Dell PowerEdge M IO Aggregator, PowerEdge Web Server, PowerEdge XL 5133-4, PowerEdge M1000e, Force10 M I/O Aggregator Command Reference Manual

Page 1
Dell PowerEdge Configuration
Guide for the M I/O Aggregator
Publication Date: March 2013
Page 2
Notes, Cautions, and Warnings
NOTE: A NOTE indicates important information that helps you make better use of your computer.
CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to
avoid the problem.
Information in this publication is subject to change without notice. © 2012 Dell Force10. All rights reserved.
Reproduction of these materials in any manner whatsoever without the written permission of Dell Inc. is strictly forbidden. Trademarks used in this text: Dell(TM), the Dell logo, Dell Boomi(TM), Dell Precision(TM) , OptiPlex(TM), Latitude(TM), PowerEdge(TM),
PowerVault(TM), PowerConnect(TM), OpenManage(TM), EqualLogic(TM), Compellent(TM), KACE(TM), FlexAddress(TM), Force10(TM) and Vostro(TM) are trademarks of Dell Inc. Intel(R), Pentium(R), Xeon(R), Core(R) and Celeron(R) are registered trademarks of Intel Corporation in the U.S. and other countries. AMD(R) is a registered trademark and AMD Opteron(TM), AMD Phenom(TM) and AMD Sempron(TM) are trademarks of Advanced Micro Devices, Inc. Microsoft(R), Windows(R), Windows Server(R), Internet Explorer(R), MS-DOS(R), Windows Vista(R) and Active Directory(R) are either trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries. Red Hat(R) and Red Hat(R)Enterprise Linux(R) are registered trademarks of Red Hat, Inc. in the United States and/or other countries. Novell(R) and SUSE(R) are registered trademarks of Novell Inc. in the United States and other countries. Oracle(R) is a registered trademark of Oracle Corporation and/or its affiliates. Citrix(R), Xen(R), XenServer(R) and XenMotion(R) are either registered trademarks or trademarks of Citrix Systems, Inc. in the United States and/or other countries. VMware(R), Virtual SMP(R), vMotion(R), vCenter(R) and vSphere(R) are registered trademarks or trademarks of VMware, Inc. in the United States or other countries. IBM(R) is a registered trademark of International Business Machines Corporation.
Other trademarks and trade names may be used in this publication to refer to either the entities claiming the marks and names or their products. Dell Inc. disclaims any proprietary interest in trademarks and trade names other than its own.
March 2013
Page 3
| iii
Page 4
www.dell.com | support.dell.com
iv |
Page 5
1 About this Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
Information Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2 Before You Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Default Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Other Auto-Configured Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
DCB Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
FCoE Connectivity and FIP Snooping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
iSCSI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Link Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Link Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
VLANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Uplink LAG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Server-Facing LAGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Stacking Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Where to Go From Here . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
3 Configuration Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Accessing the Command Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
CLI Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Navigating CLI Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
do Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Undoing Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Obtaining Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Entering and Editing Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Command History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Filtering show Command Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Multiple Users in Configuration Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
4 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Port Numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Server-Facing Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Uplink Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Stacking Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Port Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Console access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Serial Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
| v
Page 6
External Serial Port with a USB Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Boot Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Configure a Host Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Access the System Remotely . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Access the Aggregator Remotely . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Configure the Management Port IP Address . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Configure a Management Route . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Configure a Username and Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Configure the Enable Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Configuration File Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Copy Files to and from the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
www.dell.com | support.dell.com
File System Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
View the Command History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Upgrading and Downgrading FTOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Important Points to Remember . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Save the Running-Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
View Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
View Configuration Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
5 Aggregator Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Log Messages in the Internal Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Disabling System Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Send System Messages to a Syslog Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Using a Unix System as a Syslog Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Changing System Logging Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Displaying the Logging Buffer and Logging Configuration . . . . . . . . . . . . . . . . . . . . . . . .42
Configuring a UNIX Logging Facility Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
Enabling Time Stamps on Syslog Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
File Transfer Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Configuration Task List for File Transfer Services . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Enabling the FTP Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Configuring the FTP Server Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Terminal Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Telnet to Another Network Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Recovering from a Forgotten Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Recovering from a Forgotten Enable Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Recovering from a Failed Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
6 Data Center Bridging (DCB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Ethernet Enhancements in Data Center Bridging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Priority-Based Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Enhanced Transmission Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
vi |
Page 7
Data Center Bridging Exchange Protocol (DCBX) . . . . . . . . . . . . . . . . . . . . . . . . . .55
Data Center Bridging in a Traffic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Data Center Bridging: Auto-DCB-Enable Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
When DCB is Disabled (Default) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
When DCB is Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Lossless Traffic Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Enabling DCB on Next Reload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Enabling Auto-DCB-Enable Mode on Next Reload . . . . . . . . . . . . . . . . . . . . . . . . . .58
QoS dot1p Traffic Classification and Queue Assignment . . . . . . . . . . . . . . . . . . . . . . . .59
How Priority-Based Flow Control is Implemented . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
How Enhanced Transmission Selection is Implemented . . . . . . . . . . . . . . . . . . . . . . . . .61
ETS Operation with DCBX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Bandwidth Allocation for DCBX CIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
DCB Policies in a Switch Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
DCBX Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
DCBX Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
DCBX Port Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
DCB Configuration Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Configuration Source Election . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
Propagation of DCB Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
Auto-Detection of the DCBX Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
DCBX Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
DCBX Prerequisites and Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
DCBX Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
An error in DCBX operation is displayed using the following syslog messages:.69
Debugging DCBX on an Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Verifying DCB Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Example: PFC and ETS Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
Hierarchical Scheduling in ETS Output Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
7 Dynamic Host Configuration Protocol (DHCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
DHCP Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
DHCP Packet Format and Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
Assigning an IP Address Using DHCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
DHCP Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
Releasing and Renewing DHCP-based IP Addresses . . . . . . . . . . . . . . . . . . . . . . .87
Viewing DHCP Statistics and Lease Information . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Debugging DHCP Client Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
How DHCP Client is Implemented . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
DHCP Client on a Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
DHCP Client on a VLAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
DHCP Client Operation with Stacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
| vii
Page 8
8 FIP Snooping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Fibre Channel over Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
Ensuring Robustness in a Converged Ethernet Network . . . . . . . . . . . . . . . . . . . . . . . .93
FIP Snooping on Ethernet Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
FIP Snooping in a Switch Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
How FIP Snooping is Implemented . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
FIP Snooping on VLANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
FC-MAP Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
Bridge-to-FCF Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
Impact on other Software Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
FIP Snooping Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
www.dell.com | support.dell.com
FIP Snooping Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
Displaying FIP Snooping Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
FIP Snooping Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
Debugging FIP Snooping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
9 Internet Group Management Protocol (IGMP). . . . . . . . . . . . . . . . . . . . . . . . . . . 109
IGMP Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
IGMP Version 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
Joining a Multicast Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
Leaving a Multicast Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
IGMP Version 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Joining and Filtering Groups and Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
Leaving and Staying in Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
IGMP Snooping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
How IGMP Snooping is Implemented on an Aggregator . . . . . . . . . . . . . . . . . . . . .114
Disabling Multicast Flooding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
Displaying IGMP Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
10 Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Basic Interface Configuration: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
Advanced Interface Configuration: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Interface Auto-Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Interface Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
Viewing Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Disabling and Re-enabling a Physical Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
Layer 2 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
Management Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
Accessing an Aggregator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
Configuring a Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
Configuring a Static Route for a Management Interface . . . . . . . . . . . . . . . . . . . . .125
VLAN Membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
viii |
Page 9
Default VLAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
Port-Based VLANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
VLANs and Port Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
Configuring VLAN Membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
Displaying VLAN Membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
Adding an Interface to a Tagged VLAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
Port Channel Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
Port Channel Definition and Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132
Port Channel Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132
Port Channel Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132
1GbE and 10GbE Interfaces in Port Channels . . . . . . . . . . . . . . . . . . . . . . . . .133
Uplink Port Channel: VLAN Membership. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
Server-Facing Port Channel: VLAN Membership . . . . . . . . . . . . . . . . . . . . . . .133
Displaying Port Channel Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134
Interface Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
Bulk Configuration Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
Create a Single-Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
Create a Multiple-Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
Exclude a Smaller Port Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
Overlap Port Ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
Commas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
Monitor and Maintain Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
Maintenance Using TDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
Flow Control Using Ethernet Pause Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140
MTU Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141
Auto-Negotiation on Ethernet Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142
Setting Speed and Duplex Mode of Ethernet Interfaces . . . . . . . . . . . . . . . . . .142
Setting Auto-Negotiation Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143
Viewing Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
Displaying Non-Default Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
Clearing Interface Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147
11 iSCSI Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
iSCSI Optimization Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
Monitoring iSCSI Traffic Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
Information Monitored in iSCSI Traffic Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
Detection and Autoconfiguration for Dell EqualLogic Arrays . . . . . . . . . . . . . . . . . .151
Detection and Port Configuration for Dell Compellent Arrays . . . . . . . . . . . . . . . . .151
iSCSI Optimization: Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152
Default iSCSI Optimization Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152
Displaying iSCSI Optimization Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
| ix
Page 10
12 Link Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
How the LACP is Implemented on an Aggregator . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
Uplink LAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
Server-Facing LAGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156
LACP Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156
Auto-Configured LACP Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156
LACP Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157
Verifying LACP Operation and LAG Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
13 Layer 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Managing the MAC Address Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
www.dell.com | support.dell.com
Clearing MAC Address Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
Displaying the MAC Address Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164
Network Interface Controller (NIC) Teaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164
MAC Address Station Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
MAC Move Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
14 Link Layer Discovery Protocol (LLDP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
Protocol Data Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
Optional TLVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168
Management TLVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168
Organizationally Specific TLVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169
IEEE Organizationally Specific TLVs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169
TIA-1057 (LLDP-MED) Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170
TIA Organizationally Specific TLVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171
LLDP-MED Capabilities TLV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172
LLDP-MED Network Policies TLV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173
Extended Power via MDI TLV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174
LLDP Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175
Viewing the LLDP Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175
Viewing Information Advertised by Adjacent LLDP Agents . . . . . . . . . . . . . . . . . . . . . .176
Clearing LLDP Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178
Debugging LLDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179
Relevant Management Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180
15 Port Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Important Points to Remember . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185
Port Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186
Configuring Port Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188
x |
Page 11
16 Simple Network Management Protocol (SNMP) . . . . . . . . . . . . . . . . . . . . . . . . . 191
Implementation Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191
Configuring the Simple Network Management Protocol . . . . . . . . . . . . . . . . . . . . . . . .191
Important Point to Remember . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191
Setting up SNMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192
Creating a Community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192
Read Managed Object Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192
Displaying the Ports in a VLAN Using SNMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194
Fetching Dynamic MAC Entries Using SNMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195
Deriving Interface Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197
Monitor Port-channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199
Entity MIBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200
17 Stacking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203
Stacking Aggregators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203
Stack Management Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204
Stack Master Election . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205
Failover Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205
MAC Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206
Stacking LAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206
Stacking VLANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206
Stacking Port Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207
Configuring a Switch Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207
Stacking Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208
Cabling Stacked Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208
Cabling Restrictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208
Cabling Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208
Cabling Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209
Accessing the CLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209
Configuring and Bringing Up a Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209
Adding a Stack Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210
Resetting a Unit on a Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211
Removing an Aggregator from a Stack and Restoring Quad Mode . . . . . . . . . . . .211
Verifying a Stack Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212
Using LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212
Using Show Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212
Troubleshooting a Switch Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215
Troubleshooting Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215
Failure Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217
Stack Member Fails. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217
Unplugged Stacking Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217
Master Switch Fails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218
| xi
Page 12
Stack-Link Flapping Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218
Master Switch Recovers from Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218
Stack Unit in Card-Problem State Due to Incorrect FTOS Version . . . . . . . . . .219
Stack Unit in Card-Problem State Due to Configuration Mismatch . . . . . . . . . .219
Upgrading a Switch Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220
Upgrading a Single Stack Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221
18 Broadcast Storm Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Displaying Broadcast-Storm Control Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
Disabling Broadcast Storm Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
www.dell.com | support.dell.com
19 System Time and Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Setting the Time for the Hardware Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225
Setting the Time for the Software Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226
Synchronizing the Hardware Clock Using the Software Clock . . . . . . . . . . . . . . . .226
Setting the Time Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
Setting Daylight Savings Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228
Setting Daylight Saving Time Once. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228
Setting Recurring Daylight Saving Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229
20 Uplink Failure Detection (UFD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Feature Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231
How Uplink Failure Detection Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232
UFD and NIC Teaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233
Important Points to Remember . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234
Disabling Uplink Failure Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235
Configuring the Defer Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235
Displaying Uplink Failure Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236
Debugging UFD on an Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239
21 Upgrade Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
22 Debugging and Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Debugging Aggregator Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244
All interfaces on the Aggregator are operationally down . . . . . . . . . . . . . . . . . . . . .244
Symptom: All Aggregator interfaces are down. . . . . . . . . . . . . . . . . . . . . . . . . .244
Resolution: Ensure that port channel 128 is up and that the Aggregator-facing port channel on
the top-of-rack switch is correctly configured. . . . . . . . . . . . . . . . . . . . . . . . . . .244
Steps to Take: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244
Broadcast, unknown multicast, and DLF packets are switched at a very low rate .245
Symptom: Broadcast, unknown multicast, and DLF packets are switched at a very low rate.
245
xii |
Page 13
Resolution: Disable broadcast storm control globally on the Aggregator. . . . . .245
Steps to Take: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245
Flooded packets on all VLANs are received on a server . . . . . . . . . . . . . . . . . . . .246
Symptom: All packets flooded on all VLANs on an Aggregator are received on a server , even if
the server is configured as a member of only a subset of VLANs. This behavior happens
because all Aggregator ports are, by default, members of all (4094) VLANs.. .246
Resolution: Configure a port that is connected to the server with restricted VLAN membership.
246
Steps to Take: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246
Auto-configured VLANs do not exist on a stacked Aggregator . . . . . . . . . . . . . . . .247
Symptom: When an Aggregator is configured and used in a stack, traf fic does not flow and the
VLAN auto-configuration on all ports is lost. This behavior happens because an Aggregator in
stacking mode does not support auto-configured VLANs. Only VLANs that were previously
manually configured are retained on the master stack unit. . . . . . . . . . . . . . . .247
Resolution: You must manually configure VLAN membership on each stack-unit port.247
Steps to Take: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247
Software show Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248
Offline Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250
Important Points to Remember . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250
Running Offline Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250
Trace Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251
Auto Save on Crash or Rollover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251
Show Hardware Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252
Environmental Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253
Recognize an Over-Temperature Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255
Troubleshoot an Over-Temperature Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . .255
Recognize an Under-Voltage Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256
Troubleshoot an Under-Voltage Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256
Buffer Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257
Deciding to Tune Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259
Buffer Tuning Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259
Using a Pre-Defined Buffer Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262
Sample Buffer Profile Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263
Troubleshooting Packet Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263
Displaying Drop Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264
Dataplane Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265
Displaying Stack Port Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267
Displaying Stack Member Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267
Application Core Dumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268
Mini Core Dumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268
TCP Dumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270
23 Standards Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
IEEE Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271
| xiii
Page 14
RFC and I-D Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272
General Internet Protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272
General IPv4 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273
Network Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274
MIB Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276
www.dell.com | support.dell.com
xiv |
Page 15
About this Guide
Objectives
This guide describes the supported protocols and software features, and provides configuration instructions and examples, for the Dell Force10 M I/O Aggregator running FTOS version 8.3.17.4.
The M I/O Aggregator is installed in a Dell PowerEdge M1000e Enclosure. For information about how to install and perform the initial switch configuration, refer to the Getting Started Guides on the Dell Support website at http://support.dell.com/manuals.
Though this guide contains information about protocols, it is not intended to be a complete reference. This guide is a reference for configuring protocols on Dell Force10 systems. For complete information about protocols, refer to other documentation, including IETF requests for comment (RFCs). The instructions in this guide cite relevant RFCs, and Standards Compliance contains a complete list of the supported RFCs and management information base files (MIBs).
1
Note: You can perform some of the configuration tasks described in this document by using either the
FTOS command line or the Chassis Management Controller (CMC) graphical interface. Tasks supported by the CMC interface are shown with the CMC icon:
Audience
This document is intended for system administrators who are responsible for configuring and maintaining networks and assumes you are knowledgeable in Layer 2 and Layer 3 networking technologies.
About this Guide | 1
Page 16
Conventions
This document uses the following conventions to describe command syntax:
Convention Description
keyword
parameter
{X} Keywords and parameters within braces must be entered in the CLI. [X] Keywords and parameters within brackets are optional.
www.dell.com | support.dell.com
x | y Keywords and parameters separated by bar require you to choose one.
Keywords are in bold and must be entered in the CLI as listed. Parameters are in italics and require a number or word to be entered in the CLI.
Information Symbols
Table 1-1 describes symbols contained in this guide.
Table 1-1. Information Symbols
Symbol Meaning Description
FTOS Behavior This symbol informs you of an FTOS behavior. These behaviors are
Exception This symbol is a note associated with some other text on the page that is
inherent to the Dell Force10 system or FTOS feature and are non-configurable.
marked with an asterisk.
Chassis Management Controller (CMC) user interface
Related Documents
For more information about the Dell Force10 MXL 10/40GbE Switch IO Module, refer to the following documents:
Dell Force10 FTOS Command Line Reference Guide for the M I/O Aggregator
Dell PowerEdge M I/O Aggregator Getting Started Guide
Release Notes for the M I/O Aggregator (FTOS version 8.3.17.4)
2 | About this Guide
This symbol indicates that you can also perform the specified configuration task on an Aggregator by using the CMC graphical interface. For information about how to access the CMC to configure an Aggregator, refer to the Dell PowerEdge M1000e Enclosure Hardware Owner's Manual or Dell Chassis Management Controller (CMC) User’s Guide on the Dell Support website at http://support.dell.com/support/edocs/systems/
pem/en/index.htm.
Page 17
Before You Start
By following the instructions in the Dell PowerEdge M I/O Aggr egator Getting Started Guide that is shipped with the product, you install the Aggregator in a Dell PowerEdge M1000e Enclosure.
The Aggregator installs with zero-touch configuration. After you power it on, an Aggregator boots up with default settings and auto-configures with software features enabled. This chapter describes the default settings and software features that are automatically configured at startup. Use the tasks described in the other chapters to reconfigure the Aggregator for customized network operation.
Default Settings
The I/O Aggregator provides zero-touch configuration with the following default configuration settings:
2
Default user name (root)
Password (calvin)
VLAN (vlan1) and IP address for in-band management (DHCP-assigned)
IP address for out-of-band (OOB) management (DHCP-assigned)
Read-only SNMP community name (public)
Broadcast storm control (enabled)
Unregistered IGMP multicast packet flooding (enabled)
IGMP snooping in all VLANs except the default VLAN (enabled)
VLAN configuration (all ports belong to all VLANs) You can change any of these default settings using the CLI. Refer to the appropriate chapter
for details
.
Note: You can also change many of the default settings using the chassis management
controller (CMC) interface. In this document, configuration tasks that you can perform from the CMC interface are shown with a CMC icon:
For information about how to access the CMC to configure an Aggregator, refer to the Dell
PowerEdge M1000e Enclosure Hardware Owner's Manual or Dell Chassis Management Controller (CMC) User’s Guide on the Dell Support website at http://support.dell.com/
support/edocs/systems/pem/en/index.htm.
Before Y ou Start | 3
Page 18
Other Auto-Configured Settings
After the Aggregator powers on, it auto-configures and is operational with software features enabled, including:
Ports: Ports are administratively up and auto-configured to operate as hybrid ports to transmit tagged and untagged VLAN traffic.
Ports 1 to 32 are internal server-facing ports, which can operate in either 1GbE or 10GbE mode. Ports 33 to 56 are external ports auto-configured to operate by default as follows:
— The base-module ports operate in standalone 4x10GbE mode. You can configure
these ports to operate in 40GbE stacking mode. When configured for stacking, the 40GbE base-module ports cannot be used for uplinks.
www.dell.com | support.dell.com
— Ports on the 2-Port 40-GbE QSFP+ module operate only in 4x10GbE mode. They
cannot be used for stacking.
— Ports on the 4-Port 10-GbE SFP+ and 4-Port 10GBASE-T modules operate only in
10GbE mode.
For more information on how ports are numbered, see Port Numbering.
Link aggregation: All uplink ports are configured in a single LAG (LAG 128).
VLANs: All ports are configured as members of all (4094) VLANs. All VLANs are up and can send or receive layer 2 traffic. For more information, see VLAN Membership.
Data Center Bridging Capability Exchange Protocol (DCBX): Server-facing ports auto-configure in auto-downstream port roles; uplink ports auto-configure in auto-upstream port roles.
Fibre Channel over Ethernet (FCoE) connectivity and FCoE Initiation Protocol (FIP) snooping: The uplink port channel (LAG 128) is enabled to operate in FCF port mode.
Link Layer Discovery Protocol (LLDP): Enabled on all ports to advertise management TLV and system name with neighboring devices.
iSCSI optimization
IGMP snooping
Jumbo frames: Ports are set to a maximum MTU of 12,000 bytes by default.
Link tracking: Uplink-state group 1 is automatically configured. In uplink state-group 1, server-facing ports auto-configure as downstream interfaces; the uplink port-channel (LAG 128) auto-configures as an upstream interface. Server-facing links are auto-configured to be brought up only if the uplink port-channel is up.
Stacking is not enabled by default and is supported in 40GbE mode only on the base­module ports. To configure a switch stack, you must use the CLI. See Stacking for more information.
4 | Before You Start
Page 19
DCB Support
DCB enhancements for data center networks are supported to eliminate packet loss and provision links with required bandwidth.
The Aggregator provides zero-touch configuration for DCB. The Aggregator auto-configures DCBX port roles as follows:
Server-facing ports are configured as auto-downstream interfaces.
Uplink ports are configured as auto-upstream interfaces.
In operation, DCBX auto-configures uplink ports to match the DCB configuration in the ToR switches to which they connect.
The Aggregator supports DCB only in standalone mode; DCB is not supported in stacking mode.
FCoE Connectivity and FIP Snooping
Many data centers use Fibre Channel (FC) in storage area networks (SANs). Fibre Channel over Ethernet (FCoE) encapsulates Fibre Channel frames over Ethernet networks.
On an Aggregator, the internal ports support FCoE connectivity and connect to the converged network adapter (CNA) in blade servers. FCoE allows Fibre Channel to use 10-Gigabit Ethernet networks while preserving the Fibre Channel protocol.
The Aggregator also provides zero-touch configuration for FCoE configuration. The Aggregator auto-configures to match the FCoE settings used in the ToR switches to which it connects through its uplink ports.
FIP snooping is automatically configured on an Aggregator. The auto-configured port channel (LAG 128) operates in FCoE forwarder (FCF) port mode.
iSCSI Operation
Support for iSCSI traffic is turned on by default when the Aggregator powers up. No configuration is required.
When the Aggregator powers up, it monitors known TCP ports for iSCSI storage devices on all interfaces. When a session is detected, an entry is created and monitored as long as the session is active.
The Aggregator also detects iSCSI storage devices on all interfaces and auto-configures to optimize performance. Performance optimization operations, such as Jumbo frame size support, STP port-state fast, and disabling of storm control on interfaces connected to an iSCSI storage device, are applied automatically.
CLI configuration is necessary only when the configuration includes iSCSI storage devices that cannot be automatically detected and when non-default QoS handling is required.
Before Y ou Start | 5
Page 20
Link Aggregation
All uplink ports are configured in a single LAG (LAG 128). Server-facing ports are auto-configured as part of link aggregation groups if the corresponding server is configured for LACP-based NIC teaming. Static LAGs are not supported.
Tip: The recommended LACP timeout is long-timeout mode.
Link Tracking
By default, all server-facing ports are tracked by the operational status of the uplink LAG. If the uplink LAG goes down, the Aggregator loses its connectivity and is no longer
www.dell.com | support.dell.com
operational; all server-facing ports are brought down.
Tip: If installed servers do not have connectivity to a ToR switch, check the Link Status LED of uplink ports on the Aggregator. If all LEDs are on, check the LACP configuration on the ToR switch that is connected to the Aggregator to ensure the LACP is correctly configured.
Note: Link tracking is also referred to as uplink failure detection (UFD).
VLANs
By default, all Aggregator ports belong to all 4094 VLANs and are members of untagged VLAN 1. You can use the CLI or CMC interface to configure only the required VLANs on a port.
When you configure VLANs on server-facing interfaces (ports 1 to 32), you can assign VLANs to a port or a range of ports by entering the vlan tagged or vlan untagged commands in interface configuration mode; for example:
FTOS(conf)# interface tengigabitethernet 0/2 - 4 FTOS(conf-if-range-te-0/2-4)# vlan tagged 5,7,10-12 FTOS(conf-if-range-te-0/2-4)# vlan untagged 3
Note: You can also use the CMC interface to configure VLANs.
Uplink LAG
The tagged VLAN membership of the uplink LAG is automatically configured based on the VLAN configuration of all server-facing ports (ports 1 to 32).
The untagged VLAN used for the uplink LAG is always the default VLAN.
Server-Facing LAGs
The tagged VLAN membership of a server-facing LAG is automatically configured based on the server-facing ports that are members of the LAG.
6 | Before You Start
Page 21
The untagged VLAN of a server-facing LAG is configured based on the untagged VLAN to which the lowest numbered server-facing port in the LAG belongs.
Tip: Dell Force10 recommends that you configure the same VLAN membership on all LAG member ports.
Stacking Mode
Stacking is supported only on the 40GbE ports on the base module. A single stack is limited to two Aggregators in the same chassis. Up to three stacks are supported in an M1000e chassis. To configure a switch stack, you must use the CLI. See Stacking for more information.
When you configure an Aggregator to operate in stacking mode, VLANs are reconfigured as follows:
If an Aggregator port belonged to all 4094 VLANs in standalone mode (default), all VLAN membership is removed and the port is assigned only to default VLAN 1. You must configure additional VLAN membership as necessary.
If you had manually configured an Aggregator port to belong to one or more VLANs (non-default) in standalone mode, the VLAN configuration is retained in stacking mode only on the master switch.
When you reconfigure an Aggregator from stacking to standalone mode, Aggregator ports that you manually configured for VLAN membership in stacking mode retain their VLAN configuration in standalone mode. To restore the default auto-VLAN mode of operation (in which all ports are members of all 4094 VLANs) on a port, enter the auto vlan command; for example:
FTOS(conf)# interface tengigabitethernet 0/2 FTOS(conf-if-te-0/2)# auto vlan
Where to Go From Here
You can customize the Aggregator for use in your data center network as necessary. To perform additional switch configuration, do one of the following:
For remote out-of-band management, enter the OOB management interface IP address into a Telnet or SSH client and log in to the switch using the user ID and password to access the CLI.
For local management using the CLI, use the attached console connection.
For remote in-band management from a network management station, enter the IP address of the default VLAN and log in to the switch to access the CLI.
If you installed the Aggregator in a stack, you can configure additional settings for switch stacking.
Before Y ou Start | 7
Page 22
In case of an FTOS upgrade, you can check to see that an Aggregator is running the latest FTOS version by entering the show version command. To download an FTOS version, go to
http://support.dell.com.
Refer to the appropriate chapter for detailed information on how to reconfigure specific software settings.
www.dell.com | support.dell.com
8 | Before You Start
Page 23
Configuration Fundamentals
The Dell Force10 operating software (FTOS) command line interface (CLI) is a text-based interface through which you can configure interfaces and protocols. The CLI is structured in modes for security and management purposes. Different sets of commands are available in each mode, and you can limit user access to modes using privilege levels.
In FTOS, after you enable a command, it is entered into the running configuration file. You can view the current configuration for the whole system or for a particular CLI mode. To save the current configuration, copy the running configuration to another location. For more information, refer to Save the
Running-Configuration.
Note: You can use the chassis management controller (CMC) out-of-band management interface to access and manage an Aggregator using the FT OS command-line interface. For information about how to access the CMC to configure an Aggregator, refer to the Dell Chassis Management Controller (CMC) User's Guide on the Dell Support website at http://support.dell.com/support/edocs/systems/pem/en/
index.htm.
3
Accessing the Command Line
Access the command line through a serial console port or a Telnet session (Figure 3-1). When the system successfully boots, enter the command line in EXEC mode.
Figure 3-1. Logging into the System using Telnet
telnet 172.31.1.53 Trying 172.31.1.53... Connected to 172.31.1.53. Escape character is '^]'. Login: username Password: FTOS>
EXEC mode prompt
Configuration Fundamentals | 9
Page 24
CLI Modes
Different sets of commands are available in each mode. A command found in one mode cannot be executed from another mode (with the exception of EXEC mode commands preceded by the command for more information, refer to do Command and EXEC Privilege Mode commands).
The FTOS CLI is divided into three major mode levels:
EXEC mode is the default mode and has a privilege level of 1, which is the most restricted level. Only
a limited selection of commands is available, notably the system information.
EXEC Privilege mode has commands to view configurations, clear counters, manage configuration
www.dell.com | support.dell.com
files, run diagnostics, and enable or disable debug operations. The privilege level is 15, which is unrestricted. You can configure a password for this mode. For more information, refer to Configure the
Enable Password.
CONFIGURATION mode allows you to configure security features, time settings, set logging and
simple network management protocol (SNMP) functions, and static address resolution protocol (ARP) and MAC addresses on the system.
Beneath CONFIGURATION mode are sub-modes that apply to interfaces, protocols, and features.
Figure 3-2 shows this sub-mode command structure. When configuring the chassis for the first time, the
following two sub-CONFIGURATION modes are important:
do;
show commands, which allow you to view
INTERFACE sub-mode is the mode in which you configure Layer 2 and Layer 3 protocols and IP
services specific to an interface. An interface can be physical (management interface, 10-Gigabit Ethernet, or 40-Gigabit Ethernet) or logical (Loopback, Null, port channel, or VLAN).
LINE sub-mode is the mode in which you configure the console and virtual terminal lines.
Note: At any time, entering a question mark (?) displays the available command options. For example, when you are in CONFIGURATION mode, entering the question mark first lists all the available commands, including the possible sub-modes.
Figure 3-2. FTOS CLI Modes Supported on the Aggregator
EXEC EXEC Privilege CONFIGURATION INTERFACE 10 GIGABIT ETHERNET INTERFACE RANGE MANAGEMENT ETHERNET LINE CONSOLE VIRTUAL TERMINAL MONITOR SESSION
10 | Configuration Fundamentals
Page 25
Navigating CLI Modes
The FTOS prompt changes to indicate the CLI mode. Table 3-1 lists the CLI mode, its prompt, and information about how to access and exit this CLI mode. You must move linearly through the command modes, with the exception of the
exit command moves you up one command mode level.
Note: Sub-CONFIGURATION modes all have the letters “conf” in the prompt with additional modifiers to identify the mode and slot/port information. These are shown in Table 3-1.
Table 3-1. FTOS Command Modes
end command, which takes you directly to EXEC Privilege mode and the
CLI Command Mode Prompt
EXEC
EXEC Privilege
CONFIGURATION
FTOS>
FTOS# From EXEC mode, enter the command enable.
FTOS(conf)# From EXEC privilege mode, enter the command
Note: Access the following modes from CONFIGURATION mode:
10 Gigabit Ethernet Interface
FTOS(conf-if-te-0/1)
INTERFACE modes
Interface Range
Management Ethernet Interface
FTOS(conf-if-range)
FTOS(conf-if-ma-0/0)
Access Command
Access the router through the console or Telnet.
From any other mode, enter the command end.
configure.
From every mode except EXEC and EXEC Privilege, enter the command exit.
#
#
#
interface
interface interface
Monitor Session FTOS(conf-mon-sess) monitor session IP COMMUNITY-LIST FTOS(conf-community-list)# ip community-list
CONSOLE FTOS(conf-line-console)#
LINE
VIRTUAL TERMINAL FTOS(conf-line-vty)#
line
line
Configuration Fundamentals | 11
Page 26
Figure 3-3 shows how to change the command mode from CONFIGURATION mode to INTERFACE
configuration mode.
Figure 3-3. Changing CLI Modes
FTOS(conf)# interface tengigabitethernet 1/2 FTOS(conf-if-te-1/2)#
do Command
New command prompt
www.dell.com | support.dell.com
Enter an EXEC mode or EXEC privilege mode command from any CONFIGURATION mode (such as CONFIGURATION, INTERFACE, etc.) without returning to EXEC mode by preceding the EXEC mode command with the command
Note: The following commands cannot be modified by the do command: enable, disable, exit, and configure.
Figure 3-4. Using the do Command
FTOS(conf)#do show system brief
Stack MAC : 00:01:e8:00:ab:03
-- Stack Info -­Unit UnitType Status ReqTyp CurTyp Version Ports
-----------------------------------------------------------------------------------­ 0 Member not present 1 Management online I/O-Aggregator I/O-Aggregator 8-3-17-38 56 2 Member not present 3 Member not present 4 Member not present 5 Member not present
FTOS(conf)#
do. Figure 3-4 illustrates the do command.
“do” form of show command
Undoing Commands
When you enter a command, the command line is added to the running configuration file. Disable a command and remove it from the running-config by entering the original command preceded by the command
ip-address
Note: Use the help or ? command as described in Obtaining Help to help you construct the no form of a command.
12 | Configuration Fundamentals
no. For example, to delete an ip address configured on an interface, use the no ip-address
command, as shown in Figure 3-5.
Page 27
Figure 3-5. Undoing a command with the no Command
FTOS(conf)# interface managementethernet 0/0 FTOS(conf-if-ma-0/0)# ip address 192.168.5.6/16 FTOS(conf-if-ma-0/0)# FTOS(conf-if-ma-0/0)# FTOS(conf-if-ma-0/0)#show config ! interface ManagementEthernet 0/0 ip address 192.168.5.6/16 no shutdown FTOS(conf-if-ma-0/0)# FTOS(conf-if-ma-0/0)# no ip address FTOS(conf-if-ma-0/0)# FTOS(conf-if-ma-0/0)# show config ! interface ManagementEthernet 0/0 no ip address no shutdown FTOS(conf-if-ma-0/0)#
Obtaining Help
Obtain a list of keywords and a brief functional description of those keywords at any CLI mode using the ? or
help commands:
Assign an IP address
Enter “no” form of IP address command
Verify that the IP address was removed
Enter
? at the prompt or after a keyword to list the keywords available in the current mode.
? after a prompt lists all of the available keywords. The output of this command is the same for the help command.
Figure 3-6. ? Command Example
FTOS#? start Start Shell capture Capture Packet cd Change current directory clear Reset functions clock Manage the system clock configure Configuring from terminal copy Copy from one file to another
--More--
“?” at prompt for list of commands
? after a partial keyword lists all of the keywords that begin with the specified letters.
Configuration Fundamentals | 13
Page 28
Figure 3-7. Keyword? Command Example
FTOS(conf)#cl? clock FTOS(conf)#cl
partial keyword plus “?” for matching keywords
A keyword followed by [space]? lists all of the keywords that can follow the specified keyword.
Figure 3-8. Keyword ? Command Example
FTOS(conf)#clock ? summer-time Configure summer (daylight savings) time timezone Configure time zone FTOS(conf)#clock
www.dell.com | support.dell.com
keyword plus “[space]?” for compatible keywords
Entering and Editing Commands
When entering commands:
The CLI is not case sensitive.
You can enter partial CLI keywords.
You must enter the minimum number of letters to uniquely identify a command. For example, cannot be entered as a partial keyword because both the clock and class-map commands begin with the letters “cl.” You can, however, enter begins with those three letters.
The TAB key auto-completes keywords in commands.
The UP and DOWN arrow keys display previously entered commands (refer to Command
History).
The BACKSPACE and DELETE keys erase the previous letter.
Key combinations are available to move quickly across the command line, refer to Table 3-2.
cl
clo as a partial keyword because only one command
Table 3-2. Short-Cut Keys and their Actions
Key Combination Action
CNTL-A Moves the cursor to the beginning of the command line. CNTL-B Moves the cursor back one character. CNTL-D Deletes the character at cursor. CNTL-E Moves the cursor to the end of the line. CNTL-F Moves the cursor forward one character. CNTL-I Completes a keyword. CNTL-K Deletes all characters from the cursor to the end of the command line. CNTL-L Re-enters the previous command. CNTL-N Return to more recent commands in the history buffer after recalling commands with CTRL-P or the
UP arrow key.
CNTL-P Recalls commands, beginning with the last command.
14 | Configuration Fundamentals
Page 29
Table 3-2. Short-Cut Keys and their Actions (continued)
Key Combination Action
CNTL-R Re-enters the previous command. CNTL-U Deletes the line. CNTL-W Deletes the previous word. CNTL-X Deletes the line. CNTL-Z Ends continuous scrolling of command outputs. Esc B Moves the cursor back one word. Esc
F Moves the cursor forward one word. D Deletes all characters from the cursor to the end of the word.
Esc
Command History
FTOS maintains a history of previously-entered commands for each mode. For example:
When you are in EXEC mode, the UP and DOWN arrow keys display the previously-entered EXEC mode commands.
When you are in CONFIGURATION mode, the UP or DOWN arrows keys recall the previously-entered CONFIGURATION mode commands.
Filtering show Command Outputs
Filter the output of a show command to display specific information by adding | [except | find | grep | no-more
| save]
specified_text after the command. The variable specified_text is the text for which you are filtering and
it IS case sensitive unless you use the
The
grep command accepts an ignore-case sub-option that forces the search to be case-insensitive. For
example, the commands:
show run | grep Ethernet returns a search result with instances containing a capitalized “Ethernet,” such as interface TenGigabitEthernet 0/0.
show run | grep ethernet would not return that search result because it only searches for instances
containing a non-capitalized “ethernet.”
Executing the
show run | grep Ethernet ignore-case command would return instances containing both
“Ethernet” and “ethernet.”
grep displays only the lines containing specified text. Figure 3-9 shows this command used in
combination with the
do show stack-unit all stack-ports pfc details | grep 0 command.
ignore-case sub-option.
Configuration Fundamentals | 15
Page 30
Figure 3-9. Filtering Command Outputs with the grep Command
FTOS(conf)#do show stack-unit all stack-ports all pfc details | grep 0 stack unit 0 stack-port all 0 Pause Tx pkts, 0 Pause Rx pkts 0 Pause Tx pkts, 0 Pause Rx pkts 0 Pause Tx pkts, 0 Pause Rx pkts 0 Pause Tx pkts, 0 Pause Rx pkts 0 Pause Tx pkts, 0 Pause Rx pkts 0 Pause Tx pkts, 0 Pause Rx pkts
Note: FTOS accepts a space or no space before and after the pipe. To filter on a phrase with spaces,
www.dell.com | support.dell.com
underscores, or ranges, enclose the phrase with double quotation marks.
except displays text that does not match the specified text. Figure 3-10 shows this command used in combination with the
Figure 3-10. Filtering Command Outputs with the except Command
FTOS(conf)#do show stack-unit all stack-ports all pfc details | except 0
Admin mode is On Admin is enabled Local is enabled Link Delay 45556 pause quantum
do show stack-unit all stack-ports all pfc details | except 0 command.
stack unit 1 stack-port all Admin mode is On Admin is enabled
find displays the output of the show command beginning from the first occurrence of specified text
Figure 3-11 shows this command.
Figure 3-11. Filtering Command Outputs with the find Command
FTOS(conf)#do show stack-unit all stack-ports all pfc details | find 0 stack unit 0 stack-port all Admin mode is On Admin is enabled Local is enabled Link Delay 45556 pause quantum 0 Pause Tx pkts, 0 Pause Rx pkts
stack unit 1 stack-port all
no-more displays the output all at once rather than one screen at a time. This is similar to the terminal
length
command except that the no-more option affects the output of the specified command only.
save copies the output to a file for future reference.
Note: You can filter a single command output multiple times. The save option should be the last option entered. For example:
FTOS# command | grep regular-expression | except regular-expression | grep
other-regular-expression | find regular-expression | save
16 | Configuration Fundamentals
Page 31
Multiple Users in Configuration Mode
FTOS notifies all users in the event that there are multiple users logged into CONFIGURATION mode. A warning message indicates the username, type of connection (console or vty), and in the case of a vty connection, the IP address of the terminal on which the connection was established. For example:
On the system that telnets into the switch, Message 1 appears:
Message 1 Multiple Users in Configuration Mode Telnet Message
% Warning: The following users are currently configuring the system:
User "<username>" on line console0
On the system that is connected over the console, Message 2 appears:
Message 2 Multiple Users in Configuration Mode Telnet Message
% Warning: User "<username>" on line vty0 "10.11.130.2" is in configuration mode
If either of these messages appear, Dell Force10 recommends coordinating with the users listed in the message so that you do not unintentionally overwrite each other’s configuration changes.
Configuration Fundamentals | 17
Page 32
www.dell.com | support.dell.com
18 | Configuration Fundamentals
Page 33
Getting Started
This chapter contains the following major sections:
Front Panel
Port Numbering
Console access
Boot Process
Configure a Host Name
Configure a Host Name
Access the System Remotely
Configure the Enable Password
Configuration File Management
File System Management
View the Command History
Upgrading and Downgrading FTOS
4
When the boot process is complete, the console monitor displays the Dell Force10 operating software (FTOS) banner and EXEC mode prompt (Figure 4-3).
For details about using the command line interface (CLI), refer to the Accessing the Command Line section in the Configuration Fundamentals chapter.
Getting Started | 19
Page 34
Front Panel
Figure 4-1 shows the Aggregator front panel:
Figure 4-1. Front Panel of the M I/O Aggregator
www.dell.com | support.dell.com
Flex IO Module in Top Expansion Slot
Flex IO Module in Bottom Expansion Slot
USB Storage Port
40GbE QSFP+ Ports on Base Module
Port Numbering
When installed in a PowerEdge M1000e Enclosure, Aggregator ports are numbered 1 to 56 and consist of internal server-facing ports, uplink ports, and stacking ports (Figure 4-2).
Server-Facing Ports
Ports 1 to 32 are internal server-facing ports, which can operate in either 1GbE or 10GbE mode and connect to servers installed in the M1000e chassis over the midplane.
USB Console Port
20 | Getting Started
Page 35
Uplink Ports
Ports 33 to 56 are external ports used for uplinks and numbered from the bottom to the top of the switch as follows:
The two base module ports operate by default in standalone 4x10GbE mode and are numbered 33 to 36 and 37 to 40.
Ports on the 2-Port 40-GbE QSFP+ module operate only in 4x10GbE mode:
In the bottom expansion slot, ports are numbered 41 to 44 and 45 to 48.
In the top expansion slot, ports are numbered 49 to 52 and 53 to 56.
Ports on the 4-Port 10-GbE SFP+ and 4-Port 10GBASE-T modules operate only in 10GbE mode:
In the bottom expansion slot, ports are numbered 41 to 44.
In the top expansion slot, ports are numbered 49 to 52.
Stacking Ports
Stacking is supported only on the ports on the base module. When you configure the Aggregator for stacking, the base module ports operate in 40GbE mode and are numbered 33 and 37. When configured for stacking, the 40GbE base-module ports cannot be used for uplinks.
Port Configuration
To configure a port, you must specify the slot (0-5; default: 0) and port number (1 to 56) in the interface
port-type slot/port command, where slot is the unit number of the Aggregator displayed in the show system brief command; for example:
FTOS(conf)# interface tengigabitethernet 0/4
Getting Started | 21
Page 36
Figure 4-2. Port Numbering on an Aggregator
2-Port 40-GbE QSFP+ FlexIO Module (4x10GbE mode): Ports 53 to 56 (top port) Ports 49 to 52 (bottom port)
2-Port 40-GbE QSFP+ FlexIO Module (4x10GbE mode): Ports 45 to 48 (top port) Ports 41 to 44(bottom port)
www.dell.com | support.dell.com
4-Port 10-GbE SFP+ or 4-Port 10GBASE-T FlexIO Module: Ports 49 to 52 (4x10GbE mode)
4-Port 10-GbE SFP+ or 4-Port 10GBASE-T FlexIO Module: Ports 41 to 44 (4x10GbE mode)
40GbE QSFP+ Port 37 (stacking) or Ports 37 to 40 (4x10GbE mode)
40GbE QSFP+ Port 33 (stacking) or Ports 33 to 36 (4x10GbE mode)
Console access
The Aggregator has two management ports available for system access: a serial console port and an out-of-bounds (OOB) port.
Serial Console
A universal serial bus (USB) (A-Type) connector is located on the front panel. The USB can be defined as an External Serial Console (RS-232) port, and is labeled on the Aggregator. The USB is on the lower side of an installed Aggregator, as you face the I/O side of the M1000e chassis (Figure 4-1). For the console port piMnout, refer to Table 4-1.
To access the console port, follow these steps.
Step Task
1 Connect the USB connector to the front panel. Use the RS-232 Serial Line cable to connect the Aggregator
console port to a terminal server.
2 Connect the other end of the cable to the DTE terminal server.
22 | Getting Started
Page 37
Step Task (continued) Note: Terminal settings on the console port cannot be changed in the software and are set as follows:
9600 baud rate
No parity
8 data bits
1 stop bit
No flow control
External Serial Port with a USB Connector
Table 4-1 lists the pin assignments.
Table 4-1. Pin Assignments
USB Pin Number Signal Name
Pin 1 RTS Pin 2 RX Pin 3 TX Pin 4 CTS Pin 5, 6 GND RxD Chassis GND
Boot Process
After you follow the instructions in the Installation Procedur e in the Getting Started Guide, the Aggregator boots up. The Aggregator with FTOS version 8.3.17.0 requires boot flash version 4.0.1.0 and boot selector version 4.0.0.0. Figure 4-3 through Figure 4-7 show the completed boot process.
Getting Started | 23
Page 38
Figure 4-3. Completed Boot Process
syncing disks... done unmounting file systems... unmounting /f10/flash (/dev/ld0e)... unmounting /usr (mfs:31)... unmounting /lib (mfs:23)... unmounting /f10 (mfs:20)... unmounting /tmp (mfs:15)... unmounting /kern (kernfs)... unmounting / (/dev/md0a)... done rebooting... þ
NetLogic XLP Stage 1 Loader Built by build at tools-sjc-01 on Fri Mar 16 9:03:43 2012 Navasota IOM Boot Selector Label 4.0.0.0bt
www.dell.com | support.dell.com
############################################## # # # x-loader: for Navasota board # # # ##############################################
Nodes online: 1 GPIO 22 init'ed as an output GPIO 23 init'ed as an output I2C0 speed = 30 KHz, prescaler = 0x0377. Initialized I2C0 Controller. I2C1 speed = 100 KHz, prescaler = 0x0109. Initialized I2C1 Controller. DDR SPD: Node 0 Channel 0 Mem size = 2048 MB DDR SPD: Node 0 DRAM frequency 666 MHz DDR SPD: Node 0 CPU frequency 1200 MHz RTT Norm:44 NBU0 DRAM BAR0 base: 00000000 limit: 0013f000 xlate: 00000001 node: 00000000 ( 0 MB -> 320 MB,
size: 320 MB) NBU0 DRAM BAR1 base: 001d0000 limit: 0088f000 xlate: 00090001 node: 00000000 ( 464 MB -> 2192 MB,
size: 1728 MB) Modifying Default Flash Address map..Done Initialized e.MMC Host Controller Detected SD Card BLC is 1 (preset 10) Hit any key to stop autoboot: 0 F10 Boot Image selection Reading the Boot Block Info...Passed !! Images are OK A:0x0 B:0x0 Boot Selector set to Bootflash Partition A image... Verifying Copyright Information..success for Image - 0 Boot Selector: Booting Bootflash Partition A image... Copying stage-2 loader from 0xb6120000 to 0x8c100000(size = 0x100000) F10 Boot Image selection DONE. ## Starting application at 0x8C100000 ...
U-Boot 2010.03-rc1(Dell Force10) Built by antonyr at login-sjc-05 on Wed May 2 0:57:04 2012 Navasota IOM Boot Label 4.0.1.0bt
DRAM: 2 GB
24 | Getting Started
Page 39
Figure 4-4. Completed Boot Process (Contd.)
########################################## # # # u-boot: for Navasota board # # # ##########################################
Initialized CPLD on CS3 Detected [XLP308 (Lite) Rev A0]
CPLD reg 06 val 0xf7
This is a NAVASOTA ... Initializing I2C0: speed = 30 KHz, prescaler = 0x0377 -- done. Initializing I2C1: speed = 100 KHz, prescaler = 0x0109 -- done. Initialized eMMC Host Controller Detected SD Card Now running in RAM - U-Boot [N64 ABI, Big-Endian] at: ffffffff8c100000 Flash: 256 MB PCIE (B0:D01:F0) : Link up. In: serial Out: serial Err: serial Net: nae-0: PHY is Broadcom BCM54616S
--More--
RELEASE IMAGE HEADER DATA :
--------------------------
--More--
SOFTWARE IMAGE HEADER DATA :
----------------------------
--More-­Starting Dell Force10 application
00:00:15: %STKUNIT0-M:CP %RAM-6-ELECTION_ROLE: Stack unit 0 is transitioning to Management unit. 00:00:16: %STKUNIT0-M:CP %CHMGR-5-STACKUNITDETECTED: Stack unit 0 present 00:00:18: %STKUNIT0-M:CP %CHMGR-5-CHECKIN: Checkin from Stack unit 0 (type I/O-Aggregator, 56 ports) 00:00:18: %I/O-Aggregator:0 %LCMGR-5-IOM_STATE: Switch status of stack-unit 0 is set to Good 00:00:18: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed uplink state group Admin state to up: Group 1 00:00:18: %STKUNIT0-M:CP %CHMGR-5-STACKUNITUP: Stack unit 0 is up 00:00:20: %STKUNIT0-M:CP %CHMGR-5-SYSTEM_READY: System ready 00:00:20: %STKUNIT0-M:CP %IFMGR-5-OSTATE_UP: Changed interface state to up: Ma 0/0 00:00:22: %I/O-Aggregator:0 %POLLMGR-2-MODULE_POWER_STATE: Module 0 in unit 0 changed to POWER GOOD
state 00:00:23: %STKUNIT0-M:CP %CHMGR-0-TEMP_STATUS_CHANGE: Unit 0 temperature state changed to 1.
00:00:24: %STKUNIT0-M:CP %RAM-5-STACK_STATE: Stack unit 0 is in Active State. 00:00:25: %I/O-Aggregator:0 %IFAGT-5-INSERT_OPTICS_QSFP: Optics QSFP inserted in slot 0 port 33 00:00:25: %I/O-Aggregator:0 %IFAGT-5-INSERT_OPTICS_QSFP: Optics QSFP inserted in slot 0 port 34 00:00:25: %I/O-Aggregator:0 %IFAGT-5-INSERT_OPTICS_QSFP: Optics QSFP inserted in slot 0 port 35 00:00:26: %I/O-Aggregator:0 %IFAGT-5-INSERT_OPTICS_QSFP: Optics QSFP inserted in slot 0 port 36 00:00:26: %STKUNIT0-M:CP %CHMGR-5-MODULE_INSERTED: SFP+ module has been inserted in stack-unit 0
optional slot 0 00:00:27: %I/O-Aggregator:0 %IFAGT-5-INSERT_OPTICS_PLUS: Optics SFP+ inserted in slot 0 port 41 00:00:28: %I/O-Aggregator:0 %IFAGT-5-INSERT_OPTICS_PLUS: Optics SFP+ inserted in slot 0 port 42 00:00:28: %I/O-Aggregator:0 %IFAGT-5-INSERT_OPTICS_PLUS: Optics SFP+ inserted in slot 0 port 43 00:00:28: %I/O-Aggregator:0 %IFAGT-5-INSERT_OPTICS_PLUS: Optics SFP+ inserted in slot 0 port 44
Getting Started | 25
Page 40
Figure 4-5. Completed Boot Process (Contd.)
FTOS>00:00:30: %STKUNIT0-M:CP %IFMGR-5-IFM_ISCSI_ENABLE: iSCSI has been enabled causing flow control to be enabled on all interfaces. EQL detection and enabling iscsi profile-compellent on an interface may cause some automatic configurations to occur like jumbo frames on all ports and no storm control on the port of detection
00:00:30: %STKUNIT0-M:CP %SEC-5-LOGIN_SUCCESS: Login successful for user on line console 00:00:31: %STKUNIT0-M:CP %SNMP-6-SNMP_WARM_START: Agent Initialized - SNMP WARM_START. 00:00:31: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Changed uplink state group state to down: Group 1 00:00:32: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/1 00:00:32: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/1 00:00:43: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/2 00:00:44: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/2 00:00:44: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/3 00:00:44: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/3 00:00:45: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/4 00:00:45: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/4 00:00:45: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/5
www.dell.com | support.dell.com
00:00:45: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/5 00:00:46: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/6 00:00:46: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/6 00:00:46: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/7 00:00:46: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/7 00:00:47: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/8 00:00:47: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/8 00:00:47: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/9 00:00:47: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/9 00:00:48: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/10 00:00:48: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/10 00:00:48: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/11 00:00:48: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/11 00:00:49: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/12 00:00:49: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/12 00:00:49: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/13 00:00:50: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/13 00:00:50: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/14 00:00:50: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/14 00:00:51: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/15 00:00:51: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/15 00:00:51: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/16 00:00:51: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/16 00:00:52: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/17 00:00:52: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/17 00:00:52: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/18 00:00:52: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/18 00:00:52 : IO-AGG [Active]: Informing IOM booted successfully to CMC : Passed 00:00:53: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/19 00:00:53: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/19 00:00:53: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/20 00:00:53: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/20 00:00:54: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/21 00:00:54: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/21 00:00:54: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/22 00:00:55: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/22 00:00:55: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/23 00:00:55: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/23 00:00:56: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/24 00:00:56: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/24 00:00:56: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/25 00:00:56: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/25 00:00:57: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/26 00:00:57: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/26 00:00:57: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/27 00:00:57: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/27 00:00:58: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/28 00:00:58: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/28
26 | Getting Started
Page 41
Figure 4-6. Completed Boot Process (Contd.)
00:00:59: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/29 00:00:59: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/30 00:00:59: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/30 00:01:00: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/31 00:01:00: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/31 00:01:00: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/32 00:01:00: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Te 0/32 00:01:01: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/33 00:01:01: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/34 00:01:02: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/35 00:01:03: %STKUNIT0-M:CP %DIFFSERV-4-DSM_DCBX_ETS_RECO_TX_OVERRIDE: Port Role Change overrides
theconfiguration of ETS Recommend TLV transmitstatus: Te 0/33 00:01:03: %STKUNIT0-M:CP %DIFFSERV-4-DSM_DCBX_ETS_RECO_TX_OVERRIDE: Port Role Change overrides the
configuration of ETS Recommend TLV transmitstatus: Te 0/34 00:01:03: %STKUNIT0-M:CP %DIFFSERV-4-DSM_DCBX_ETS_RECO_TX_OVERRIDE: Port Role Change overrides the
configuration of ETS Recommend TLV transmitstatus: Te 0/35 00:01:03: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/36 00:01:03: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/37 00:01:04: %STKUNIT0-M:CP %DIFFSERV-4-DSM_DCBX_ETS_RECO_TX_OVERRIDE: Port Role Change overrides the
configuration of ETS Recommend TLV transmitstatus: Te 0/36 00:01:04: %STKUNIT0-M:CP %DIFFSERV-4-DSM_DCBX_ETS_RECO_TX_OVERRIDE: Port Role Change overrides the
configuration of ETS Recommend TLV transmitstatus: Te 0/37 00:01:04: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/38 00:01:04: %STKUNIT0-M:CP %DIFFSERV-4-DSM_DCBX_ETS_RECO_TX_OVERRIDE: Port Role Change overrides the
configuration of ETS Recommend TLV transmitstatus: Te 0/38 00:01:04: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/39 00:01:04: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/40 00:01:04: %STKUNIT0-M:CP %DIFFSERV-4-DSM_DCBX_ETS_RECO_TX_OVERRIDE: Port Role Change overrides the
configuration of ETS Recommend TLV transmitstatus: Te 0/39 00:01:04: %STKUNIT0-M:CP %DIFFSERV-4-DSM_DCBX_ETS_RECO_TX_OVERRIDE: Port Role Change overrides the
configuration of ETS Recommend TLV transmitstatus: Te 0/40 00:01:05: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/41 00:01:05: %STKUNIT0-M:CP %DIFFSERV-4-DSM_DCBX_ETS_RECO_TX_OVERRIDE: Port Role Change overrides the
configuration of ETS Recommend TLV transmitstatus: Te 0/41 00:01:05: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/42 00:01:06: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/43 00:01:06: %STKUNIT0-M:CP %DIFFSERV-4-DSM_DCBX_ETS_RECO_TX_OVERRIDE: Port Role Change overrides the
configuration of ETS Recommend TLV transmitstatus: Te 0/42 00:01:06: %STKUNIT0-M:CP %DIFFSERV-4-DSM_DCBX_ETS_RECO_TX_OVERRIDE: Port Role Change overrides the
configuration of ETS Recommend TLV transmitstatus: Te 0/43 00:01:06: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/44 00:01:07: %STKUNIT0-M:CP %DIFFSERV-4-DSM_DCBX_ETS_RECO_TX_OVERRIDE: Port Role Change overrides the
configuration of ETS Recommend TLV transmitstatus: Te 0/44 00:01:07: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/45 0:01:07: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/46 00:01:08: %STKUNIT0-M:CP %DIFFSERV-4-DSM_DCBX_ETS_RECO_TX_OVERRIDE: Port Role Change overrides the
configuration of ETS Recommend TLV transmitstatus: Te 0/45 00:01:08: %STKUNIT0-M:CP %DIFFSERV-4-DSM_DCBX_ETS_RECO_TX_OVERRIDE: Port Role Change overrides the
configuration of ETS Recommend TLV transmitstatus: Te 0/46 00:01:08: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/47 00:01:08: %STKUNIT0-M:CP %DIFFSERV-4-DSM_DCBX_ETS_RECO_TX_OVERRIDE: Port Role Change overrides the
configuration of ETS Recommend TLV transmitstatus: Te 0/47 00:01:09: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/48 00:01:09: %STKUNIT0-M:CP %DIFFSERV-4-DSM_DCBX_ETS_RECO_TX_OVERRIDE: Port Role Change overrides the
configuration of ETS Recommend TLV transmitstatus: Te 0/48 00:01:09: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/49 00:01:09: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/50 00:01:10: %STKUNIT0-M:CP %DIFFSERV-4-DSM_DCBX_ETS_RECO_TX_OVERRIDE: Port Role Change overrides the
configuration of ETS Recommend TLV transmitstatus: Te 0/49 00:01:10: %STKUNIT0-M:CP %DIFFSERV-4-DSM_DCBX_ETS_RECO_TX_OVERRIDE: Port Role Change overrides the
configuration of ETS Recommend TLV transmitstatus: Te 0/50 00:01:10: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/51 00:01:10: %STKUNIT0-M:CP %DIFFSERV-4-DSM_DCBX_ETS_RECO_TX_OVERRIDE: Port Role Change overrides the
configuration of ETS Recommend TLV transmitstatus: Te 0/51 00:01:10: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/52 00:01:10: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/53 00:01:11: %STKUNIT0-M:CP %DIFFSERV-4-DSM_DCBX_ETS_RECO_TX_OVERRIDE: Port Role Change overrides the
configuration of ETS Recommend TLV transmitstatus: Te 0/52 00:01:11: %STKUNIT0-M:CP %DIFFSERV-4-DSM_DCBX_ETS_RECO_TX_OVERRIDE: Port Role Change overrides the
configuration of ETS Recommend TLV transmitstatus: Te 0/53
Getting Started | 27
Page 42
Figure 4-7. Completed Boot Process (Contd.)
00:01:11: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/54 00:01:11: %STKUNIT0-M:CP %DIFFSERV-4-DSM_DCBX_ETS_RECO_TX_OVERRIDE: Port Role Change overrides the
configuration of ETS Recommend TLV transmitstatus: Te 0/54 00:01:11: %STKUNIT0-M:CP %IFMGR-5-ASTATE_UP: Changed interface Admin state to up: Te 0/54 00:01:11: %STKUNIT0-M:CP %DIFFSERV-4-DSM_DCBX_ETS_RECO_TX_OVERRIDE: Port Role Change overrides the
configuration of ETS Recommend TLV transmitstatus: Te 0/54
Configure a Host Name
The host name appears in the prompt. The default host name is FTOS.
www.dell.com | support.dell.com
Host names must start with a letter and end with a letter or digit.
Characters within the string can be letters, digits, and hyphens.
To configure a host name, follow this steps:
Step Task Command Syntax Command Mode
1 Create a new host name.
Figure 4-8 shows the
hostname command.
Figure 4-8. Configuring a Hostname
Default Hostname
FTOS(conf)#hostname R1 R1(conf)#
New Hostname
Access the System Remotely
You can configure the system to access it remotely by Telnet. The Aggregator has a dedicated management port and a management routing table that is separate from the IP routing table.
hostname name
CONFIGURATION
28 | Getting Started
Page 43
Access the Aggregator Remotely
Configuring the Aggregator for Telnet access is a three-step process:
1. Configure an IP address for the management port. Refer to Configure the Management Port IP
Address.
2. Configure a management route with a default gateway. Refer to Configure a Management Route.
3. Configure a username and password. Refer to Configure a Username and Password.
Configure the Management Port IP Address
Assign IP addresses to the management ports in order to access the system remotely. To configure the management port IP address, follow these steps:
Step Task Command Syntax Command Mode
1 Enter INTERFACE mode for the
Management port.
2
3
Assign an IP address to the interface.
Enable the interface.
interface ManagementEthernet slot/port
slot: 0
port: 0
ip address ip-address/mask
ip-address: an address in dotted-decimal format (A.B.C.D).
mask: a subnet mask in /prefix-length format (/ xx).
no shutdown
CONFIGURATION
INTERFACE
INTERFACE
You can also configure a management port to acquire its IP address dynamically from a DHCP server by using the
Task Command Syntax Command Mode
Acquire an IP address from the DHCP server.
ip address dhcp command:
ip address dhcp INTERFACE
Getting Started | 29
Page 44
Configure a Management Route
Define a path from the system to the network from which you are accessing the system remotely. Management routes are separate from IP routes and are only used to manage the system through the management port.
To configure a management route, follow this step:
Step Task Command Syntax Command Mode
Configure a management route to
1
the network from which you are
www.dell.com | support.dell.com
accessing the system.
Configure a Username and Password
Configure a system username and password to access the system remotely.
To configure a username and password, follow this step:
Step Task Command Syntax Command Mode
Configure a username and
1
password to access the system remotely.
management route ip-address/mask gateway
ip-address: the network address in dotted-decimal format (A.B.C.D).
mask: a subnet mask in /prefix-length format (/
• xx).
gateway: the next hop for network traffic
originating from the management port.
username username password [encryption-type] password encryption-type
password, is 0 by default, and is not required.
0 is for inputting the password in clear text.
7 is for inputting a password that is already encrypted using a Type 7 hash. Obtaining the encrypted password from the configuration of another Dell Force10 system.
specifies how you are inputting the
CONFIGURATION
CONFIGURATION
Configure the Enable Password
Access EXEC Privilege mode using the enable command. EXEC Privilege mode is unrestricted by default. Configure a password as a basic security measure. There are two types of
enable password stores the password in the running/startup configuration using a DES encryption
method.
enable secret is stored in the running/startup configuration in using a stronger , MD5 encryption method.
30 | Getting Started
enable passwords:
Page 45
Dell Force10 recommends using the enable secret password.
To configure an enable password:
Task Command Syntax Command Mode
Create a password to access EXEC Privilege mode.
enable [password | secret] [level level] [encryption-type] password
is the privilege level, is 15 by default, and is not required.
level encryption-type specifies how you are inputting the password, is 0 by
default, and is not required.
0 is for inputting the password in clear text.
7 is for inputting a password that is already encrypted using a DES hash. Obtain the encrypted password from the configuration file of another Dell Force10 system. Can be used only for enable password.
5 is for inputting a password that is already encrypted using an MD5 hash. Obtain the encrypted password from the configuration file of another Dell Force10 system. Can be used only for enable secret password.
Configuration File Management
You can store on and access files from various storage media. Rename, delete, and copy files on the system from EXEC Privilege mode.
Note: Using flash memory cards in the system that have not been approved by Dell Force10 can cause unexpected system behavior, including a reboot.
CONFIGURATION
Copy Files to and from the System
The command syntax for copying files is similar to UNIX. The copy command uses the format copy
source-file-url destination-file-url.
Note: For a detailed description of the copy command, refer to the FTOS Command Reference Guide.
Getting Started | 31
Page 46
To copy a local file to a remote system, combine the file-origin syntax for a local file location with the
file-destination syntax for a remote file location (Table 4-2).
To copy a remote file to a Dell Force10 system, combine the with the
Table 4-2. Forming a copy Command
Local File Location
Internal flash:
file-destination syntax for a local file location (Table 4-2).
source-file-url Syntax destination-file-url Syntax
file-origin syntax for a remote file location
flash
USB flash:
www.dell.com | support.dell.com
usbflash
copy flash://filename flash://filename
usbflash://filename usbflash://filename
Remote File Location
FTP server copy ftp://username:password@{hostip |
hostname}
/filepath/filename
TFTP server copy tftp://{hostip | hostname}/filepath/
filename
SCP server copy scp://username:password@{hostip |
hostname}
/filepath/filename
Important Points to Remember
You may not copy a file from one remote system to another.
You may not copy a file from one location to the same location.
When copying to a server, you can only use a hostname if a DNS server is configured.
Figure 4-9 shows an example of using the
Figure 4-9. Copying a file to a Remote System
ftp://username:password@{hostip filepath/filename
tftp://{hostip | hostname}/filepath/filename
scp://username:password@{hostip
filepath/filename
copy command to save a file to an FTP server.
| hostname}/
| hostname}/
Local Location
FTOS#copy flash://FTOS-EF-8.2.1.0.bin ftp://myusername:mypassword@10.10.10.10//FTOS/FTOS-EF-8.2.1.0 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 27952672 bytes successfully copied
32 | Getting Started
Remote Location
Page 47
Figure 4-10 shows an example of using the copy command to import a file to the Dell Force10 system from
an FTP server.
Figure 4-10. Copying a file from a Remote System
Remote Location
Local Location
FTOS#copy ftp://myusername:mypassword@10.10.10.10//FTOS/FTOS-EF-8.2.1.0.bin flash:// Destination file name [FTOS-EF-8.2.1.0.bin.bin]: !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 26292881 bytes successfully copied
Save the Running-Configuration
The running-configuration contains the current system configuration. Dell Force10 recommends copying your running-configuration to the startup-configuration. The system uses the startup-configuration during boot-up to configure the system. The startup-configuration is stored in the internal flash on the IOM by default, but you can save the startup-configuration to a USB flash device or on a remote server.
To save the running-configuration:
Task Command Syntax Command Mode
Save re-configured settings to the
write memory
CONFIGURATION
startup configuration.
Note: The following commands are the same format as those in Copy Files to and from the System on
page 31 but use the filenames startup-config and running-config. These commands assume that current
directory is the internal flash, which is the system default.
Task Command Syntax Command Mode
Save the running-configuration to:
the startup-configuration on the internal flash
the usb flash on the IOM copy running-config usbflash://filename
an FTP server
a TFTP server copy running-config tftp://{hostip | hostname}/filepath/
copy running-config startup-config
copy running-config ftp://
username:password@{hostip filename
filename
| hostname}/filepath/
EXEC Privilege
EXEC Privilege
EXEC Privilege
EXEC Privilege
Getting Started | 33
Page 48
Task Command Syntax Command Mode
an SCP server
Note: When copying to a server, you can only use a hostname if a DNS server is configured.
View Files
You can only view file information and content on local file systems.
www.dell.com | support.dell.com
To view a list of files on the internal or external Flash, follow this step:
Step Task Command Syntax Command Mode
1 View a list of files on:
the internal flash
the usbflash
The output of the command modification for each file (Figure 4-11).
copy running-config scp://
username:password@{hostip filename
dir flash:
dir usbflash:
dir also shows the read/write privileges, size (in bytes), and date of
| hostname}/filepath/
EXEC Privilege
EXEC Privilege
EXEC Privilege
Figure 4-11. Viewing a List of Files in the Internal Flash
FTOS#dir Directory of flash:
1 drwx 4096 Jan 01 1980 00:00:00 +00:00 . 2 drwx 2048 Jul 24 2012 09:46:34 +00:00 .. 3 drwx 4096 Apr 03 2012 20:25:02 +00:00 TRACE_LOG_DIR 4 drwx 4096 Apr 03 2012 20:25:02 +00:00 CORE_DUMP_DIR 5 d--- 4096 Apr 03 2012 20:25:02 +00:00 ADMIN_DIR 6 -rwx 506724352 Apr 19 2012 23:32:02 +00:00 out3 7 -rwx 715651180 Apr 17 2012 23:17:30 +00:00 out1 8 -rwx 30670080 May 18 2012 04:42:06 +00:00 FTOS-nav_ascii.bin 9 -rwx 76 May 02 2012 05:37:42 +00:00 dhcpBindConflict 10 -rwx 1 Jul 06 2012 07:30:44 +00:00 testhttp 11 -rwx 56839 May 17 2012 01:05:24 +00:00 writefru 12 -rwx 150227 Jun 07 2012 16:57:24 +00:00 aaa 13 -rwx 150227 Jun 07 2012 17:31:52 +00:00 bbb 14 -rwx 561 Jun 26 2012 06:36:46 +00:00 jumpstartcfg 15 -rwx 149553 Jul 04 2012 04:27:48 +00:00 startup-config.bak
--More--
34 | Getting Started
Page 49
To view the contents of a file, follow this step:
Step Task Command Syntax Command Mode
1 View the:
contents of a file in the internal flash
contents of a file in the usb flash
running-configuration
startup-configuration
show file flash://filename
show file usbflash://filename
show running-config
show startup-config
EXEC Privilege
EXEC Privilege
EXEC Privilege
EXEC Privilege
View Configuration Files
Configuration files have three commented lines at the beginning of the file (Figure 4-12), to help you track the last time any user made a change to the file, which user made the change(s), and when the file was last saved to the startup-configuration.
In the running-configuration file, if there is a difference between the timestamp on the “Last configuration change,” and “Startup-config last updated,” you have made changes that have not been saved and will not be preserved upon a system reboot.
Figure 4-12. Tracking Changes with Configuration Comments
FTOS#show running-config Current Configuration ... ! Version E8-3-17-38 ! Last configuration change at Tue Jul 24 20:33:08 2012 by default ! boot system stack-unit 1 primary tftp://10.11.9.21/dv-m1000e-2-b2 boot system stack-unit 1 default system: A: boot system gateway 10.11.209.62 ! redundancy auto-synchronize full ! service timestamps log datetime ! hostname FTOS !
--More--
Getting Started | 35
Page 50
File System Management
The Dell Force10 system can use the internal Flash, USB Flash, or remote devices to store files. The system stores files on the internal Flash by default, but you can configure it to store files elsewhere.
To view file system information:
Task Command Syntax Command Mode
View information about each file system.
The output of the
www.dell.com | support.dell.com
memory, file structure, media type, and read/write privileges for each storage device in use.
show file-systems command (Figure 4-13) shows the total capacity, amount of free
Figure 4-13. show file-systems Command Example
FTOS#show file-systems
Size(b) Free(b) Feature Type Flags Prefixes 2143281152 836878336 FAT32 USERFLASH rw flash:
- - - network rw ftp:
- - - network rw tftp:
- - - network rw scp: FTOS#
You can change the default file system so that file management commands apply to a particular device or memory.
To change the default storage location:
Task Command Syntax Command Mode
show file-systems
EXEC Privilege
Change the default directory.
You can change the default storage location to the USB Flash (Figure 4-14). File management commands then apply to the USB Flash rather than the internal Flash.
36 | Getting Started
cd directory
EXEC Privilege
Page 51
Figure 4-14. Alternative Storage Location
FTOS#cd usbflash: FTOS#copy running-config test ! 3998 bytes successfully copied
FTOS#dir Directory of usbflash:
1 drwx 4096 Jan 01 1980 00:00:00 +00:00 . 2 drwx 2048 May 02 2012 07:05:06 +00:00 .. 3 -rwx 1272 Apr 29 2011 16:15:14 +00:00 startup-config 4 -rwx 3998 May 11 2011 23:36:12 +00:00 test
View the Command History
The command-history trace feature captures all commands entered by all users of the system with a time stamp and writes these messages to a dedicated trace log buffer. The system generates a trace message for each executed command. No password information is saved to the file.
No File System Specified
File Saved to USB Flash
To view the command-history trace, use the
show command-history command (Figure 4-15).
Figure 4-15. show command-history Command Example
FTOS# show command-history [5/18 21:58:32]: CMD-(TEL0):[enable]by admin from vty0 (10.11.68.5) [5/18 21:58:48]: CMD-(TEL0):[configure]by admin from vty0 (10.11.68.5)
- Repeated 1 time. [5/18 21:58:57]: CMD-(TEL0):[interface port-channel 1]by admin from vty0 (10.11.68.5) [5/18 21:59:9]: CMD-(TEL0):[show config]by admin from vty0 (10.11.68.5) [5/18 22:4:32]: CMD-(TEL0):[exit]by admin from vty0 (10.11.68.5) [5/18 22:4:41]: CMD-(TEL0):[show interfaces port-channel brief]by admin from vty0 (10.11.68.5)
Upgrading and Downgrading FTOS
Note: To upgrade or downgrade FTOS, refer to the Release Notes for the FTOS version you want to load
on the Aggregator.
Getting Started | 37
Page 52
www.dell.com | support.dell.com
38 | Getting Started
Page 53
Aggregator Management
This chapter explains the different protocols or services used to manage an Aggregator including:
Logging
Disabling System Logging
File Transfer Services
Terminal Lines
Telnet to Another Network Device
Recovering from a Forgotten Password
Recovering from a Forgotten Enable Password
Recovering from a Failed Start
5
Logging
FTOS tracks changes in the system using event and error messages. By default, FTOS logs these messages on:
the internal buffer
console and terminal lines
any configured syslog servers
Log Messages in the Internal Buffer
All error messages, except those beginning with %BOOTUP (Message), are logged in the internal buffer.
Message 1 BootUp Events
%BOOTUP:RPM0:CP %PORTPIPE-INIT-SUCCESS: Portpipe 0 enabled
Aggregator Management | 39
Page 54
Disabling System Logging
By default, logging is enabled and log messages are sent to the logging buffer, all terminal lines, console, and syslog servers.
To enable and disable system logging:
Task Command Syntax Command Mode
Disable all logging except on the console.
Disable logging to the logging buffer.
www.dell.com | support.dell.com
Disable logging to terminal lines.
Disable console logging.
Send System Messages to a Syslog Server
To send system messages to a syslog server:
Task Command Syntax Command Mode
Specify the server to which you want to send system messages. You can configure up to eight syslog servers.
Using a Unix System as a Syslog Server
Configure a UNIX system as a syslog server by adding the following lines to /etc/syslog.conf on the Unix system and assigning write permissions to the file.
no logging on
no logging buffer
no logging monitor
no logging console
logging {ip-address | hostname} CONFIGURATION
CONFIGURATION
CONFIGURATION
CONFIGURATION
CONFIGURATION
on a 4.1 BSD UNIX system, add the line: local7.debugging /var/log/log7.log
on a 5.7 SunOS UNIX system, add the line: local7.debugging /var/adm/ftos.log
In the lines above, local7 is the logging facility level and debugging is the severity level.
40 | Aggregator Management
Page 55
Changing System Logging Settings
You can change the default settings of the system logging by changing the severity level and the storage location. The default is to log all messages up to debug level, that is, all system messages. By changing the severity level in the logging commands, you control the number of system messages logged.
To change the severity level of messages logged to a syslog server, use any or all of the following commands in CONFIGURATION mode:
Task Command Syntax Command Mode
Specify the minimum severity level for logging to the logging buffer.
Specify the minimum severity level for logging to the console.
Specify the minimum severity level for logging to terminal lines.
Specifying the minimum severity level for logging to a syslog server.
Specify the minimum severity level for logging to the syslog history table.
Task Command Syntax Command Mode
Specify the size of the logging buffer. Note: When you decrease the buffer size, FTOS deletes all messages stored in the buffer. Increasing the buffer size does not affect messages in the buffer.
Specify the number of messages that FTOS saves to its logging history table.
logging buffered level CONFIGURATION
logging console level
logging monitor level
logging trap level
logging history level
logging buffered size CONFIGURATION
logging history size size
CONFIGURATION
CONFIGURATION
CONFIGURATION
CONFIGURATION
CONFIGURATION
To view the logging buffer and configuration, enter the
(Figure 5-1).
To view the logging configuration, enter the
(Figure 5-2).
show logging command in EXEC privilege mode
show running-config logging command in EXEC privilege mode
Aggregator Management | 41
Page 56
Displaying the Logging Buffer and Logging Configuration
T o display the current contents of the logging buf fer and the logging settings for the system, enter the show
logging
command in EXEC privilege mode (Figure 5-1).
Figure 5-1. show logging Command Example
FTOS#show logging Syslog logging: enabled Console logging: level debugging Monitor logging: level debugging Buffer logging: level debugging, 58 Messages Logged, Size (40960 bytes) Trap logging: level informational Logging to 172.31.1.4
www.dell.com | support.dell.com
Logging to 172.16.1.162 Logging to 133.33.33.4 Logging to 10.10.10.4 Logging to 10.1.2.4 May 20 20:00:10: %STKUNIT0-M:CP %SYS-5-CONFIG_I: Configured from vty0 ( 10.11.68
.5 )by admin May 20 19:57:45: %STKUNIT0-M:CP %SEC-3-AUTHENTICATION_ENABLE_SUCCESS: Enable pas sword authentication success on vty0 ( 10.11.68.5 ) May 20 19:57:40: %STKUNIT0-M:CP %SEC-5-LOGIN_SUCCESS: Login successful for user admin on vty0 (10.11.68.5) May 20 19:37:08: %STKUNIT0-M:CP %SEC-5-LOGOUT: Exec session is terminated for us er admin on line vty0 (10.11.68.5) May 20 18:59:36: %STKUNIT0-M:CP %SYS-5-CONFIG_I: Configured from vty0 ( 10.11.68 .5 )by admin May 20 18:45:44: %STKUNIT0-M:CP %SEC-3-AUTHENTICATION_ENABLE_SUCCESS: Enable pas sword authentication success on vty0 ( 10.11.68.5 ) May 20 18:45:39: %STKUNIT0-M:CP %SEC-5-LOGIN_SUCCESS: Login successful for user admin on vty0 (10.11.68.5) May 20 17:18:08: %STKUNIT0-M:CP %SEC-5-LOGOUT: Exec session is terminated for us er admin on line vty0 (10.11.68.5) May 20 16:42:40: %STKUNIT0-M:CP %SYS-5-CONFIG_I: Configured from vty0 ( 10.11.68 .5 )by admin
- repeated 2 times May 20 16:37:41: %STKUNIT0-M:CP %SEC-3-AUTHENTICATION_ENABLE_SUCCESS: Enable pas sword authentication success on vty0 ( 10.11.68.5 ) May 20 16:37:28: %STKUNIT0-M:CP %SEC-5-LOGIN_SUCCESS: Login successful for user admin on vty0 (10.11.68.5) May 20 16:37:17: %STKUNIT0-M:CP %SEC-5-LOGOUT: Exec session is terminated for us er admin on line vty0 (10.11.68.5) May 20 16:37:08: %STKUNIT0-M:CP %SEC-3-AUTHENTICATION_ENABLE_SUCCESS: Enable pas sword authentication success on vty0 ( 10.11.68.5 ) sword authentication success on vty0 ( 10.11.68.5 )
--More--
To view any changes made, use the show running-config logging command (Figure 5-2) in the EXEC privilege mode.
42 | Aggregator Management
Page 57
Configuring a UNIX Logging Facility Level
You can save system log messages with a UNIX system logging facility.
To configure a UNIX logging facility level, use the following command in CONFIGURATION mode:
Command Syntax Command Mode Purpose
logging facility [facility-type]
CONFIGURATION Specify one of the following parameters.
auth (for authorization messages)
cron (for system scheduler messages)
daemon (for system daemons)
kern (for kernel messages)
local0 (for local use)
local1 (for local use)
local2 (for local use)
local3 (for local use)
local4 (for local use)
local5 (for local use)
local6 (for local use)
local7 (for local use). This is the default.
lpr (for line printer system messages)
mail (for mail system messages)
news (for USENET news messages)
sys9 (system use)
sys10 (system use)
sys11 (system use)
sys12 (system use)
sys13 (system use)
sys14 (system use)
syslog (for syslog messages)
user (for user programs)
uucp (UNIX to UNIX copy protocol) The default is local7.
To view non-default settings, use the
Figure 5-2. show running-config logging Command Example
FTOS#show running-config logging ! service timestamps log datetime ! logging 172.16.1.162 logging 10.10.10.4 logging 10.1.2.4 logging 172.31.1.4 logging 133.33.33.4 FTOS#
show running-config logging command (Figure 4-3) in EXEC mode.
Aggregator Management | 43
Page 58
Enabling Time Stamps on Syslog Messages
By default, syslog messages do not include a time/date stamp stating when the error or message was created.
To have FTOS include a timestamp with the syslog message, use the following command syntax in CONFIGURATION mode:
Command Syntax Command Mode Purpose
service timestamps [log | debug] [datetime [localtime] [msec] [show-timezone] | uptime]
www.dell.com | support.dell.com
To view the configuration, enter the
To disable time stamping on syslog messages, enter the
File Transfer Services
With FTOS, you can configure the system to transfer files over the network using file transfer protocol (FTP). One FTP application copies the system image files over an interface on to the system; however, FTP is not supported on VLAN interfaces.
For more information about FTP, refer to RFC 959, File Transfer Protocol.
CONFIGURATION Add timestamp to syslog messages. Specify
the following optional parameters:
datetime: You can add the keyword localtime to include the localtime, msec, and show-timezone. If you do not add the keyword
uptime. To view time since last boot.
If neither parameter is specified, FTOS configures uptime.
show running-config logging command in EXEC privilege mode.
no service timestamps [log | debug] command.
localtime, the time is UTC.
Configuration Task List for File Transfer Services
The following list includes the configuration tasks for file transfer services:
Enabling the FTP Server (mandatory)
Configuring the FTP Server Parameters (optional)
For a complete listing of FTP related commands, refer to RFC 959, File Transfer Protocol.
44 | Aggregator Management
Page 59
Enabling the FTP Server
To enable the system as an FTP server, use the following command in CONFIGURATION mode:
Command Syntax Command Mode Purpose
ftp-server enable
To view the FTP configuration, enter the
CONFIGURATION Enable FTP on the system.
show running-config ftp command in EXEC privilege mode
(Figure 5-3).
Figure 5-3. show running-config ftp Command Example
FTOS#show running-config ftp ! ftp-server enable ftp-server username nairobi password 0 zanzibar FTOS#
Configuring the FTP Server Parameters
After you enable the FTP server on the system, you can configure different parameters.
To configure FTP server parameters, use any or all of the following commands in CONFIGURATION mode:
Command Syntax Command Mode Purpose
ftp-server topdir dir
ftp-server username username password [encryption-type]
password
Note: You cannot use the change directory (cd) command until you configure ftp-server topdir.
To view the FTP configuration, enter the
CONFIGURATION Specify the directory for users using FTP to reach the
system. The default is the internal flash directory.
CONFIGURATION Specify a user name for all FTP users and configure either
a plain text or encrypted password. Configure the following optional and required parameters:
username: Enter a text string
encryption-type: Enter 0 for plain text or 7 for encrypted text.
password: Enter a text string.
show running-config ftp command in EXEC privilege mode.
Aggregator Management | 45
Page 60
Terminal Lines
You can access the system remotely and restrict access to the system by creating user profiles. The terminal lines on the system provide different means of accessing the system. The virtual terminal lines (VTY) connect you through Telnet to the system.
Telnet to Another Network Device
To telnet to another device (Figure 5-4):
www.dell.com | support.dell.com
Task Command Syntax Command Mode
T elnet to the stack-unit.You do not need to configure the management port on the stack-unit to be able to telnet to it.
T elnet to a device with an IPv4 address. If you do not enter an IP address, FTOS enters a Telnet dialog that prompts you for one.
Enter an IPv4 address in dotted decimal format (A.B.C.D)
Figure 5-4. Telnet to Another Network Device
FTOS#telnet 10.11.206.66 Trying 10.11.206.66... Connected to 10.11.206.66. Exit character is '^]'.
cmc-9MZ0TS1.localdomain login: root Password:
Welcome to the CMC firmware version 4.30.X03.201207271729
$
telnet-peer-stack-unit
telnet [ip-address]
EXEC Privilege
EXEC Privilege
46 | Aggregator Management
Page 61
Recovering from a Forgotten Password
If you configure authentication for the console and you exit out of EXEC mode or your console session times out, you are prompted to re-enter the password.
If you forget your password, follow these steps:
Step Task Command Syntax Command Mode
1 Log onto the system using the console. 2 Power-cycle the Aggregator by using the CMC interface or removing it from the M1000e and re-inserting it in the
chassis.
3 During bootup, press any key during the second countdown to abort the boot process and access the uBoot
command-line interface. You are placed at the Boot User command prompt.
4 Set the system parameters to ignore
the startup configuration when the
system reloads. 5 Reload the system. 6 Copy startup-config.bak to the
running config. 7 Remove all authentication
parameters configured for the
console. 8 Save the running-config to the
startup-config.
Note: The startup configuration is ignored only the first time the Aggregator reloads. During subsequent reloads, the startup configuration is loaded and its configured settings are applied.
ignore startup-config
reload copy flash://startup-config.bak running-config
no authentication login no password
copy running-config startup-config
Recovering from a Forgotten Enable Password
If you forget the enable password, follow these steps:
BOOT USER
BOOT USER EXEC Privilege
LINE
EXEC Privilege
Step Task Command Syntax Command Mode
1 Log onto the system via console. 2 Power-cycle the Aggregator by using the CMC interface or removing it from the M1000e and re-inserting it in the
chassis. 3 During bootup, press any key during the second countdown to abort the boot process and access the uBoot
command-line interface. You are placed at the Boot User command prompt.
Aggregator Management | 47
Page 62
Step Task Command Syntax Command Mode
4 Set the system parameters to ignore
the enable password when the system
reloads. 5 Reload the system. 6 Configure a new enable password. 7 Configure a new enable password. 8 Save the running-config to the
startup-config.
www.dell.com | support.dell.com
Note: The enable password is ignored only the first time the Aggregator reloads. If you do not reconfigure the enable password before the session times out, you will be placed in EXEC mode and prompted to enter the enable password again.
Recovering from a Failed Start
An Aggregator that does not start correctly might be attempting to boot from a corrupted FTOS image or from a mis-specified location. In that case, you can restart the system and interrupt the boot process to point the system to another boot location.
ignore enable-password
reload copy flash://startup-config.bak running-config enable {secret | password) copy running-config startup-config
BOOT USER
BOOT USER EXEC Privilege CONFIGURATION EXEC Privilege
For more information about uBoot commands, refer to the Boot User chapter in the FTOS Command Line Reference for the M IO Aggregator.
To recover from failed start, follow these steps:
Step Task Command Syntax Command Mode
1 Log onto the system via console. 2 Power-cycle the Aggregator by using the CMC interface or removing it from the M1000e and re-inserting it in the
chassis.
3 During bootup, press any key during the second countdown to abort the boot process and access the uBoot
command-line interface. You are placed at the Boot User command prompt.
4 Reconfigure the default image paths to
be used to load the primary FTOS image when the system reloads.
5 Assign an IP address to the
management Ethernet interface.
6 Assign an IP address as the default
gateway for the system.
7 Reload the system.
boot change primary
interface management ethernet ip address
ip-address/mask
default-gateway ip-address
reload
BOOT USER
BOOT USER
BOOT USER
BOOT USER
48 | Aggregator Management
Page 63
Figure 5-5. Recovering from a Failed Start: Example
U-Boot 2010.03-rc1(Dell Force10) Built by build at tools-sjc-01 on Thu May 31 23:53:38 2012 IOM Boot Label 4.0.1.0
DRAM: 2 GB Initialized CPLD on CS3 Detected [XLP308 (Lite+) Rev A0] Initializing I2C0: speed = 30 KHz, prescaler = 0x0377 -- done. Initializing I2C1: speed = 100 KHz, prescaler = 0x0109 -- done. Initialized eMMC Host Controller Detected SD Card Now running in RAM - U-Boot [N64 ABI, Big-Endian] at: ffffffff8c100000 Flash: 256 MB PCIE (B0:D01:F0) : Link up. PCIE (B0:D01:F1) : No Link. In: serial Out: serial Err: serial Net: nae-0: PHY is Broadcom BCM54616S
IOM MAC Addr: 00:1E:C9:F1:00:99
Hit any key to stop autoboot: 0
***** Welcome to Dell Force10 Boot Interface ***** Use "help" or "?" for more information. BOOT_USER # BOOT_USER # boot change primary
'-' = go to previous field; '.' = clear non-essential field
boot device : tftp file name : IOA Server IP address : 10.16.127.34
BOOT_USER # BOOT_USER # interface management ethernet ip address 10.16.130.149/16
Management ethernet IP address: 10.16.130.149/16
BOOT_USER # BOOT_USER # default-gateway 10.16.130.254
Gateway IP address 10.16.130.254
BOOT_USER # BOOT_USER # reload
NetLogic XLP Stage 1 Loader Built by build at tools-sjc-01 on Thu May 31 23:53:38 2012 IOM Boot Selector Label 4.0.0.0
Aggregator Management | 49
Page 64
www.dell.com | support.dell.com
50 | Aggregator Management
Page 65
Data Center Bridging (DCB)
On an Aggregator, data center bridging (DCB) features are auto-configured in standalone mode. You can display information on DCB operation by using
Note: DCB features are not supported on an Aggregator in stacking mode.
This chapter describes the following data center bridging topics:
Ethernet Enhancements in Data Center Bridging
Data Center Bridging: Auto-DCB-Enable Mode
QoS dot1p Traffic Classification and Queue Assignment
How Priority-Based Flow Control is Implemented
How Enhanced Transmission Selection is Implemented
DCB Policies in a Switch Stack
DCBX Operation
Verifying DCB Configuration
Example: PFC and ETS Operation
show commands.
6
Ethernet Enhancements in Data Center Bridging
Data center bridging (DCB) refers to a set of IEEE Ethernet enhancements that provide data centers with a single, robust, converged network to support multiple traffic types, including local area network (LAN), server, and storage traffic. Through network consolidation, DCB results in reduced operational cost, simplified management, and easy scalability by avoiding the need to deploy separate application-specific networks.
For example, instead of deploying an Ethernet network for LAN traffic, additional storage area networks (SANs) to ensure lossless fibre-channel traffic, and a separate InfiniBand network for high-performance inter-processor computing within server clusters, only one DCB-enabled network is required in a data center. The Dell Force10 switches that support a unified fabric and consolidate multiple network infrastructures use a single input/output (I/O) device called a converged network adapter (CNA).
A CNA is a computer input/output device that combines the functionality of a host bus adapter (HBA) with a network interface controller (NIC). Multiple adapters on different devices for several traffic types are no longer required.
Data Center Bridging (DCB) | 51
Page 66
Data center bridging satisfies the needs of the following types of data center traffic in a unified fabric:
LAN traffic consists of a large number of flows that are generally insensitive to latency requirements, while certain applications, such as streaming video, are more sensitive to latency . Ethernet functions as a best-effort network that may drop packets in case of network congestion. IP networks rely on transport protocols (for example, TCP) for reliable data transmission with the associated cost of greater processing overhead and performance impact.
Storage traffic based on Fibre Channel media uses the SCSI protocol for data transfer. This traffic typically consists of large data packets with a payload of 2K bytes that cannot recover from frame loss. To successfully transport storage traffic, data center Ethernet must provide no-drop service with lossless links.
Servers use InterProcess Communication (IPC) traffic within high-performance computing clusters to
www.dell.com | support.dell.com
share information. Server traffic is extremely sensitive to latency requirements.
To ensure lossless delivery and latency-sensitive scheduling of storage and service traffic and I/O convergence of LAN, storage, and server traffic over a unified fabric, IEEE data center bridging adds the following extensions to a classical Ethernet network:
802.1Qbb - Priority-based Flow Control (PFC)
802.1Qaz - Enhanced Transmission Selection (ETS)
802.1Qau - Congestion Notification
Data Center Bridging Exchange (DCBX) protocol
Note: In FTOS version 8.3.17.x, only the PFC, ETS, and DCBX features are supported in data center bridging.
Priority-Based Flow Control
In a data center network, priority-based flow control (PFC) manages large bursts of one traffic type in multiprotocol links so that it does not affect other traffic types and no frames are lost due to congestion. When PFC detects congestion on a queue for a specified priority, it sends a pause frame for the 802.1p priority traffic to the transmitting device. In this way, PFC ensures that large amounts of queued LAN traffic do not cause storage traffic to be dropped, and that storage traffic does not result in high latency for high-performance computing (HPC) traffic between servers.
PFC enhances the existing 802.3x pause and 802.1p priority capabilities to enable flow control based on
802.1p priorities (classes of service). Instead of stopping all traffic on a link (as performed by the
traditional Ethernet pause mechanism), PFC pauses traffic on a link according to the 802.1p priority set on a traffic type. You can create lossless flows for storage and server traffic while allowing for loss in case of LAN traffic congestion on the same physical interface.
Figure 6-1 shows how PFC handles traffic congestion by pausing the transmission of incoming traffic with
dot1p priority 3.
52 | Data Center Bridging (DCB)
Page 67
Figure 6-1. Priority-Based Flow Control
PFC is implemented as follows in the Dell Force10 operating software (FTOS):
PFC is supported on specified 802.1p priority traffic (dot1p 0 to 7) and is configured per interface. However, only two lossless queues are supported on an interface: one for FCoE converged traffic and one for SCSI storage traffic. You must configure the same lossless queues on all ports.
PFC delay constraints place an upper limit on the transmit time of a queue after receiving a message to pause a specified priority.
By default, PFC is enabled on an interface with no dot1p priorities configured. You can configure the PFC priorities if the switch negotiates with a remote peer using DCBX.
During DCBX negotiation with a remote peer:
If the negotiation succeeds and the port is in DCBX W illing mode to receive a peer configuration,
PFC parameters from the peer are used to configured PFC priorities on the port. If you enable the link-level flow control mechanism on the interface, DCBX negotiation with a peer is not performed.
If the negotiation fails and PFC is enabled on the port, any user-configured PFC input policies are
applied. If no PFC input policy has been previously applied, the PFC default setting is used (no priorities configured). If you do not enable PFC on an interface, you can enable the 802.3x link-level pause function. By default, the link-level pause is disabled.
PFC supports buffering to receive data that continues to arrive on an interface while the remote system reacts to the PFC operation.
PFC uses the DCB MIB IEEE802.1azd2.5 and the PFC MIB IEEE802.1bb-d2.2.
Enhanced Transmission Selection
Enhanced transmission selection (ETS) supports optimized bandwidth allocation between traffic types in multiprotocol (Ethernet, FCoE, SCSI) links. ETS allows you to divide traffic according to its 802.1p priority into different priority groups (traffic classes) and configure bandwidth allocation and queue scheduling for each group to ensure that each traffic type is correctly scheduled and receives its required bandwidth. For example, you can prioritize low-latency storage or server cluster traffic in a traffic class to receive more bandwidth and restrict best-effort LAN traffic assigned to a different traffic class.
Data Center Bridging (DCB) | 53
Page 68
Although you can configure strict-priority queue scheduling for a priority group, ETS introduces flexibility that allows the bandwidth allocated to each priority group to be dynamically managed according to the amount of LAN, storage, and server traffic in a flow. Unused bandwidth in a priority-group is dynamically allocated to other priority groups for which traffic is available to be scheduled. T raf fic is queued according to its 802.1p priority assignment, while flexible bandwidth allocation and the configured queue-scheduling for a priority group is supported.
Figure 6-2 shows how ETS allows you to allocate bandwidth when different traffic types are classed
according to 802.1p priority and mapped to priority groups.
Figure 6-2. Enhanced Transmission Selection
www.dell.com | support.dell.com
ETS uses the following traffic groupings to select multiprotocol traffic for transmission:
Priority group: A group of 802.1p priorities used for bandwidth allocation and queue scheduling. All
802.1p priority traffic in a group should have the same traffic handling requirements for latency and frame loss.
Group ID: A 4-bit identifier assigned to each priority group. Valid values are from 0 to 7.
Group bandwidth: Percentage of available bandwidth allocated to a priority group.
Group transmission selection algorithm (TSA): Type of queue scheduling used by a priority group.
ETS is implemented as follows in FTOS:
ETS supports groups of 802.1p priorities that have:
PFC enabled or disabled
No bandwidth limit or no ETS processing
Bandwidth allocated by the ETS algorithm is made available after strict-priority groups are serviced. If a priority group does not use its allocated bandwidth, the unused bandwidth is made available to other priority groups.
For ETS traffic selection, an algorithm is applied to priority groups using:
Strict-priority shaping
ETS shaping Credit-based shaping is not supported.
ETS uses the DCB MIB IEEE802.1azd2.5.
54 | Data Center Bridging (DCB)
Page 69
Data Center Bridging Exchange Protocol (DCBX)
The data center bridging exchange (DCBX) protocol is enabled by default on any switch on which PFC or ETS are enabled. DCBX allows a switch to automatically discover DCB-enabled peers and exchange configuration information. PFC and ETS use DCBX to exchange and negotiate parameters with peer devices. DCBX capabilities include:
Discovery of DCB capabilities on peer-device connections
Determination of possible mismatch in DCB configuration on a peer link
Configuration of a peer device over a DCB link
DCBX requires the link layer discovery protocol (LLDP) to provide the path to exchange DCB parameters with peer devices. Exchanged parameters are sent in organizationally specific type, length, values (TLVs) in LLDP data units. For more information, refer to the Link Layer Discovery Protocol (LLDP) chapter. The following LLDP TLVs are supported for DCB parameter exchange:
PFC parameters: PFC Configuration TLV and Application Priority Configuration TLV.
ETS parameters: ETS Configuration TLV and ETS Recommendation TLV.
Data Center Bridging in a Traffic Flow
Figure 6-3 shows how DCB handles a traffic flow on an interface.
Figure 6-3. DCB PFC and ETS Traffic Handling
Ingress Traffic
Apply QoS traffic
classification using
dot1p priority and
map to queue
Egress Traffic
Map priority traffic
to ETS priority
groups
Apply ETS bandwidth
allocation and
scheduling to
priority-group traffic
Apply PFC no-drop handling
for lossless queues of
ingress priority traffic
Switching
Transmit ETS-handled
priority traffic
on egress queue
Data Center Bridging (DCB) | 55
Page 70
Data Center Bridging: Auto-DCB-Enable Mode
On an Aggregator in standalone mode, the default mode of operation for data center bridging on Ethernet ports is auto-DCB-enable mode. In this mode, Aggregator ports detect whether peer devices support converged enhanced Ethernet (CEE) or not, and enable DCBX and PFC or link-level flow control accordingly:
Interfaces come up with DCB disabled and link-level flow control enabled to control data transmission between the Aggregator and other network devices (see Flow Control Using Ethernet Pause Frames).
When DCB is disabled on an interface, PFC, ETS, and DCBX are also disabled.
When DCBX protocol packets are received, interfaces automatically enable DCB and disable link-level flow control.
www.dell.com | support.dell.com
DCB is required for PFC, ETS, DCBX, and FCoE initialization protocol (FIP) snooping to operate.
Note: Normally, interfaces do not flap when DCB is automatically enabled.
DCB processes VLAN-tagged packets and dot1p priority values. Untagged packets are treated with a dot1p priority of 0.
For DCB to operate effectively, ingress traffic is classified according to its dot1p priority so that it maps to different data queues. The dot1p-queue assignments used on an Aggregator are shown in Table 6-1 in QoS
dot1p Traffic Classification and Queue Assignment.
When DCB is Disabled (Default)
By default, Aggregator interfaces operate with DCB disabled and link-level flow control enabled. When an interface comes up, it is automatically configured with:
Flow control enabled on input interfaces
A DCB input policy with PFC disabled
A DCB output policy with ETS disabled
Figure 6-4 shows a default interface configuration with DCB enabled and link-level flow control enabled.
When the first Aggregator interface with DCB disabled receives an LLDP packet with a DCBX TLV advertisement, DCB is enabled on the interface and on all uplink interfaces.
56 | Data Center Bridging (DCB)
Page 71
Figure 6-4. show interfaces Command Example: DCB disabled and Flow Control enabled
FTOS#show interfaces tengigabitethernet 0/2 interface TenGigabitEthernet 0/2 mtu 12000 portmode hybrid switchport auto vlan flowcontrol rx on tx off dcb-policy input smux-dcb-in dcb-policy output smux-dcb-out ! protocol lldp advertise management-tlv system-name dcbx port-role auto-downstream no shutdown
When DCB is Enabled
When a server-facing interface receives DCBX protocol packets, it automatically enables DCB and disables link-level flow control. The DCB input and output policies and the flow control configuration are removed as shown in Figure 6-5.
When no DCBX TLVs are received on a DCB-enabled interface for 180 seconds, DCB is automatically disabled and flow control is re-enabled. When all 10GbE server-facing interfaces have DCB disabled, DCB is also disabled on all 40GbE uplink interfaces.
Figure 6-5. show interfaces Command Example: DCB enabled and Flow Control disabled
FTOS#show interfaces tengigabitethernet 0/2 interface TenGigabitEthernet 0/2 mtu 12000 auto vlan ! port-channel-protocol LACP port-channel 1 mode active ! protocol lldp advertise management-tlv system-name dcbx port-role auto-downstream no shutdown
Lossless Traffic Handling
In auto-DCB-enable mode, Aggregator ports operate with the auto-detection of DCBX traffic. At any moment, some ports may operate with link-level flow control while others operate with DCB-based PFC enabled.
As a result, lossless traffic is ensured only if traffic ingresses on a PFC-enabled port and egresses on another PFC-enabled port.
Lossless traffic is not guaranteed when it is transmitted on a PFC-enabled port and received on a link-level flow control-enabled port, or transmitted on a link-level flow control-enabled port and received on a PFC-enabled port.
Data Center Bridging (DCB) | 57
Page 72
Enabling DCB on Next Reload
To configure the Aggregator so that all interfaces come up with DCB enabled and flow control disabled, use the for DCB to be enabled on all interfaces. Internal PFC buffers are automatically configured.
Task Command Command Mode
dcb enable on-next-reload command. You must save the configuration change and reload the switch
Globally enable DCB on all interfaces after next switch reload.
T o reconfigure the Aggregator so that all interfaces come up with DCB disabled and link-level flow control
www.dell.com | support.dell.com
enabled, use the no dcb enable on-next-reload command. You must save the configuration change and reload the switch for DCB to be disabled on all interfaces. PFC buffer memory is automatically freed.
Enabling Auto-DCB-Enable Mode on Next Reload
To configure the Aggregator so that all interfaces come up in auto-DCB-enable mode with DCB disabled and flow control enabled, use the configuration change and reload the switch for auto-DCB-enable mode to be enabled on all interfaces.
Task Command Command Mode
Globally enable auto-detection of DCBX and auto-enabling of DCB on all interfaces after switch reload.
Figure 6-6. dcb enable auto-detect on-next-reload Command Example
FTOS#dcb enable auto-detect on-next-reload
dcb enable on-next-reload
dcb enable aut-detect on-next-reload command. You must save the
dcb enable auto-detect on-next-reload
CONFIGURATION
CONFIGURATION
Aug 25 18:47:50: %STKUNIT0-M:CP %DIFFSERV-6-DCB_ENABLE_CFG_ON_RELOAD: Global DCB will be enabled on subsequent reload, PFC buffers will be reserved for all pfc ports and max loss less queues supported for each stack unit. For the pfc-buffering change to take effect, please save the config and reload the system.
58 | Data Center Bridging (DCB)
Page 73
QoS dot1p Traffic Classification and Queue Assignment
DCB supports PFC, ETS, and DCBX to handle converged Ethernet traffic that is assigned to an egress queue according to the following quality of service (QoS) methods:
Honor dot1p: dot1p priorities in ingress traffic are used at the port or global switch level.
Layer 2 class maps: dot1p priorities are used to classify traffic in a class map and apply a service policy to an ingress port to map traffic to egress queues.
Important: of two
Note: Dell Force10 does not recommend mapping all ingress traffic to a single queue when using PFC and ETS. Ingress traffic classification using the service-class dynamic dot1p command (honor dot1p) is recommended on all DCB-enabled interfaces. If you use L2 class maps to map dot1p priority traffic to egress queues, take into account the default dot1p-queue assignments in Table 6-1 and the maximum number of two lossless queues supported on a port.
Although FTOS allows you to change the default dot1p priority-queue assignments, DCB policies applied
to an interface may become invalid if dot1p-queue mapping is reconfigured. If the configured DCB policy remains valid, the change in the dot1p-queue assignment is allowed. For DCB ETS enabled interfaces, traffic destined to queue that is not mapped to any dot1p priority will be dropped.
Table 6-1. dot1p Priority-Queue Assignment
dot1p Value in Incoming Frame Egress Queue Assignment
00 10 20 31 42 53 63 73
Data Center Bridging (DCB) | 59
Page 74
How Priority-Based Flow Control is Implemented
Priority-based flow control provides a flow control mechanism based on the 802.1p priorities in converged Ethernet traffic received on an interface and is enabled by default. As an enhancement to the existing Ethernet pause mechanism, PFC stops traffic transmission for specified priorities (CoS values) without impacting other priority classes. Different traffic types are assigned to different priority classes.
When traffic congestion occurs, PFC sends a pause frame to a peer device with the CoS priority values of the traffic that needs to be stopped. DCBX provides the link-level exchange of PFC parameters between peer devices. PFC creates zero-loss links for SAN traffic that requires no-drop service, while at the same time retaining packet-drop congestion management for LAN traffic.
www.dell.com | support.dell.com
PFC is implemented on an Aggregator as follows:
If DCB is enabled, as soon as a DCB policy with PFC is applied on an interface, DCBX starts exchanging information with PFC-enabled peers. The IEEE802.1Qbb, CEE and CIN versions of PFC TLV are supported. DCBX also validates PFC configurations received in TLVs from peer devices.
To achieve complete lossless handling of traffic, enable PFC operation traffic and
All 802.1p priorities are enabled for PFC. Queues to which PFC priority traffic is mapped are lossless by default. Traffic may be interrupted due to an interface flap (going down and coming up).
For PFC to be applied on an Aggregator port, the auto-configured priority traf fic must be supported by a PFC peer (as detected by DCBX).
A DCB input policy for PFC applied to an interface may become invalid if dot1p-queue mapping is reconfigured (refer to Create Input Policy Maps). This situation occurs when the new dot1p-queue assignment exceeds the maximum number (2) of lossless queues supported globally on the switch. In this case, all PFC configurations received from PFC-enabled peers are removed and re-synchronized with the peer devices.
FTOS does not support MACsec Bypass Capability (MBC).
enabled on all DCB egress port traffic.
is enabled on ingress port
60 | Data Center Bridging (DCB)
Page 75
How Enhanced Transmission Selection is Implemented
Enhanced transmission selection (ETS) provides a way to optimize bandwidth allocation to outbound
802.1p classes of converged Ethernet traffic. Different traffic types have different service needs. Using
ETS, groups within an 802.1p priority class are auto-configured to provide different treatment for traffic with different bandwidth, latency, and best-effort needs.
For example, storage traffic is sensitive to frame loss; interprocess communication (IPC) traffic is latency-sensitive. ETS allows different traffic types to coexist without interruption in the same converged link.
Note: The IEEE 802.1Qaz, CEE, and CIN versions of ETS are supported.
ETS is implemented on an Aggregator as follows:
Traffic in priority groups is assigned to strict-queue or WERR scheduling in an ETS output policy and is managed using the ETS bandwidth-assignment algorithm. FTOS de-qeues all frames of strict-priority traffic before servicing any other queues. A queue with strict-priority traffic can starve other queues in the same port.
ETS-assigned bandwidth allocation and scheduling apply only to data queues, not to control queues.
FTOS supports hierarchical scheduling on an interface. FTOS control traffic is redirected to control queues as higher priority traffic with strict priority scheduling. After control queues drain out, the remaining data traffic is scheduled to queues according to the bandwidth and scheduler configuration in the ETS output policy . The available bandwidth calculated by the ETS algorithm is equal to the link bandwidth after scheduling non-ETS higher-priority traffic.
By default, equal bandwidth is assigned to each port queue and each dot1p priority in a priority group.
By default, equal bandwidth is assigned to each priority group in the ETS output policy applied to an egress port. The sum of auto-configured bandwidth allocation to dot1p priority traffic in all ETS priority groups is 100%.
dot1p priority traffic on the switch is scheduled according to the default dot1p-queue mapping. dot1p priorities within the same queue should have the same traffic properties and scheduling method.
A priority group consists of 802.1p priority values that are grouped together for similar bandwidth allocation and scheduling, and that share the same latency and loss requirements. All 802.1p priorities mapped to the same queue should be in the same priority group.
By default:
— All 802.1p priorities are grouped in priority group 0. — 100% of the port bandwidth is assigned to priority group 0. The complete bandwidth is
equally assigned to each priority class so that each class has 12 to 13%.
The maximum number of priority groups supported in ETS output policies on an interface is equal
to the number of data queues (4) on the port. The 802.1p priorities in a priority group can map to multiple queues.
A DCB output policy is created to associate a priority group with an ETS output policy with scheduling and bandwidth configuration, and applied on egress ports.
The ETS configuration associated with 802.1p priority traffic in a DCB output policy is used in
DCBX negotiation with ETS peers.
Data Center Bridging (DCB) | 61
Page 76
When an ETS output policy is applied to an interface, ETS-configured scheduling and bandwidth
allocation take precedence over any auto-configured settings in the QoS output policies.
ETS is enabled by default with the default ETS configuration applied (all dot1p priorities in the
same group with equal bandwidth allocation).
ETS Operation with DCBX
In DCBX negotiation with peer ETS devices, ETS configuration is handled as follows:
ETS TLVs are supported in DCBX versions CIN, CEE, and IEEE2.5.
ETS operational parameters are determined by the DCBX port-role configurations.
www.dell.com | support.dell.com
ETS configurations received from TLVs from a peer are validated.
In case of a hardware limitation or TLV error:
DCBX operation on an ETS port goes down.
New ETS configurations are ignored and existing ETS configurations are reset to the previously
configured ETS output policy on the port or to the default ETS settings if no ETS output policy was previously applied.
ETS operates with legacy DCBX versions as follows:
In the CEE version, the priority group/traffic class group (TCG) ID 15 represents a non-ETS
priority group. Any priority group configured with a scheduler type is treated as a strict-priority group and is given the priority-group (TCG) ID 15.
The CIN version supports two types of strict-priority scheduling:
— Group strict priority: Allows a single priority flow in a priority group to increase its
bandwidth usage to the bandwidth total of the priority group. A single flow in a group can use all the bandwidth allocated to the group.
— Link strict priority: Allows a flow in any priority group to increase to the maximum link
bandwidth.
CIN supports only the default dot1p priority-queue assignment in a priority group.
Bandwidth Allocation for DCBX CIN
After an ETS output policy is applied to an interface, if the DCBX version used in your data center network is CIN, a QoS output policy is automatically configured to overwrite the default CIN bandwidth allocation. This default setting divides the bandwidth allocated to each port queue equally between the dot1p priority traffic assigned to the queue.
62 | Data Center Bridging (DCB)
Page 77
DCB Policies in a Switch Stack
A DCB input policy with PFC and ETS configuration is applied to all stacked ports in a switch stack or on a stacked switch.
DCBX Operation
The data center bridging exchange protocol (DCBX) is used by DCB devices to exchange configuration information with directly connected peers using the link layer discovery protocol (LLDP) protocol. DCBX can detect the misconfiguration of a peer DCB device, and optionally, configure peer DCB devices with DCB feature settings to ensure consistent operation in a data center network.
DCBX is a prerequisite for using DCB features, such as priority-based flow control (PFC) and enhanced traffic selection (ETS), to exchange link-level configurations in a converged Ethernet environment. DCBX is also deployed in topologies that support lossless operation for FCoE or iSCSI traffic. In these scenarios, all network devices are DCBX-enabled (DCBX is enabled end-to-end).
The following versions of DCBX are supported on an Aggregator: CIN, CEE, and IEEE2.5.
DCBX requires the LLDP to be enabled on all DCB devices.
DCBX Operation
DCBX performs the following operations:
Discovers DCB configuration (such as PFC and ETS) in a peer device.
Detects DCB misconfiguration in a peer device; that is, when DCB features are not compatibly configured on a peer device and the local switch. Misconfiguration detection is feature-specific because some DCB features support asymmetric configuration.
Reconfigures a peer device with the DCB configuration from its configuration source if the peer device is willing to accept configuration.
Accepts the DCB configuration from a peer if a DCBX port is in “willing” mode to accept a peer’s DCB settings and then internally propagates the received DCB configuration to its peer ports.
Data Center Bridging (DCB) | 63
Page 78
DCBX Port Roles
The following DCBX port roles are auto-configured on an Aggregator to propagate DCB configurations learned from peer DCBX devices internally to other switch ports:
Auto-upstream: The port advertises its own configuration to DCBX peers and receives its configuration from DCBX peers (ToR or FCF device). The port also propagates its configuration to other ports on the switch.
The first auto-upstream that is capable of receiving a peer configuration is elected as the configuration source. The elected configuration source then internally propagates the configuration to auto-down­stream ports. A port that receives an internally propagated configuration overwrites its local configura­tion with the new parameter values.
www.dell.com | support.dell.com
When an auto-upstream port (besides the configuration source) receives and overwrites its configura­tion with internally propagated information, one of the following actions is taken:
If the peer configuration received is compatible with the internally propagated port configuration,
the link with the DCBX peer is enabled.
If the received peer configuration is not compatible with the currently configured port
configuration, the link with the DCBX peer port is disabled and a syslog message for an incompatible configuration is generated. The network administrator must then reconfigure the peer device so that it advertises a compatible DCB configuration.
The configuration received from a DCBX peer or from an internally propagated configuration is not stored in the switch’s running configuration.
On a DCBX port in an auto-upstream role, the PFC and application priority TLVs are enabled. ETS recommend TLVs are disabled and ETS configuration TLVs are enabled.
Auto-downstream - The port advertises its own configuration to DCBX peers but is not willing to receive remote peer configuration. The port always accepts internally propagated configurations from a configuration source. An auto-downstream port that receives an internally propagated configuration overwrites its local configuration with the new parameter values.
When an auto-downstream port receives and overwrites its configuration with internally propagated information, one of the following actions is taken:
If the peer configuration received is compatible with the internally propagated port configuration,
the link with the DCBX peer is enabled.
If the received peer configuration is not compatible with the currently configured port
configuration, the link with the DCBX peer port is disabled and a syslog message for an incompatible configuration is generated. The network administrator must then reconfigure the peer
device so that it advertises a compatible DCB configuration. The internally propagated configuration is not stored in the switch's running configuration. On a DCBX port in an auto-downstream role, all PFC, application priority , ETS recommend, and ETS
configuration TLVs are enabled.
Default DCBX port role: Uplink ports are auto-configured in an auto-upstream role. Server-facing ports are auto-configured in an auto-downstream role.
64 | Data Center Bridging (DCB)
Page 79
Note: On a DCBX port, application priority TLV advertisements are handled as follows:
- The application priority TLV is transmitted only if the priorities in the advertisement match the configured PFC priorities on the port.
- On auto-upstream and auto-downstream ports:
- If a configuration source is elected, the ports send an application priority TLV based on the application priority TLV received on the configuration-source port. When an application priority TLV is received on the configuration-source port, the auto-upstream and auto-downstream ports use the internally propagated PFC priorities to match against the received application priority. Otherwise, these ports use their locally configured PFC priorities in application priority TLVs.
- If no configuration source is configured, auto-upstream and auto-downstream ports check to see that the locally configured PFC priorities match the priorities in a received application priority TLV.
- On manual ports: An application priority TLV is advertised only if the priorities in the TLV match the PFC priorities configured on the port.
DCB Configuration Exchange
On an Aggregator, the DCBX protocol supports the exchange and propagation of configuration information for the following DCB features.
Enhanced transmission selection (ETS)
Priority-based flow control (PFC)
DCBX uses the following methods to exchange DCB configuration parameters:
Asymmetric: DCB parameters are exchanged between a DCBX-enabled port and a peer port without requiring that a peer port and the local port use the same configured values for the configurations to be compatible. For example, ETS uses an asymmetric exchange of parameters between DCBX peers.
Symmetric: DCB parameters are exchanged between a DCBX-enabled port and a peer port with the requirement that each configured parameter value is the same for the configurations to be compatible. For example, PFC uses an symmetric exchange of parameters between DCBX peers.
Data Center Bridging (DCB) | 65
Page 80
Configuration Source Election
When an auto-upstream or auto-downstream port receives a DCB configuration from a peer, the port first checks to see if there is an active configuration source on the switch.
If a configuration source already exists, the received peer configuration is checked against the local port configuration. If the received configuration is compatible, the DCBX marks the port as DCBX-enabled. If the configuration received from the peer is not compatible, a warning message is logged and the DCBX frame error counter is incremented. Although DCBX is operationally disabled, the port keeps the peer link up and continues to exchange DCBX packets. If a compatible peer configuration is later received, DCBX is enabled on the port.
If there is no configuration source, a port may elect itself as the configuration source. A port may
www.dell.com | support.dell.com
become the configuration source if the following conditions exist:
No other port is the configuration source.
The port role is auto-upstream.
The port is enabled with link up and DCBX enabled.
The port has performed a DCBX exchange with a DCBX peer.
The switch is capable of supporting the received DCB configuration values through either a
symmetric or asymmetric parameter exchange.
A newly elected configuration source propagates configuration changes received from a peer to the other auto-configuration ports. Ports receiving auto-configuration information from the configuration source ignore their current settings and use the configuration source information.
Propagation of DCB Information
When an auto-upstream or auto-downstream port receives a DCB configuration from a peer, the port acts as a DCBX client and checks if a DCBX configuration source exists on the switch.
If a configuration source is found, the received configuration is checked against the currently configured values that are internally propagated by the configuration source. If the local configuration is compatible with the received configuration, the port is enabled for DCBX operation and synchronization.
If the configuration received from the peer is not compatible with the internally propagated configuration used by the configuration source, the port is disabled as a client for DCBX operation and synchronization and a syslog error message is generated. The port keeps the peer link up and continues to exchange DCBX packets. If a compatible configuration is later received from the peer, the port is enabled for DCBX operation.
Note: When a configuration source is elected, all auto-upstream ports other than the configuration source are marked as willing disabled. The internally propagated DCB configuration is refreshed on all auto-configuration ports and each port may begin configuration negotiation with a DCBX peer again.
66 | Data Center Bridging (DCB)
Page 81
Auto-Detection of the DCBX Version
The Aggregator operates in auto-detection mode so that a DCBX port automatically detects the DCBX version on a peer port. Legacy CIN and CEE versions are supported in addition to the standard IEEE version 2.5 DCBX.
A DCBX port detects a peer version after receiving a valid frame for that version. The local DCBX port reconfigures to operate with the peer version and maintains the peer version on the link until one of the following conditions occurs:
The switch reboots.
The link is reset (goes down and up).
The peer times out.
Multiple peers are detected on the link.
DCBX operations on a port are performed according to the auto-configured DCBX version, including fast and slow transmit timers and message formats. If a DCBX frame with a different version is received, a syslog message is generated and the peer version is recorded in the peer status table. If the frame cannot be processed, it is discarded and the discard counter is incremented.
DCBX Example
Figure 6-7 shows how DCBX is used on an Aggregator installed in a PowerEdge M1000e chassis in which
servers are also installed.
The external 40GbE ports on the base module (ports 33 and 37) of two switches are used for uplinks configured as DCBX auto-upstream ports. The Aggregator is connected to third-party, top-of-rack (ToR) switches through 40GbE uplinks. The ToR switches are part of a Fibre Channel storage network.
The internal ports (ports 1-32) connected to the 10GbE backplane are configured as auto-downstream ports.
On the Aggregator, PFC and ETS use DCBX to exchange link-level configuration with DCBX peer devices.
Data Center Bridging (DCB) | 67
Page 82
Figure 6-7. DCBX Sample Topology
www.dell.com | support.dell.com
DCBX Prerequisites and Restrictions
DCBX requires LLDP in both send (TX) and receive (RX) mode to be enabled on a port interface. If multiple DCBX peer ports are detected on a local DCBX interface, LLDP is shut down.
The CIN version of DCBX supports only PFC, ETS, and FCOE; it does not support iSCSI, backward congestion management (BCN), logical link down (LLD), and network interface virtualization (NIV).
68 | Data Center Bridging (DCB)
Page 83
DCBX Error Messages
An error in DCBX operation is displayed using the following syslog messages:
LLDP_MULTIPLE_PEER_DETECTED: DCBX is operationally disabled after detecting more than one DCBX peer on the port interface.
LLDP_PEER_AGE_OUT: DCBX is disabled as a result of LLDP timing out on a DCBX peer interface.
DSM_DCBX_PEER_VERSION_CONFLICT: A local port expected to receive the IEEE, CIN, or CEE version in a DCBX TLV from a remote peer but received a different, conflicting DCBX version.
DSM_DCBX_PFC_PARAMETERS_MATCH and DSM_DCBX_PFC_PARAMETERS_MISMATCH: A local DCBX port received a compatible (match) or incompatible (mismatch) PFC configuration from a peer.
DSM_DCBX_ETS_PARAMETERS_MATCH and DSM_DCBX_ETS_PARAMETERS_MISMATCH: A local DCBX port received a compatible (match) or incompatible (mismatch) ETS configuration from a peer.
LLDP_UNRECOGNISED_DCBX_TLV_RECEIVED: A local DCBX port received an unrecognized DCBX TLV from a peer.
Debugging DCBX on an Interface
To enabled DCBX debug traces for all or a specific control path, use the following command:
Task Command Command Mode
Enable DCBX debugging, where:
all: Enables all DCBX debugging operations.
auto-detect-timer: Enables traces for DCBX
debug dcbx {all | auto-detect-timer | config-exchng | fail | mgmt | resource | sem | tlv}
EXEC PRIVILEGE
auto-detect timers.
config-exchng: Enables traces for DCBX configuration exchanges.
fail: Enables traces for DCBX failures.
mgmt: Enables traces for DCBX management frames.
resource: Enables traces for DCBX system resource frames.
sem: Enables traces for the DCBX state machine.
tlv: Enables traces for DCBX TLVs.
Data Center Bridging (DCB) | 69
Page 84
Verifying DCB Configuration
Use the show commands in Table 6-2 to display DCB configurations and statistics.
Table 6-2. Displaying DCB Configurations
Command Output
show dcb [stack-unit unit-number] (Figure 6-8) Displays data center bridging status, number of PFC-enabled ports, and
number of PFC-enabled queues. On the master switch in a stack, you can specify a stack-unit number. Valid values: 0 to 5.
show interface port-type slot/port pfc statistics (Figure 6-9)
www.dell.com | support.dell.com
show interface port-type slot/port pfc {summary | detail} (Figure 6-10)
show interface port-type slot/port ets {summary | detail} (Figure 6-11 and Figure 6-12)
Figure 6-8. show dcb Command Example
Displays counters for the PFC frames received and transmitted (by dot1p priority class) on an interface.
Displays the PFC configuration applied to ingress traffic on an interface, including priorities and link delay. T o clear PFC TLV counters on all ports or a specified port, use the clear pfc
counters {stack-unit
unit-number | tengigabitethernet slot/port} command.
Displays the ETS configuration applied to egress traffic on an interface, including priority groups with priorities and bandwidth allocation. To clear ETS TLV counters on all ports or a specified port, enter the clear
ets counters stack-unit
unit-number command.
FTOS# show dcb stack-unit 0 port-set 0 DCB Status : Enabled PFC Port Count : 56 (current), 56 (configured) PFC Queue Count : 2 (current), 2 (configured)
Figure 6-9. show interface pfc statistics Command Example
FTOS#show interfaces tengigabitethernet 0/3 pfc statistics Interface TenGigabitEthernet 0/3
Priority Rx XOFF Frames Rx Total Frames Tx Total Frames
------------------------------------------------------------------------------­0 0 0 0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0
70 | Data Center Bridging (DCB)
Page 85
Figure 6-10. show interfaces pfc summary Command Example
FTOS# show interfaces tengigabitethernet 0/49 pfc summary Interface TenGigabitEthernet 0/49 Admin mode is on Admin is enabled Remote is enabled, Priority list is 4 Remote Willing Status is enabled Local is enabled Oper status is Recommended PFC DCBX Oper status is Up State Machine Type is Feature TLV Tx Status is enabled PFC Link Delay 45556 pause quantams Application Priority TLV Parameters :
-------------------------------------­ FCOE TLV Tx Status is disabled ISCSI TLV Tx Status is disabled Local FCOE PriorityMap is 0x8 Local ISCSI PriorityMap is 0x10 Remote FCOE PriorityMap is 0x8 Remote ISCSI PriorityMap is 0x8
FTOS# show interfaces tengigabitethernet 0/49 pfc detail Interface TenGigabitEthernet 0/49 Admin mode is on Admin is enabled Remote is enabled Remote Willing Status is enabled Local is enabled Oper status is recommended PFC DCBX Oper status is Up State Machine Type is Feature TLV Tx Status is enabled PFC Link Delay 45556 pause quanta Application Priority TLV Parameters :
-------------------------------------­ FCOE TLV Tx Status is disabled ISCSI TLV Tx Status is disabled Local FCOE PriorityMap is 0x8 Local ISCSI PriorityMap is 0x10 Remote FCOE PriorityMap is 0x8 Remote ISCSI PriorityMap is 0x8
0 Input TLV pkts, 1 Output TLV pkts, 0 Error pkts, 0 Pause Tx pkts, 0 Pause Rx pkts
Table 6-3. show interface pfc summary Command Description
Field Description
Interface Interface type with stack-unit and port number.
Admin mode is on Admin is enabled
PFC Admin mode is on or off with a list of the configured PFC priorities. When PFC admin mode is on, PFC advertisements are enabled to be sent and received from peers; received PFC configuration takes effect. The admin operational status for a DCBX exchange of PFC configuration is enabled or disabled.
Data Center Bridging (DCB) | 71
Page 86
Table 6-3. show interface pfc summary Command Description
Field Description
Remote is enabled, Priority list Remote Willing Status is enabled
Local is enabled DCBX operational status (enabled or disabled) with a list of the configured
Operational status (local port) Port state for current operational PFC configuration:
www.dell.com | support.dell.com
PFC DCBX Oper status Operational status for exchange of PFC configuration on local port: match
State Machine Type Type of state machine used for DCBX exchanges of PFC parameters:
TLV Tx Status Status of PFC TLV advertisements: enabled or disabled. PFC Link Delay Link delay (in quanta) used to pause specified priority traffic.
Application Priority TLV:
FCOE TLV Tx Status
Operational status (enabled or disabled) of peer device for DCBX exchange of PFC configuration with a list of the configured PFC priorities. Willing status of peer device for DCBX exchange (Willing bit received in PFC TLV): enabled or disabled.
PFC priorities.
Init: Local PFC configuration parameters were exchanged with peer. Recommend: Remote PFC configuration parameters were received from peer. Internally propagated: PFC configuration parameters were received from configuration source.
(up) or mismatch (down).
Feature - for legacy DCBX versions; Symmetric - for an IEEE version.
Status of FCoE advertisements in application priority TLVs from local DCBX port: enabled or disabled.
Application Priority TLV:
ISCSI TLV Tx Status
Application Priority TLV:
Local FCOE Priority Map
Application Priority TLV:
Local ISCSI Priority Map
Application Priority TLV:
Remote FCOE Priority Map
Application Priority TLV:
Remote ISCSI Priority Map PFC TLV Statistics:
Input TLV pkts PFC TLV Statistics:
Output TLV pkts PFC TLV Statistics:
Error pkts PFC TLV Statistics:
Pause Tx pkts PFC TLV Statistics:
Pause Rx pkts
Status of ISCSI advertisements in application priority TLVs from local DCBX port: enabled or disabled.
Priority bitmap used by local DCBX port in FCoE advertisements in application priority TLVs.
Priority bitmap used by local DCBX port in ISCSI advertisements in application priority TLVs.
Priority bitmap received from the remote DCBX port in FCoE advertisements in application priority TLVs.
Priority bitmap received from the remote DCBX port in iSCSI advertisements in application priority TLVs.
Number of PFC TLVs received.
Number of PFC TLVs transmitted.
Number of PFC error packets received.
Number of PFC pause frames transmitted.
Number of PFC pause frames received
72 | Data Center Bridging (DCB)
Page 87
Figure 6-11. show interface ets summary Command Example
FTOS(conf)# show interfaces tengigabitethernet 0/0 ets summary Interface TenGigabitEthernet 0/0 Max Supported TC Groups is 4 Number of Traffic Classes is 8 Admin mode is on Admin Parameters:
-----------------­Admin is enabled TC-grp Priority# Bandwidth TSA 0 0,1,2,3,4,5,6,7 100% ETS 1 0% ETS 2 0% ETS 3 0% ETS 4 0% ETS 5 0% ETS 6 0% ETS 7 0% ETS Priority# Bandwidth TSA 0 13% ETS 1 13% ETS 2 13% ETS 3 13% ETS 4 12% ETS 5 12% ETS 6 12% ETS 7 12% ETS Remote Parameters:
------------------­Remote is disabled Local Parameters:
-----------------­Local is enabled TC-grp Priority# Bandwidth TSA 0 0,1,2,3,4,5,6,7 100% ETS 1 0% ETS 2 0% ETS 3 0% ETS 4 0% ETS 5 0% ETS 6 0% ETS 7 0% ETS
Priority# Bandwidth TSA 0 13% ETS 1 13% ETS 2 13% ETS 3 13% ETS 4 12% ETS 5 12% ETS 6 12% ETS 7 12% ETS Oper status is init Conf TLV Tx Status is disabled Traffic Class TLV Tx Status is disabled
Data Center Bridging (DCB) | 73
Page 88
Figure 6-12. show interface ets detail Command Example
FTOS# show interfaces tengigabitethernet 0/34 ets detail Interface TenGigabitEthernet 0/34 Max Supported PG is 4 Number of Traffic Classes is 8 Admin mode is on
Admin Parameters :
-----------------­Admin is enabled
PG-grp Priority# Bandwidth TSA
-----------------------------------------------­0 0,1,2,3,4,5,6,7 100% ETS 1 - -
www.dell.com | support.dell.com
2 - ­3 - ­4 - ­5 - ­6 - ­7 - -
Remote Parameters :
------------------­Remote is disabled
Local Parameters :
-----------------­Local is enabled
PG-grp Priority# Bandwidth TSA
-----------------------------------------------­0 0,1,2,3,4,5,6,7 100% ETS 1 - ­2 - ­3 - ­4 - ­5 - ­6 - ­7 - -
Oper status is init ETS DCBX Oper status is Down State Machine Type is Asymmetric Conf TLV Tx Status is enabled Reco TLV Tx Status is enabled
0 Input Conf TLV Pkts, 0 Output Conf TLV Pkts, 0 Error Conf TLV Pkts 0 Input Reco TLV Pkts, 0 Output Reco TLV Pkts, 0 Error Reco TLV Pkts
Table 6-4. show interface ets detail Command Description
Field Description
Interface Interface type with stack-unit and port number. Max Supported TC Group Maximum number of priority groups supported. Number of Traffic Classes Number of 802.1p priorities currently configured.
74 | Data Center Bridging (DCB)
Page 89
Table 6-4. show interface ets detail Command Description
Field Description
Admin mode ETS mode: on or off.
When on, the scheduling and bandwidth allocation configured in an ETS output policy or received in a DCBX TLV from a peer can take effect on an interface.
Admin Parameters ETS configuration on local port, including priority groups, assigned dot1p
priorities, and bandwidth allocation.
Remote Parameters ETS configuration on remote peer port, including Admin mode (enabled if a
valid TLV was received or disabled), priority groups, assigned dot1p priorities, and bandwidth allocation. If the ETS Admin mode is enabled on the remote port for DCBX exchange, the Willing bit received in ETS TLVs from the remote peer is included.
Local Parameters ETS configuration on local port, including Admin mode (enabled when a
valid TLV is received from a peer), priority groups, assigned dot1p priorities, and bandwidth allocation.
Operational status (local port) Port state for current operational ETS configuration:
Init: Local ETS configuration parameters were exchanged with peer. Recommend: Remote ETS configuration parameters were received from peer. Internally propagated: ETS configuration parameters were received from
configuration source. ETS DCBX Oper status Operational status of ETS configuration on local port: match or mismatch. State Machine Type Type of state machine used for DCBX exchanges of ETS parameters:
Feature - for legacy DCBX versions; Asymmetric - for an IEEE version. Conf TLV Tx Status Status of ETS Configuration TLV advertisements: enabled or disabled. Reco TLV Tx Status Status of ETS Recommendation TLV advertisements: enabled or disabled. Input Conf TLV pkts
Output Conf TLV pkts
Number of ETS Configuration TLVs received and transmitted, and number of
ETS Error Configuration TLVs received. Error Conf TLV pkts
Input Reco TLV pkts Output Reco TLV pkts
Number of ETS Recommendation TLVs received and transmitted, and
number of ETS Error Recommendation TLVs received. Error Reco TLV pkts
Data Center Bridging (DCB) | 75
Page 90
Figure 6-13. show stack-unit all stack-ports all pfc details Command Example
FTOS# show stack-unit all stack-ports all pfc details
stack unit 0 stack-port all Admin mode is On Admin is enabled, Priority list is 4-5 Local is enabled, Priority list is 4-5 Link Delay 45556 pause quantum 0 Pause Tx pkts, 0 Pause Rx pkts
stack unit 1 stack-port all Admin mode is On Admin is enabled, Priority list is 4-5 Local is enabled, Priority list is 4-5 Link Delay 45556 pause quantum 0 Pause Tx pkts, 0 Pause Rx pkts
www.dell.com | support.dell.com
Figure 6-14. show stack-unit all stack-ports all ets details Command Example
FTOS# show stack-unit all stack-ports all ets details
Stack unit 0 stack port all Max Supported TC Groups is 4 Number of Traffic Classes is 1 Admin mode is on
Admin Parameters:
-------------------­Admin is enabled TC-grp Priority# Bandwidth TSA
-----------------------------------------------­0 0,1,2,3,4,5,6,7 100% ETS 1 - ­2 - ­3 - ­4 - ­5 - ­6 - ­7 - ­8 - -
Stack unit 1 stack port all Max Supported TC Groups is 4 Number of Traffic Classes is 1 Admin mode is on Admin Parameters:
-------------------­Admin is enabled TC-grp Priority# Bandwidth TSA
-----------------------------------------------­0 0,1,2,3,4,5,6,7 100% ETS 1 - ­2 - ­3 - ­4 - ­5 - ­6 - ­7 - ­8 - -
76 | Data Center Bridging (DCB)
Page 91
Figure 6-15. show interface dcbx detail Command Example
FTOS# show interface tengigabitethernet 0/49 dcbx detail FTOS# show interface te 0/49 dcbx detail
E-ETS Configuration TLV enabled e-ETS Configuration TLV disabled R-ETS Recommendation TLV enabled r-ETS Recommendation TLV disabled P-PFC Configuration TLV enabled p-PFC Configuration TLV disabled F-Application priority for FCOE enabled f-Application Priority for FCOE disabled I-Application priority for iSCSI enabled i-Application Priority for iSCSI disabled
------------------------------------------------------------------------------------------
Interface TenGigabitEthernet 0/49 Remote Mac Address 00:00:00:00:00:11 Port Role is Auto-Upstream DCBX Operational Status is Enabled Is Configuration Source? TRUE
Local DCBX Compatibility mode is CEE Local DCBX Configured mode is CEE Peer Operating version is CEE Local DCBX TLVs Transmitted: ErPfi
Local DCBX Status
----------------­ DCBX Operational Version is 0 DCBX Max Version Supported is 0 Sequence Number: 2 Acknowledgment Number: 2 Protocol State: In-Sync
Peer DCBX Status:
---------------­ DCBX Operational Version is 0 DCBX Max Version Supported is 255 Sequence Number: 2 Acknowledgment Number: 2 Total DCBX Frames transmitted 27 Total DCBX Frames received 6 Total DCBX Frame errors 0 Total DCBX Frames unrecognized 0
Table 6-5. show interface dcbx detail Command Description
Field Description
Interface Interface type with chassis slot and port number. Port-Role Configured DCBX port role: auto-upstream or auto-downstream. DCBX Operational Status Operational status (enabled or disabled) used to elect a configuration source
and internally propagate a DCB configuration. The DCBX operational status
is the combination of PFC and ETS operational status. Configuration Source Specifies whether the port serves as the DCBX configuration source on the
switch: true (yes) or false (no). Local DCBX Compatibility
mode
DCBX version accepted in a DCB configuration as compatible. In
auto-detection mode, a port can only operate on a DCBX version supported on
the remote peer.
Data Center Bridging (DCB) | 77
Page 92
Table 6-5. show interface dcbx detail Command Description
Field Description
Local DCBX Configured mode DCBX version configured on the port: CEE, CIN, IEEE v2.5, or Auto (port
auto-configures to use the DCBX version received from a peer). Peer Operating version DCBX version that the peer uses to exchange DCB parameters. Local DCBX TLVs Transmitted Transmission status (enabled or disabled) of advertised DCB TLVs (see TLV
code at the top of the show command output). Local DCBX Status:
DCBX Operational Version
www.dell.com | support.dell.com
Local DCBX Status: DCBX Max Version Supported
Local DCBX Status: Sequence Number
Local DCBX Status:
Acknowledgment Number
Local DCBX Status: Protocol State
Peer DCBX Status: DCBX Operational Version
Peer DCBX Status: DCBX Max Version Supported
Peer DCBX Status: Sequence Number
Peer DCBX Status:
Acknowledgment Number Total DCBX Frames transmitted Number of DCBX frames sent from local port.
DCBX version advertised in Control TLVs.
Highest DCBX version supported in Control TLVs.
Sequence number transmitted in Control TLVs.
Acknowledgement number transmitted in Control TLVs
Current operational state of DCBX protocol: Waiting for ACK or IN-SYNC.
DCBX version advertised in Control TLVs received from peer device.
Highest DCBX version supported in Control TLVs received from peer device.
Sequence number transmitted in Control TLVs received from peer device.
Acknowledgement number transmitted in Control TLVs received from peer device.
Total DCBX Frames received Number of DCBX frames received from remote peer port. Total DCBX Frame errors Number of DCBX frames with errors received. Total DCBX Frames
unrecognized
78 | Data Center Bridging (DCB)
Number of unrecognizable DCBX frames received.
Page 93
Example: PFC and ETS Operation
This section contains examples of DCB input and output policies applied on an interface.
In the example shown in Figure 6-16 for an Aggregator:
Incoming SAN traffic is configured for priority-based flow control.
Outbound LAN, IPC, and SAN traffic is mapped into three ETS priority groups and configured for enhanced traffic selection (bandwidth allocation and scheduling).
One lossless queue is used.
Figure 6-16. Example: PFC and ETS Applied to LAN, IPC, and SAN Priority Traffic
dot1p priority 3
SAN priority 3
IPC priority 4
dot1p priority
0, 1, 2, 4, 5
Converged LAN, SAN, and IPC traffic
dot1p priority 0-7
Data Center Bridging (DCB) | 79
Page 94
QoS T raffic Classification: On the Aggregator, the service-class dynamic dot1p command has been used in Global Configuration mode to map ingress dot1p frames to the queues shown in Table 6-6. For more information, refer to QoS dot1p Traffic Classification and Queue Assignment.
Table 6-6. Example: dot1p-Queue Assignment
dot1p Value in Incoming Frame Queue Assignment
00 10 20
www.dell.com | support.dell.com
31 42 53 63 73
Lossless SAN traffic with dot1p priority 3 is assigned to queue 1. Other traffic types are assigned the
802.1p priorities shown in Table 6-7 and the bandwidth allocations shown in Table 6-8.
Table 6-7. Example: dot1p-priority class group Assignment
dot1p Value in Incoming Frame Priority Group Assignment
0 LAN 1 LAN 2 LAN 3 SAN 4 IPC 5 LAN 6 LAN 7 LAN
80 | Data Center Bridging (DCB)
Page 95
Table 6-8. Example: priority group-bandwidth Assignment
Priority Group Bandwidth Assignment
IPC 5% SAN 50% LAN 45%
Hierarchical Scheduling in ETS Output Policies
On an Aggregator, ETS supports up to three levels of hierarchical scheduling. For example, ETS output policies with the following configurations can be applied:
Priority group 1 assigns traffic to one priority queue with 20% of the link bandwidth and strict-priority scheduling.
Priority group 2 assigns traffic to one priority queue with 30% of the link bandwidth.
Priority group 3 assigns traffic to two priority queues with 50% of the link bandwidth and strict-priority scheduling.
In this example, ETS bandwidth allocation and scheduler behavior is as follows:
Unused bandwidth usage: Normally , if there is no traffic or unused bandwidth for a priority group, the bandwidth allocated to the group is distributed to the other priority groups according to the bandwidth percentage allocated to each group. However, when three priority groups with different bandwidth allocations are used on an interface:
If priority group 3 has free bandwidth, it is distributed as follows: 20% of the free bandwidth to
priority group 1 and 30% of the free bandwidth to priority group 2.
If priority group 1 or 2 has free bandwidth, (20 + 30)% of the free bandwidth is distributed to
priority group 3. Priority groups 1 and 2 retain whatever free bandwidth remains up to the (20+
30)%.
Strict-priority groups: If two priority groups have strict-priority scheduling, traffic assigned from the priority group with the higher priority-queue number is scheduled first. However, when three priority groups are used and two groups have strict-priority scheduling (such as groups 1 and 3 in the example), the strict priority group whose traffic is mapped to one queue takes precedence over the strict priority group whose traffic is mapped to two queues.
Therefore, in the example, scheduling traffic to priority group 1 (mapped to one strict-priority queue) takes precedence over scheduling traffic to priority group 3 (mapped to two strict-priority queues).
Data Center Bridging (DCB) | 81
Page 96
www.dell.com | support.dell.com
82 | Data Center Bridging (DCB)
Page 97
Skippy812
7
Dynamic Host Configuration Protocol (DHCP)
The Aggregator is auto-configured to operate as a DHCP client. The DHCP server, DHCP relay agent, and secure DHCP features are not supported.
DHCP Overview
Dynamic host configuration protocol (DHCP) is an application layer protocol that dynamically assigns IP addresses and other configuration parameters to network end-stations (hosts) based on configuration policies determined by network administrators. DHCP:
relieves network administrators of manually configuring hosts, which can be a tedious and error-prone process when hosts often join, leave, and change locations on the network.
reclaims IP addresses that are no longer in use to prevent address exhaustion.
DHCP is based on a client-server model. A host discovers the DHCP server and requests an IP address, and the server either leases or permanently assigns one. There are three types of devices that are involved in DHCP negotiation:
DHCP Server—a network device offering configuration parameters to the client.
DHCP Client—a network device requesting configuration parameters from the server.
Relay agent—an intermediary network device that passes DHCP messages between the client and server when the server is not on the same subnet as the host.
Note: The DHCP server and relay agent features are not supported on an Aggregator.
Dynamic Host Configuration Protocol (DHCP) | 83
Page 98
DHCP Packet Format and Options
DHCP uses the user datagram protocol (UDP) as its transport protocol. The server listens on port 67 and transmits to port 68; the client listens on port 68 and transmits to port 67. The configuration parameters are carried as options in the DHCP packet in type, length, value (TLV) format; many options are specified in RFC 2132. To limit the number parameters that servers must provide, hosts specify the parameters that they require, and the server sends only those; some common options are given in Table 7-1.
Figure 7-1. DHCP Packet Format
htype
op
hlen
hops
xid
flags
secs
ciaddr
yiaddr
siaddr
giaddr
chaddr sname
options
file
www.dell.com | support.dell.com
Code
Length
Table 7-1. Common DHCP Options
Option Code Description
Subnet Mask 1 Specifies the clients subnet mask. Router 3 Specifies the router IP addresses that may serve as the client’s default
gateway. Domain Name Server 6 Specifies the DNS servers that are available to the client. Domain Name 15 Specifies the domain name that client should use when resolving hostnames
via DNS. IP Address Lease Time 51 Specifies the amount of time that the client is allowed to use an assigned IP
address. DHCP Message Type 53 1: DHCPDISCOVER
2: DHCPOFFER
3: DHCPREQUEST
4: DHCPDECLINE
5: DHCPACK
6: DHCPNACK
7: DHCPRELEASE
8: DHCPINFORM Parameter Request List 55 Clients use this option to tell the server which parameters it requires. It is a
series of octets where each octet is DHCP option code. Renewal Time 58 Specifies the amount of time after the IP address is granted that the client
attempts to renew its lease with the original server. Rebinding Time 59 Specifies the amount of time after the IP address is granted that the client
attempts to renew its lease with any server, if the original server does not
respond. End 255 Signals the last option in the DHCP packet.
Value
84 | Dynamic Host Configuration Protocol (DHCP)
Page 99
Assigning an IP Address Using DHCP
er
When a client joins a network:
1. The client initially broadcasts a DHCPDISCOVER message on the subnet to discover available
DHCP servers. This message includes the parameters that the client requires and might include suggested values for those parameters.
2. Servers unicast or broadcast a DHCPOFFER message in response to the DHCPDISCOVER that
offers to the client values for the requested parameters. Multiple servers might respond to a single DHCPDISCOVER; the client might wait a period of time and then act on the most preferred offer.
3. The client broadcasts a DHCPREQUEST message in response to the offer, requesting the offered
values.
4. After receiving a DHCPREQUEST, the server binds the clients’ unique identifier (the hardware address plus IP address) to the accepted configuration parameters and stores the data in a database called a binding table. The server then broadcasts a DHCPACK message, which signals to the client that it may begin using the assigned parameters.
There are additional messages that are used in case the DHCP negotiation deviates from the process described above and shown in Figure 7-2.
DHCPDECLINE—A client sends this message to the server in response to a DHCPACK if the configuration parameters are unacceptable, for example, if the offered address is already in use. In this case, the client starts the configuration process over by sending a DHCPDISCOVER.
DHCPINFORM—A client uses this message to request configuration parameters when it assigned an IP address manually rather than with DHCP. The server responds by unicast.
DHCPNAK—A server sends this message to the client if it is not able to fulfill a DHCPREQUEST, for example, if the requested address is already in use. In this case, the client starts the configuration process over by sending a DHCPDISCOVER.
DHCPRELEASE—A DHCP client sends this message when it is stopped forcefully to return its IP address to the server.
Figure 7-2. Assigning Network Parameters using DHCP
Client
1. DHCPDISCOVER
3. DHCPREQUEST
Serv
2. DHCPOFFER
4. DHCPACK
Dynamic Host Configuration Protocol (DHCP) | 85
Page 100
FTOS Behavior: DHCP is implemented in FTOS based on RFC 2131 and 3046.
DHCP Client
An Aggregator is auto-configured to operate as a DHCP client. The DHCP client functionality is enabled
only on the default VLAN and the management interface.
A DHCP client is a network device that requests an IP address and configuration parameters from a DHCP
www.dell.com | support.dell.com
server. On an Aggregator, the DHCP client functionality is implemented as follows:
The public out-of-band management (OOB) interface and default VLAN 1 are configured, by default, as a DHCP client to acquire a dynamic IP address from a DHCP server.
You can override the DHCP-assigned address on the OOB management interface by manually config-
uring an IP address using the CLI or CMC interface. If no user-configured IP address exists for the OOB interface exists and if the OOB IP address is not in the startup configuration, the Aggregator will automatically obtain it using DHCP.
You can also manually configure an IP address for the VLAN 1 default management interface using
the CLI. If no user-configured IP address exists for the default VLAN management interface exists and if the default VLAN IP address is not in the startup configuration, the Aggregator will automatically obtain it using DHCP.
The default VLAN 1 with all ports configured as members is the only L3 interface on the Aggregator. When the default management VLAN has a DHCP-assigned address and you reconfigure the default VLAN ID number, the Aggregator:
Sends a DHCP release to the DHCP server to release the IP address.
Sends a DHCP request to obtain a new IP address. The IP address assigned by the DHCP server is
used for the new default management VLAN.
86 | Dynamic Host Configuration Protocol (DHCP)
Loading...