Elenco Logic Probe Kit User Manual

LOGIC PROBE KIT
MODEL LP-525K
Assembly and Instruction Manual
Copyright © 2013, 1994 by Elenco®Electronics, Inc. All rights reserved. Revised 2013 REV-J 753241
No part of this book shall be reproduced by any means; electronic, photocopying, or otherwise without written permission from the publisher.
®
Qty. Symbol Description Part #
! 1 D6 1N4002 Diode 314002 ! 5 D1 - D5 1N4148 Diode 314148 ! 2 Q2, Q4 2N3904 Transistor 323904
Qty. Symbol Description Part #
! 3 Q1, 3, 5 2N3906 Transistor 323906 ! 1 U1 LM2901 IC 332901 ! 3 L1 - L3 LED 350001
SEMICONDUCTORS
Qty. Symbol Description Part #
! 1 C2 100pF (101) Discap 221017 ! 1 C3 200pF (201) Discap 222010 ! 2 C1, C6 0.001µF (102) Discap 231036
Qty. Symbol Description Part #
! 1 C4 0.005µF (502) Discap 235018 ! 1 C5 0.047µF (473) Discap 244780 ! 1 C7 0.1µF (104) Discap 251010
PARTS LIST
If you are a student, and any parts are missing or damaged, please see instructor or bookstore. If you purchased this LP-525K Logic Probe Kit from a distributor, catalog, etc., please contact ELENCO
®
(address/phone/e-mail is at the back of this manual) for additional assistance, if needed. DO NOT contact your place of purchase as they will not be able to help you.
RESISTORS
Qty. Symbol Description Color Code Part #
! 3 R21, R23, R24 200Ω 5% 1/4W red-black-brown-gold 132000 ! 1 R16 2kΩ 5% 1/4W red-black-red-gold 142000 ! 1 R4 4.7kΩ 5% 1/4W yellow-violet-red-gold 144700 ! 1 R14 5.1kΩ 5% 1/4W green-brown-red-gold 145100 ! 1 R11 15kΩ 5% 1/4W brown-green-orange-gold 151500 ! 1 R13 18kΩ 5% 1/4W brown-gray-orange-gold 151800 ! 2 R10, R15 20kΩ 5% 1/4W red-black-orange-gold 152000 ! 2 R12, R22 30kΩ 5% 1/4W orange-black-orange-gold 153000 ! 7 R1, R5 - R8, R19, R20 100kΩ 5% 1/4W brown-black-yellow-gold 161000 ! 1 R17 120kΩ 5% 1/4W brown-red-yellow-gold 161200 ! 1 R18 150kΩ 5% 1/4W brown-green-yellow-gold 161500 ! 3 R2, R3, R9 4.7MΩ 5% 1/4W yellow-violet-green-gold 174700
CAPACITORS
-1-
Qty. Description Part #
! 1 PC board 517014 ! 2 Switch SPDT 541024 ! 1 Probe tip 616001 ! 1 Case 623005 ! 2 Screw #4 x 5/8” 643450 ! 1 IC socket 14-pin 664014 ! 1 Label front 724002
Qty. Description Part #
! 1 Label back 724003 ! 1 Wire 1.5” 814220 ! 1 Power cord 862102 ! 3” Tubing #20 890020 ! 1” Shrink tubing (red) 890312 ! 1 Solder tube lead-free 9LF99
MISCELLANEOUS
Resistor
PARTS IDENTIFICATION
Diode
Capacitor Transistor
Integrated Circuit LED
IC Socket
Case Top
Case Bottom
Probe Tip
Switch
Power Cord
-2-
Warning:
If the capacitor is connected with incorrect polarity, it may heat up and either leak, or cause the capacitor to explode.
IDENTIFYING RESISTOR VALUES
Use the following information as a guide in properly identifying the value of resistors.
BANDS
METRIC UNITS AND CONVERSIONS
Abbreviation Means Multiply Unit By Or
p Pico .000000000001 10
-12
n nano .000000001 10
-9
µ micro .000001 10
-6
m milli .001 10
-3
unit 1 10
0
k kilo 1,000 10
3
M mega 1,000,000 10
6
1. 1,000 pico units = 1 nano unit
2. 1,000 nano units = 1 micro unit
3. 1,000 micro units = 1 milli unit
4. 1,000 milli units = 1 unit
5. 1,000 units = 1 kilo unit
6. 1,000 kilo units = 1 mega unit
IDENTIFYING CAPACITOR VALUES
Capacitors will be identified by their capacitance value in pF (picofarads), nF (nanofarads), or µF (microfarads). Most capacitors will have their actual value printed on them. Some capacitors may have their value printed in the following manner. The maximum operating voltage may also be printed on the capacitor.
Electrolytic capacitors have a positive and a negative electrode. The negative lead is indicated on the packaging by a stripe with minus signs and possibly arrowheads. Also, the negative lead of a radial electrolytic is shorter than the positive one.
Polarity marking
BAND 1
1st Digit
Color Digit
Black 0 Brown
1
Red 2 Orange 3 Yellow 4 Green 5 Blue 6 Violet 7 Gray 8 White 9
BAND 2
2nd Digit
Color Digit
Black 0 Brown 1 Red 2 Orange 3 Yellow 4 Green 5 Blue 6 Violet 7 Gray 8 White 9
Multiplier
Color Multiplier
Black 1 Brown 10 Red 100 Orange 1,000 Yellow 10,000 Green 100,000 Blue 1,000,000 Silver 0.01 Gold 0.1
Resistance
Tole r ance
Color Tol eran ce
Silver ±10% Gold ±5% Brown ±1% Red ±2% Orange ±3% Green ±0.5% Blue ±0.25% Violet ±0.1%
1
2 Multiplier Tolerance
Multiplier
For the No. 0 1 2 3 4 5 8 9
Multiply By 1 10 100 1k 10k 100k .01 0.1
(+)
(–)
(+)
(–)
Axial
Radial
Second digit
First digit
Multiplier
Tolerance*
Note: The letter “R” may be used at times to signify a decimal point; as in 3R3 = 3.3
The letter M indicates a tolerance of +20% The letter K indicates a tolerance of +10% The letter J indicates a tolerance of +5%
Maximum working voltage
(may or may not appear on the cap)
The value is 10 x 10 = 100pF, +10%, 50V
*
CERAMIC DISC MYLAR
First digit
Second digit
Multiplier
Tolerance*
2A222J
100V
The value is 22 x 100 = 2,200pF or .0022µF, +5%, 100V
101K
50V
-3-
SPECIFICATIONS
Input Impedance 1MΩ Input Overload Protection 35V DC continuous Thresholds Logic 1 Logic 0
TTL 2.3 + .25V 0.80V + .1V
CMOS 70% Vcc 30% Vcc Response better than 25 nanoseconds Pulse Detector 1.5 millisecond pulse stretcher Power Requirements 5V Vcc @ 30mA
15V Vcc @ 40mA
Operating Temperature 0OC to +40OC
CIRCUIT DESCRIPTION
The Elenco®Model LP-525K Logic Probe kit is a convenient and precise instrument for use in the measurement of logic circuits. It displays logic levels (high or low), and voltage transients down to 25 nanoseconds. The LED readouts provide instant response to the logic state.
To detect the high and low logic levels, the LP-525 uses two comparators of a Quad Comparator LM2901 Integrated Circuit (see schematic diagram). One comparator drives the HI LED and the other drives the LOW LED. The comparator output goes low, lighting the LED, when the (–) input is more positive than the (+) input. To measure TTL circuits, the TTL-CMOS switch is set to TTL and the red and black alligator clips are connected to +5VDC and ground. The (+) input (pin 5) of the HI comparator is then biased to 2.3VDC by resistor network R9 through R15. Thus, the LED lights when the probe tip is more positive than 2.3VDC. To measure CMOS circuits, the HI comparator changes to
3.5VDC or 70% of the supply voltage.
The (–) input of the LOW comparator is biased to
0.8VDC for TTL operation and 1.5VDC or 30% of the supply voltage for CMOS operation. The LOW LED thus lights when the probe tip is connected to voltages less than 0.8 or 1.5VDC.
The pulse LED is controlled by a bipolar edge detector circuit which responds to both positive and negative transients. This circuit is made up of capacitors C2 and C3, transistors Q1 through Q4, and the associated resistors. When the circuit is activated by pulses as short as 25 nanoseconds, a negative pulse is applied to the (+) input (pin 11) of the pulse stretcher comparator. The comparator then turns on and is held by the feedback resistor R8. The ground level on the output (pin 13) causes C5 to discharge through R17. In approximately 1.5 milliseconds, the voltage on the (–) input (pin 10)
becomes more negative than the (+) input and the comparator turns off. The short pulse on the input is thus stretched to 1.5 milliseconds.
The (–) input (pin 8) of the PULSE LED driver is biased to +2.5VDC by resistors R19 and R20. The (+) input is biased to +3VDC by resistors R6 and R18. The 1.5 milliseconds pulse from the pulse stretcher grounds the (+) input through diode D5 turning the comparator on and lighting the PULSE LED. When the PULSE-MEM switch is in MEM, Q5 is also turned on, causing the (–) input of the comparator to go to +5VDC. This keeps the comparator on even after the (+) input returns to +3VDC. When the PULSE-MEM switch is in PULSE, the feedback path to the (–) input is broken and the LED is lit only for the duration of the 1.5 milliseconds pulse.
Thus, each time the input signal changes state, the PULSE LED is activated for 1.5 milliseconds. When observing low frequency signals, the PULSE LED provides an immediate indication of this pulse activity. By observing the HI and LOW LEDs, the polarity of the pulse train can be determined. Low frequencies cause the PULSE LED to blink once for each transition. High frequencies cause the LED to flash at a rate that makes it appear to be on continuously. When the PULSE-MEM switch is in MEM, a single input pulse will cause the PULSE LED to come on and stay on until the switch is returned to the PULSE position.
The input impedance of the LP-525 is 1MΩ. This eliminates any loading effect on the circuit under test.
CAUTION: Do not connect the alligator clips to any AC power source or to a DC power source greater than 35VDC. Failure to comply with this warning may result in damage to this instrument.
-4-
CONSTRUCTION
Solder
Soldering Iron
Foil
Solder
Soldering Iron
Foil
Component Lead
Soldering Iron
Circuit Board
Foil
Rosin
Soldering iron positioned incorrectly.
Solder
Gap
Component Lead
Solder
Soldering Iron
Drag
Foil
1. Solder all components from the
copper foil side only. Push the
soldering iron tip against both the
lead and the circuit board foil.
2. Apply a small amount of solder to
the iron tip. This allows the heat
to leave the iron and onto the foil.
Immediately apply solder to the
opposite side of the connection,
away from the iron. Allow the
heated component and the circuit
foil to melt the solder.
1. Insufficient heat - the solder will
not flow onto the lead as shown.
3. Allow the solder to flow around
the connection. Then, remove
the solder and the iron and let the
connection cool. The solder
should have flowed smoothly and
not lump around the wire lead.
4.
Here is what a good solder
connection looks like.
2. Insufficient solder - let the
solder flow over the connection until it is covered. Use just enough solder to cover the connection.
3. Excessive solder - could make
connections that you did not intend to between adjacent foil areas or terminals.
4. Solder bridges - occur when
solder runs between circuit paths and creates a short circuit. This is usually caused by using too much solder. To correct this, simply drag your soldering iron across the solder bridge as shown.
What Good Soldering Looks Like
A good solder connection should be bright, shiny, smooth, and uniformly flowed over all surfaces.
Types of Poor Soldering Connections
Introduction
The most important factor in assembling your LP-525K Logic Probe Kit is good soldering techniques. Using the proper soldering iron is of prime importance. A small pencil type soldering iron of 25 watts is recommended. The tip of the iron must be kept clean at all times
and well-tinned.
Solder
For many years leaded solder was the most common type of solder used by the electronics industry, but it is now being replaced by lead­free solder for health reasons. This kit contains lead-free solder, which contains 99.3% tin, 0.7% copper, and has a rosin-flux core.
Lead-free solder is different from lead solder: It has a higher melting point than lead solder, so you need higher temperature for the solder to flow properly. Recommended tip temperature is approximately 700OF; higher temperatures improve solder flow but accelerate tip decay. An increase in soldering time may be required to achieve good results. Soldering iron tips wear out faster since lead-free solders are more corrosive and the higher soldering temperatures accelerate corrosion, so proper tip care is important. The solder joint finish will look slightly duller with lead-free solders.
Use these procedures to increase the life of your soldering iron tip when using lead-free solder:
• Keep the iron tinned at all times.
• Use the correct tip size for best heat transfer. The conical tip is the most commonly used.
• Turn off iron when not in use or reduce temperature setting when using a soldering station.
Tips should be cleaned frequently to remove oxidation before it becomes impossible to remove. Use Dry Tip Cleaner (Elenco®#SH-1025) or Tip Cleaner (Elenco®#TTC1). If you use a sponge to clean your tip, then use distilled water (tap water has impurities that accelerate corrosion).
Safety Procedures
Always wear safety glasses or safety goggles to protect your eyes when working with tools or soldering iron, and during all phases of testing.
• Be sure there is adequate ventilation when soldering.
Locate soldering iron in an area where you do not have to go around it or reach over it. Keep it in a safe area away from the reach of children.
Do not hold solder in your mouth. Solder is a toxic substance. Wash hands thoroughly after handling solder.
Assemble Components
In all of the following assembly steps, the components must be installed on the top side of the PC board unless otherwise indicated. The top legend shows where each component goes. The leads pass through the corresponding holes in the board and are soldered on the foil side.
Use only rosin core solder.
DO NOT USE ACID CORE SOLDER!
-5-
ASSEMBLE COMPONENTS TO THE PC BOARD
Refer to the top legend on the PC board, install and solder the following resistors.
R13 - 18kΩ Resistor
(brown-gray-orange-gold)
R9 - 4.7MΩ Resistor
(yellow-violet-green-gold)
R10 - 20kΩ Resistor
(red-black-orange-gold)
R12 - 30kΩ Resistor
(orange-black-orange-gold)
R20 - 100kΩ Resistor
(brown-black-yellow-gold)
(see Figure 1)
R17 - 120kΩ Resistor
(brown-red-yellow-gold)
(see Figure 1)
R19 - 100kΩ Resistor
(brown-black-yellow-gold)
R2 - 4.7MΩ Resistor
(yellow-violet-green-gold)
R15 - 20kΩ Resistor
(red-black-orange-gold)
R16 - 2kΩ Resistor
(red-black-red-gold)
R23 - 200Ω Resistor
(red-black-brown-gold)
(see Figure 1)
R1 - 100kΩ Resistor
(brown-black-yellow-gold)
R24 - 200Ω Resistor
(red-black-brown-gold)
R14 - 5.1kΩ Resistor
(green-brown-red-gold)
R11 - 15kΩ Resistor
(brown-green-orange-gold)
R8 - 100kΩ Resistor
(brown-black-yellow-gold)
R6 - 100kΩ Resistor
(brown-black-yellow-gold)
R7 - 100kΩ Resistor
(brown-black-yellow-gold)
(see Figure 1)
R22 - 30kΩ Resistor
(orange-black-orange-gold)
R21- 200Ω Resistor
(red-black-brown-gold)
R3 - 4.7MΩ Resistor
(yellow-violet-green-gold)
R5 - 100kΩ Resistor
(brown-black-yellow-gold)
(see Figure 1)
R4 - 4.7kΩ Resistor
(yellow-violet-red-gold)
Stand resistor on end when called for.
Figure 1
Save 5 discarded leads for jumper wires.
ASSEMBLE COMPONENTS TO THE PC BOARD
Refer to the top legend on the PC board, install and solder the following diodes, capacitors and jumper wires.
D1 - 1N4148 Diode
(see Figure 2)
D2 - 1N4148 Diode
(see Figure 2)
J - Jumper Wire
(see Figure 3)
J - Jumper Wire
(see Figure 3)
C2 - 100pF Capacitor
(May be marked 101)
C5 - .047µF Capacitor
(May marked 473)
C6 - .001µF Capacitor
(May be marked 102)
C3 - 200pF Capacitor
(May be marked 201)
D3 - 1N4148 Diode
(see Figure 4)
D4 - 1N4148 Diode
(see Figure 4)
C1 - .001µF Capacitor
(May be marked 102)
J - Jumper Wire
(see Figure 3)
D5 - 1N4148 Diode
(see Figure 4)
J - Jumper Wire
(see Figure 3)
J - Jumper Wire
(see Figure 3)
D6 - 1N4002 Diode
(see Figure 4)
C4 - .005µF Capacitor
(May be marked 502)
C7 - .1µF Capacitor
(May be marked 104)
When mounting diodes vertically, mount as indicated by band. (Diodes have polarity).
Figure 2
When mounting diodes horizontally, mount as indicated by the band. (Diodes have polarity).
Figure 4
Form jumper wire from discarded resistor lead.
Figure 3
-6-
-7-
ASSEMBLE COMPONENTS TO THE PC BOARD
Refer to the top legend on the PC board, install and solder the following components.
Cut a 3/8” piece of tubing for each LED lead, to be used as stand-offs. Mount the LED with the flat side in the direction shown on the top legend.
Figure 8
L1 - LED
(see Figure 8)
L2 - LED
(see Figure 8)
L3 - LED
(see Figure 8)
R18 - 150kΩ Resistor
(brown-green-yellow-gold)
Install SW1 first.
Q5 - 2N3906 Transistor
(see Figure 7)
Q3 - 2N3906 Transistor
(see Figure 7)
U1 - 14-pin IC Socket U1 - LM2901 IC
(see Figure 5)
SW1 - Switch
(see Figure 6)
Q2 - 2N3904 Transistor
(see Figure 7)
Q1 - 2N3906 Transistor
(see Figure 7)
SW2 - Switch
(see Figure 6)
Q4 - 2N3904 Transistor
(see Figure 7)
Flat
Side
Tubing
Before installing, snip off the tabs. Mount the switch so that the legs are touching the PC board.
Figure 6
}
{
Ta b
Leg
Cut off tabs
Insert the IC socket into the PC board with the notch in the direction shown on the top legend. Solder the IC socket into place. Insert the IC into the socket with the notch in the same direction as the notch on the socket.
Figure 5
Socket
IC
PC Board
3/8”
Flat Side
Marking
Figure 7
Mount the transistor with the flat side in the direction shown on the top legend. Leave 1/4” between the part and PC board.
Flat
Side
Flat Side Marking
! Install the power cord as shown in Figure 9. Solder the red wire to hole
marked “+” and the green wire to the hole marked “–” (see Figure 9).
! Install the probe tip as shown in Figure 10. Using the 1 1/2” wire, strip 1/4”
of insulation off of both ends. Solder one end to point P on the PC board. Solder the other end of the wire to the probe tip groove.
! Install the two labels to the case, as shown in Figure 11. Be careful to place
the labels on neatly and correctly. Peel the backing off to expose the glue.
! Place the PC board assembly into the case as shown in Figure 11. Use two
#4 screws to hold the case together. Do not over-tighten or the holes may strip out.
! Cut a 13/16” piece of red shrink tubing and slide it over the probe tip until
it touches the plastic case. Shrink the tubing by heating it with your soldering iron. Be sure the soldering iron does not contact the tubing or plastic case.
This completes the assembly procedure. Your Logic Probe is now ready for testing.
-8-
Figure 11
To p l ab el
Top case
Assembled
PC board
Bottom case
Bottom label
#4 x 5/8” Screw
#4 x 5/8” Screw
Figure 9
Figure 10
Green wire
(to – hole)
Red wire
(to + hole)
Red shrink tubing
-9-
CAUTION: Do not connect the alligator clips to any AC power source or to DC power source greater than
35VDC. Failure to comply to this warning may result in damage to this instrument.
TESTING YOUR DIGITAL PROBE
Checking out your Logic Probe for proper operation is fairly easy. All that is needed is a 9V battery or other DC power source (5-10V). Connect the red alligator clip to the positive terminal of the battery and the black clip to the negative terminal. Set the PULSE-MEM switch to the PULSE position and the TTL-CMOS switch to the TTL position. Touch the probe tip to the positive side of the battery, the PULSE LED should blink once and the HIGH LED should light up. Place the probe tip to the negative terminal and the LOW LED should light up. To check the operation of the memory switch, set the PULSE-MEM switch to the MEM position and set the TTL-CMOS switch to the TTL position. Now touch the probe tip to the positive side of the battery. The PULSE LED should
come on and stay on until the switch is flipped back to the pulse position. No LED’s should light up when the tip is not touching anything (open circuit).
The logic probe should operate at the following logic levels when the power supply voltage is precisely set to 5VDC.
DTL/TTL Position Logic 0 - under 0.8V + 0.1V
Logic 1 - above 2.3V + 0.25V
CMOS Position Logic 0 - under 1.5V + 0.2V
Logic 1 - above 3.5V + 0.35V
TROUBLESHOOTING CHART
Condition Possible Cause
No LED’s light up. Power cord
Check U1, C7, or D6.
HIGH LED or LOW LED never lights. Check U1.
Test LED by shorting pins 1, 2, or 14 to negative supply.
HIGH or LOW LED always on. Check U1, R9 to R15. Pulse LED always on. Check Q3 - Q5, U1. PULSE LED never flashes. Check LED 3, Q1 - Q4, D3, D4. All LED’s flash. Noise on power line.
FOIL SIDE OF PC BOARD
-10-
Alternating Current (AC) Non-polarized power that is
constantly changing back and forth between positive and negative.
Anode The positive terminal of a diode
or other polarized component.
Capacitor Electrical component for
accumulating energy.
Cathode The negative terminal of a
diode or other polarized component.
CMOS
(Complimentary Metal Oxide Semiconductor) A type of transistor circuit which uses P­and N-type field-effect transistors.
Current The flow of electrons.
Diode An electronic component that
changes alternating current to direct current.
Direct Current (DC) Voltage that has polarity.
Frequency The number of cycles per
second produced.
Impedance In circuit, the opposition that
circuit elements present to alternating current.
Input Impedance
The impedance seen by source when a device or circuit is connected across the source.
Integrated Circuit (IC) Any of a huge number of
semiconductor packages that contain entire elements.
Inverter
The circuit where the output state is the opposite of the input state.
Light Emitting Diode (LED) A se miconductor device that
glows when power is applied to its electrodes.
Logic Probe An electronic test device that
detects the status of a signal.
Oscillator A device that moves back and
forth between two boundaries.
PC Board Printed Circuit Board.
Power Supply An electronic circuit that
produces the necessary power for another circuit or device.
Pulse A sudden chang e from one
level to another, followed after a time by a sudden change back to the original level.
Resistor
An electronic component that obstructs (resists) the flow of electricity.
Speaker Component that converts
electrical energy into sound energy.
Troub leshoot To find and fix the problem with
something.
TTL (Transistor-Transistor Logic)
A type of integrated circuit logic that uses bipolar junction transistors.
Vol tage The electromotive force that
“pushes” electrons through conductive materials.
Zener A type of diode that acts as a
voltage regulator by restricting the flow of voltage above its rating.
LED STATES INPUT
HIGH LO PULSE SIGNAL
Logic “0” no pulse activity.
Logic “1” no pulse activity.
All LEDs off
1. Test point is an open circuit.
2. Out of tolerance signal.
3. Probe not connected to power.
4. Node or circuit not powered.
*
Equal brightness of the HI and LO LED indicates approximately a 50% duty cycle square wave.
*
High frequency square wave greater than approximately 3MHz.
*
Logic “0” with positive pulses present. Low duty cycle since HI LED is not on. If duty cycle were increased, the HI LED would start to turn on.
*
Logic “1” with negative pulses present. High duty cycle since LO LED is not on. If duty cycle were reduced, the LO LED would start to turn on.
Interpreting
the LEDs
LED On
LED Off
LED Blinking
*
To operate the logic probe, connect the two alligator clips to the circuit DC power supply, red clip to the positive voltage, black to ground. BE SURE THE CIRCUIT SUPPLY IS UNDER 35V OR DAMAGE MAY OCCUR TO THE PROBE. Set the logic family switch to TTL or CMOS. Touch the
probe tip to the circuit node to be analyzed. The LED display on the probe body will light to indicate the condition of the node. Refer to the chart below to interpret the LED readings. To prevent power supply spikes, connect the leads as close to the node to be tested as possible.
OPERATING INSTRUCTIONS
GLOSSARY
ELENCO
®
150 Carpenter Avenue • Wheeling, IL 60090
(847) 541-3800 • www.elenco.com • e-mail: elenco@elenco.com
SCHEMATIC DIAGRAM
REV-C
Loading...