlined and with composite pipes
• Ideal solution for applications with water, e.g. drinking water, industrial water, wastewater, saltwater, deionized water, cooling water and heating water
• Perfectly suitable for – retrofit measurement – flow monitoring – improving measuring points
• Interface for easy integration into all common distributed control systems: –HART –PROFIBUS DP/PA – FOUNDATION Fieldbus

Features and benefits

The Prosonic Flow ultrasonic clamp-on system allows accurate and cost-effective flow measurement from outside the pipe and without the need to interrupt the process. The flow measurement is bidirectional and causes no pressure loss.
• Easy, safe and menu-guided sensor mounting ensures precise measuring results
• Long-term system integrity thanks to robust sensor and industrial mounting kit design
• Automatic frequency scan for optimized installation and maximum measuring performance
• IP 68 for pipes under water
• Also available as insert version
• Can also be supplied as two-path system for short inlet runs
• Remote configuration using Endress+Hauser's FieldCare software
TI00084D/06/EN/13.11 71136723

Table of contents

Proline Prosonic Flow 93W
Function and system design. . . . . . . . . . . . . . . . . . . . . 3
Measuring principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Measuring system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Sensor selection and arrangement . . . . . . . . . . . . . . . . . . . . . . . . . 5
Two-channel operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Measured variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Measuring range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Operable flow range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Output signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Signal on alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Switching output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Low flow cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Galvanic isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical connection, measuring unit . . . . . . . . . . . . . . . . . . . . . 10
Electrical connection, terminal assignment . . . . . . . . . . . . . . . . . 11
Connecting the connecting cable . . . . . . . . . . . . . . . . . . . . . . . . 11
Supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Cable entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Connecting cable
(sensor/transmitter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Power supply failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Potential equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Human interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Display elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Operating elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Language group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Remote operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Certificates and approvals . . . . . . . . . . . . . . . . . . . . . 27
CE mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
C-Tick mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
PROFIBUS DP/PA certification . . . . . . . . . . . . . . . . . . . . . . . . . 27
FOUNDATION Fieldbus certification . . . . . . . . . . . . . . . . . . . . . 27
Other standards and guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . 27
Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Device-specific accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Measuring principle-specific accessories . . . . . . . . . . . . . . . . . . . 29
Communication-specific accessories . . . . . . . . . . . . . . . . . . . . . . 30
Service-specific accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Registered trademarks . . . . . . . . . . . . . . . . . . . . . . . . 31
Performance characteristics. . . . . . . . . . . . . . . . . . . . 13
Reference operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Maximum measured error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Operating conditions: installation . . . . . . . . . . . . . . . 14
Installation instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Inlet and outlet runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Operating conditions: environment . . . . . . . . . . . . . . 16
Ambient temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Storage temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Degree of protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Shock and vibration resistance . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Electromagnetic compatibility (EMC) . . . . . . . . . . . . . . . . . . . . . 16
Operating conditions: process . . . . . . . . . . . . . . . . . . 17
Medium temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Medium pressure range (nominal pressure) . . . . . . . . . . . . . . . . . 17
Pressure loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Mechanical construction . . . . . . . . . . . . . . . . . . . . . . 18
Design, dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2 Endress+Hauser
Proline Prosonic Flow 93W
b
a
Q
t
a
t
b

Function and system design

Measuring principle The measuring system operates on the principle of transit time difference. In this measurement method,

acoustic (ultrasonic) signals are transmitted between two sensors. The signals are sent in both directions, i.e. the sensor in question works as both a sound transmitter and a sound receiver.
As the propagation velocity of the waves is less when the waves travel against the direction of flow than along the direction of flow, a transit time difference occurs. This transit time difference is directly proportional to the flow velocity.
Principle of the transit time difference measurement method
Q = v · A
aSensor bSensor Q Volume flow v Flow velocity (v & Δt ) Δt Transit time difference (Δt = t A Pipe cross-sectional area
– tb)
a
The measuring system calculates the volume flow of the fluid from the measured transit time difference and the pipe cross-sectional area. In addition to measuring the transit time difference, the system simultaneously measures the sound velocity of the fluid. This additional measured variable can be used to distinguish different fluids or as a measure of product quality.
The measuring device can be configured onsite to suit the specific application using Quick Setup menus.

Measuring system The measuring system consists of one transmitter and two sensors.

The transmitter is used both to control the sensors and to prepare, process and evaluate the measuring signals, and to convert the signals to a desired output variable. The transmitter is optionally equipped for two-channel operation ä 6.
The sensors work as sound transmitters and sound receivers. Depending on the application and version, the sensors can be arranged for measurement via one or two traverses ä 5.
A0005961
Endress+Hauser 3

Transmitter

Prosonic Flow 93 wall-mount housing
For mounting in non-hazardous zone

Sensor

Proline Prosonic Flow 93W
A0009629
Prosonic Flow W Prosonic Flow W
Clamp-on version
Insertion version
A0013475
A0009674
Prosonic Flow W
DN 15 to 65 (½ to 2½")
A0011484

Mounting accessories

The requisite mounting distances must be determined for the sensors. Information on the fluid, the pipe material used and the exact pipe dimensions is needed to determine these values. The values for the sound velocity of the following fluids, pipe materials and lining materials are stored in the transmitter:
Fluid Pipe material Lining
•Water
•Sea water
• Distilled water
• Ammonia
• Alcohol
•Benzene
•Bromide
•Ethanol
•Glycol
•Kerosene
• Milk
• Methanol
• Toluene
•Lube oil
•Diesel
• Gasoline
• Carbon steel
• Ductile iron
• Stainless steel
• Alloy C
•PVC
•PE
•LDPE
•HDPE
•GRP
•PVDF
•PA
•PP
•PTFE
•Glass pyrex
• Asbestos cement
• Copper
•Mortar
• Rubber
• Tar Epoxy
If you are using fluids, pipe materials or lining materials other than those listed in the table, and you do not have the corresponding sound velocities for these fluids/materials, you can use the DDU18 and DDU19 sensors to determine the values.
4 Endress+Hauser
Proline Prosonic Flow 93W
BA

Sensor selection and arrangement

DDU18
(sound velocity measurement)
Nominal diameter range: DN 50 to 3000 (2 to 120")
Wall thickness range:
• Steel pipes: 2 to 50 mm (0.08 to 2.0")
• Plastic pipes: 4 to 15 mm (0.16 to 0.60") (only suitable for PTFE and PE pipes to a certain extent)
A0009784
The sensors can be arranged in two ways:
• Mounting arrangement for measurement via one traverse: the sensors are located on opposite sides of the pipe.
• Mounting arrangement for measurement via two traverses: the sensors are located on the same side of the pipe.
DDU19
(wall thickness measurement)
A0009673
Sensor mounting arrangement
A Mounting arrangement for measurement via one traverse B Mounting arrangement for measurement via two traverses
A0001108
Endress+Hauser 5
Proline Prosonic Flow 93W
The number of traverses required depends on the sensor type, the nominal diameter and the thickness of the pipe wall. We recommend the following types of mounting:
Sensor Type Nominal Diameter Sensor Frequency Sensor ID Type of Mounting
5)
Prosonic Flow W
DN 15 to 65 (½ to 2½") 6 MHz W-CL-6F* 2 traverses
DN 50 to 65 (2 to 2½") 2 MHz W-CL-2F* 2 (or 1) traverses
DN 80 (3") 2 MHz W-CL-2F* 2 traverses
DN 100 to 300 (4 to 12") 2 MHz (or 1 MHz)
DN 300 to 600 (12 to 24") 1 MHz (or 2 MHz)
DN 650 to 4000 (26 to 160") 1 MHz (or 0.5 MHz)
1)
The installation of clamp-on sensors is principally recommended in the 2 traverse type installation. This type of
W-CL-2F* W-CL-1F*
W-CL-1F* W-CL-2F*
W-CL-1F* W-CL-05F*
2 traverses
2 traverses
1 traverse
3)
3)
3)
installation allows the easiest and most comfortable type of mounting and means that a system can also be mounted even if the pipe can only be accessed from one side. However, in certain applications a 1 traverse installation may be preferred. These include:
• Certain plastic pipes with wall thickness > 4 mm (0.16")
• Pipes made of composite materials such as GRP
• Lined pipes
• Applications with fluids with high acoustic damping
2)
If the pipe nominal diameter is small (DN 65 / 2½" and smaller), the sensor spacing with Prosonic Flow W can be too small for two traverse installation. In this case, the 1 traverse type of installation must be used.
3)
0.5 MHz sensors are also recommended for applications with composite material pipes such as GRP and may be recommended for certain lined pipes, pipes with wall thickness > 10 mm (0.4"), or applications with media with high acoustic damping. In addition, for these applications we principally recommend mounting the W sensors in a 1 traverse configuration.
4)
Insertion W sensors are mounted in a 1 traverse configuration ä 23.
5)
6 MHz sensors for appliations where flow velocity < 10 m/s 832.8 ft/s)
1)
2)

Two-channel operation T

he transmitter is able to operate two independent measuring channels (measuring channel 1 and measuring channel 2). A pair of sensors is connected per measuring channel. Both measuring channels operate independently of one another and are supported by the transmitter to an equal extent.
Two-channel operation can be used for the following measurements:
• Two-channel measurement = flow measurement at two separate measuring points
• Two-path measurement = redundant flow measurement at one measuring point

Two-channel measurement

The flow is measured at two separate measuring points in the case of two-channel measurement.
The measured values of the two measuring channels can be processed and displayed differently. The following measured values can be output for two-channel measurement:
• Individual measured values per measuring channel (output independently of one another)
• The difference between the two measured values
• The sum of the two measured values
The two measuring channels can be configured individually. This makes it possible to independently configure and select the display, outputs, sensor type and type of installation.
6 Endress+Hauser
Proline Prosonic Flow 93W
BA
BA
A0001159
Two-channel measurement: example of arranging sensor pairs at two separate measuring points
A Measuring channel 1: mounting the sensor pair for measurement via two traverses B Measuring channel 2: mounting the sensor pair for measurement via one traverse

Two-path measurement

The flow is measured redundantly at one measuring point in the case of two-path measurement.
The measured values of the two measuring channels can be processed and displayed differently. The following measured values can be output for two-path measurement:
• Individual measured values per measuring channel (output independently of one another)
• The average of the two measured values
The "Averaging" function generally provides you with a more stable measured value. The function is thus suitable for measurements under conditions that are not ideal (e.g. short inlet runs).
The two measuring channels can be configured individually. This makes it possible to independently configure and select the display, outputs, sensor type and type of installation. It is generally not necessary to individually configure the two measuring channels in the case of two-path measurement. However, in certain situations individual channel configuration can be used to balance out application-specific asymmetries.
A0001160
Two-path measurement: examples of arranging sensor pairs at one measuring point
A Measuring channel 1 and measuring channel 2: mounting the sensor pair for measurement via two traverses B Measuring channel 1 and measuring channel 2: mounting the sensor pair for measurement via one traverse
Endress+Hauser 7

Input

Measured variable Flow velocity (transit time difference proportional to flow velocity)

Measuring range Typically v = 0 to 15 m/s (0 to 50 ft/s)

Operable flow range Over 150 : 1

Input signal Status input (auxiliary input)

U = 3 to 30 V DC, R
Configurable for: totalizer(s) reset, measured-value suppression, error-message reset
= 5 kΩ, galvanically isolated
i

Output

Output signal Current output

• Galvanically isolated
• Active/passive selectable
– Active: 0/4 to 20 mA, R – Passive: 4 to 20 mA, max. 30 V DC, R
• Time constant selectable (0.01 to 100 s)
• Full scale value adjustable
• Temperature coefficient: typ. 0.005 % o.r./°C (o.r. = of reading)
• Resolution: 0.5 μA

Pulse/frequency output

• Galvanically isolated
• Active/passive selectable
– Active: 24 V DC, 25 mA (max. 250 mA during 20 ms), RL > 100 Ω – Passive: open collector, 30 V DC, 250 mA
• Time constant selectable (0.05 to 100 s)
• Frequency output
– End frequency: 2 to 10000 Hz (f – On/off ratio 1:1, pulse width max. 10 s
• Pulse output
– Pulse value and pulse polarity selectable – Max. pulse width adjustable (0.05 to 2000 ms) – As of a frequency of 1 / (2 × pulse width), the on/off ratio is 1:1
< 700 Ω (for HART: RL 250 Ω)
L
150 Ω
i
= 12500 Hz)
max
Proline Prosonic Flow 93W

PROFIBUS DP interface

• PROFIBUS DP in accordance with EN 50170 Volume 2
• Profile version 3.0
• Data transmission rate: 9.6 kBaud to 12 MBaud
• Automatic data transmission rate recognition
• Signal encoding = NRZ Code
• Function blocks: 8 × Analog input (AI), 3 × Totalizer
• Output data: volume flow channel 1 or channel 2, sound velocity channel 1 or channel 2,
flow velocity channel 1 or channel 2, average volume flow, average sound velocity, average flow velocity, volume flow sum, volume flow difference, totalizer 1 to 3
• Input data: positive zero return (ON/OFF), zero point adjustment, measuring mode, totalizer control
• Bus address adjustable via miniature switches or local display (optional) at the measuring device
• Available output combination ä 10
8 Endress+Hauser
Proline Prosonic Flow 93W

PROFIBUS PA interface:

• PROFIBUS PA in accordance with EN 50170 Volume 2, IEC 61158-2 (MBP)
• Galvanically isolated
• Data transmission rate, supported baudrate: 31.25 kBit/s
• Current consumption = 11 mA
• Error current FDE (fault disconnection electronic) = 0 mA
• Signal encoding = Manchester II
• Function blocks: 8 × Analog Input (AI), 3 × Totalizer
• Output data: volume flow channel 1 or channel 2, sound velocity channel 1 or channel 2, flow velocity channel 1 or channel 2, average volume flow, average sound velocity, average flow velocity, volume flow sum, volume flow difference, totalizer 1 to 3
• Input data: positive zero return (ON/OFF), operation control, totalizer control, zero point adjustment control, display value
• Bus address can be set via DIP switch on device

FOUNDATION Fieldbus interface:

• FOUNDATION Fieldbus H1, IEC 61158-2
• Galvanically isolated
• Data transmission rate, supported baudrate: 31.25 kBit/s
• Current consumption = 12 mA
• Error current FDE (fault disconnection electronic) = 0 mA
• Signal encoding = Manchester II
• Function blocks: 8 × Analog Input (AI), 1 × Discrete Output, 1 × PID
• Output data: volume flow channel 1 or channel 2, sound velocity channel 1 or channel 2, flow velocity channel 1 or channel 2, signal strength channel 1 or 2, average volume flow, average sound velocity, average flow velocity, volume flow sum, difference, volume flow, totalizer 1 to 3
• Input data: positive zero return (ON/OFF), reset totalizer, zero point adjustment control
• Link master function (LAS) is supported

Signal on alarm • Current output failsafe mode selectable

• Pulse/frequency output failsafe mode selectable
• Relay output "deenergized" in the event of a fault or if the power supply fails

Load See "Output signal"

Switching output Relay output

• NC or NO contact available Factory setting: relay 1 = NO contact, relay 2 = NC contact
• Max. 30 V / 0.5 A AC; 60 V / 0.1 A DC
• Galvanically isolated
• Configurable for: error messages, flow direction, limit values

Low flow cutoff Switch points for low flow are selectable

Galvanic isolation All circuits for inputs, outputs, and power supply are galvanically isolated from each other.

Endress+Hauser 9
Electrical connection,
HART*
PROFIBUS DP**
27 25 23 21
2 1
26 24 22 20
L1 (L+)
N (L-)
– – –
+ + +
PROFIBUS PA*
FOUNDATION Fieldbus*
PA(–)/FF(–)
27 25 23 21
2 1
26 24 22 20
L1 (L+)
N (L-)
– – –
+ + +
A (RxD/TxD-N)
B (RxD/TxD-P)
PA(+)/FF(+)
d
c
e
b
–27
–25 –23 –21
+26 +24 +22 +20
N (L-) 2 L1 (L+)1
25 23 21
2 1
24 22 20
L1 (L+)
N (L-)
– – –
+ + +
27 26
A (RxD/TxD-N) B (RxD/TxD-P)
d
c
e
b
d
c
e
b
g
d
c
e
b
g
PROFIBUS DP*
f f
f f
a
A
(d)
b
d/(g)
measuring unit
Proline Prosonic Flow 93W

Power supply

Connecting the transmitter, cable cross-section max. 2.5 mm2 (14 AWG)
A View A (wall-mount housing)
*) fixed communication boards **) flexible communication boards a Connection compartment cover b Cable for power supply: 85 to 260 V AC / 20 to 55 V AC / 16 to 62 V DC
c Ground terminal for protective conductor d Signal cable: see terminal assignment ä 11
e Ground terminal for signal cable shield / Fieldbus cable f Service adapter for connecting service interface FXA193 (Fieldcheck, FieldCare) g Signal cable: see terminal assignment ä 11
- Terminal No. 1: L1 for AC, L+ for DC
- Terminal No. 2: N for AC, L– for DC
Fieldbus cable:
- Terminal No. 26: DP (B) / PA (+) / FF (+) with polarity protection
- Terminal No. 27: DP (A) / PA (–) / FF (–) with polarity protection
Cable for external termination (only for PROFIBUS DP with fixed assignment communication board):
- Terminal No. 24: +5 V
- Terminal No. 25: DGNDA
A0013924
10 Endress+Hauser
Loading...
+ 22 hidden pages