AO4601
Complementary Enhancement Mode Field Effect Transistor
General Description
Features
n-channel p-channel
The AO4601 uses advanced trench technology
MOSFETs to provide excellent R
DS(ON)
and low
gate charge. The complementary MOSFETs may
be used to form a level shifted high side switch,
and for a host of other applications. Standard
Product AO4601 is Pb-free (meets ROHS & Sony
259 specifications). AO4601L is a Green Product
(V) = 30V -30V
V
DS
I
= 4.7A (VGS=10V) -8A (VGS = -20V)
D
R
DS(ON) RDS(ON)
< 55mΩ (VGS=10V) < 18mΩ (V
< 70mΩ (V
< 110mΩ (V
=4.5V) < 19mΩ (V
GS
= 2.5V)
GS
ordering option. AO4601 and AO4601L are
D2
8
1
S2
G2
S1
G1
2
3
4
D2
7
D2
6
D1
5
D1
G2
S2
SOIC-8
n-channel
Absolute Maximum Ratings T
ParameterMax n-channel
Drain-Source Voltage
Continuous Drain
Current
A
Pulsed Drain Current
TA=25°C
TA=70°C
B
T
=25°C
A
=70°CPower Dissipation
T
A
Junction and Storage Temperature Range
=25°C unless otherwise noted
A
SymbolMax p-channelUnits
V
DS
V
GS
I
D
I
DM
P
D
TJ, T
STG
30-30
±12Gate-Source Voltage
4.7
4
30
2
1.44
G1
p-channel
D1
S1
-55 to 150-55 to 150
±25
-8
-6.9
-50
2
1.44
= -20V)
GS
= -10V)
GS
V
V
A
W
°C
Thermal Characteristics: n-channel and p-channel
Parameter
Maximum Junction-to-Ambient
Maximum Junction-to-Ambient
Maximum Junction-to-Lead
C
Maximum Junction-to-Ambient
Maximum Junction-to-Ambient
Maximum Junction-to-Lead
C
A
A
A
A
t ≤ 10s
Steady-State
Steady-State
t ≤ 10s
Steady-State
Steady-State
Alpha & Omega Semiconductor, Ltd.
SymbolDeviceTypMax Units
R
θJA
R
θJL
R
θJA
R
θJL
n-ch5262.5 °C/W
n-ch78110°C/W
n-ch4860°C/W
p-ch5062.5 °C/W
p-ch73110°C/W
p-ch3140°C/W
Page 2
AO4601
n-channel MOSFET Electrical Characteristics (T
SymbolMinTypMaxUnits
ParameterConditions
=25°C unless otherwise noted)
J
STATIC PARAMETERS
BV
I
DSS
I
GSS
V
GS(th)
I
D(ON)
R
DS(ON)
g
FS
V
SD
I
S
DSS
Drain-Source Breakdown VoltageI
Zero Gate Voltage Drain Current
Gate-Body leakage currentV
Gate Threshold VoltageV
On state drain currentV
Static Drain-Source On-Resistance
Forward Transconductance
Diode Forward VoltageI
Maximum Body-Diode Continuous Current
=250µA, VGS=0V
D
V
=24V, VGS=0V
DS
=0V, VGS=±12V
DS
DS=VGS ID
=4.5V, VDS=5V
GS
V
=10V, ID=4A
GS
=4.5V, ID=3A
V
GS
=2.5V, ID=2A
V
GS
V
=5V, ID=4A
DS
=1A,VGS=0V
S
=250µA
=55°C
T
J
=125°C
T
J
30V
1
5
µA
100nA
0.611.4V
10A
4555
6680
5570
83110
mΩ
m
m
8S
0.81V
2.5A
Ω
Ω
DYNAMIC PARAMETERS
C
iss
C
oss
C
rss
R
g
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Gate resistance
V
=0V, VDS=15V, f=1MHz
GS
=0V, VDS=0V, f=1MHz
V
GS
390pF
54.5pF
41pF
3Ω
SWITCHING PARAMETERS
Q
Q
Q
t
D(on)
t
r
t
D(off)
t
f
t
rr
Q
g
gs
gd
Total Gate Charge
Gate Source Charge
Gate Drain Charge
V
=4.5V, VDS=15V, ID=4A
GS
Turn-On DelayTime
=10V, VDS=15V, RL=3.75Ω,
Turn-On Rise Time
Turn-Off DelayTime
V
GS
=6Ω
R
GEN
Turn-Off Fall Time
I
=4A, dI/dt=100A/µs
Body Diode Reverse Recovery Time
rr
Body Diode Reverse Recovery Charge
F
I
=4A, dI/dt=100A/µs
F
0.6nC
1.38nC
4.34nC
3.3ns
1ns
21.7ns
2.1ns
12
ns
6.3nC
A: The value of R
in any given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.
B: Repetitive rating, pulse width limited by junction temperature.
C. The R
θJA
D. The static characteristics in Figures 1 to 6 are obtained using 80 µs pulses, duty cycle 0.5% max.
E. These tests are performed with the device mounted on 1 in
curve provides a single pulse rating.
Rev 3 : Sept 2005
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. The value
θJA
is the sum of the thermal impedence from junction to lead R
2
FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. The SOA
and lead to ambient.
θJL
Page 3
AO4601
e
V
V
N-CHANNEL TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
15
10V
3V
12
4.5V
9
(A)
D
I
6
3
2.5V
VGS=2V
0
012345
V
(Volts)
DS
Fig 1: On-Region Characteristics
150
125
=2.5V
V
)
Ω
(m
DS(ON)
R
100
75
50
GS
VGS=4.5
10
8
VDS=5V
6
(A)
D
I
4
125°C
2
0
25°C
00.511.522.533.5
V
(Volts)
GS
Figure 2: Transfer Characteristics
1.8
1.6
VGS=4.5V
1.4
1.2
VGS=2.5V
VGS=10V
25
V
=10
0
0246810
I
(A)
D
Figure 3: On-Resistance vs. Drain Current and Gat
Voltage
200
)
Ω
(m
DS(ON)
R
150
100
50
25°C
ID=2A
125°C
0
0246810
V
(Volts)
GS
Figure 5: On-Resistance vs. Gate-Source Voltage
1
Normalized On-Resistance
0.8
0255075100125150175
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
1.0E+01
1.0E+00
1.0E-01
125°C
1.0E-02
(A)
S
I
1.0E-03
25°C
1.0E-04
1.0E-05
1.0E-06
0.00.20.40.60.81.01.2
V
(Volts)
SD
Figure 6: Body-Diode Characteristics
Alpha and Omega Semiconductor, Ltd.
Page 4
AO4601
ss
s
s10s
d
N-CHANNEL TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
5
VDS=15V
I
=4A
4
D
3
(Volts)
GS
2
V
1
0
012345
Q
(nC)
g
Figure 7: Gate-Charge Characteristics
T
100.0
10.0
(Amps)
D
I
1.0
T
R
DS(ON)
limite
J(Max)
=25°C
A
=150°C
10µs
100µs
1ms
10m
1
600
500
C
iss
400
300
200
Capacitance (pF)
100
C
oss
C
r
0
051015202530
(Volts)
V
DS
Figure 8: Capacitance Characteristics
20
T
J(Max)
T
=25°C
A
15
10
Power (W)
5
=150°C
0.1
0.1110100
V
(Volts)
DS
Figure 9: Maximum Forward Biased Safe
Operating Area (Note E)
10
D=Ton/T
T
J,PK=TA+PDM.ZθJA.RθJA
R
=62.5°C/W
θJA
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0
0.0010.010.11101001000
Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-to-
Ambient (Note E)
1
0.1
Normalized Transient
Thermal Resistance
JA
θ
Z
P
T
T
Single Pulse
0.01
0.000010.00010.0010.010.11101001000
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance
Diode Forward VoltageI
Maximum Body-Diode Continuous Current
=-250µA, VGS=0V
D
=-24V, VGS=0V
V
DS
=0V, VGS=±25V
DS
DS=VGS ID
=-10V, VDS=-5V
GS
V
=-10V, ID=-8A
GS
=-20V, ID=-8A
V
GS
=-4.5V, ID=-5A
V
GS
=-5V, ID=-8A
DS
=-1A,VGS=0V
S
=-250µA
=55°C
T
J
=125°C
T
J
-30V
-1
-5
µA
±100nA
-1.7-2.5-3V
40A
1619
20.525
1518
33
mΩ
m
m
1621S
-0.75-1V
-2.6A
Ω
Ω
DYNAMIC PARAMETERS
C
iss
C
oss
C
rss
R
g
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Gate resistanceV
V
=0V, VDS=-15V, f=1MHz
GS
=0V, VDS=0V, f=1MHz
GS
2076pF
503pF
302pF
2Ω
SWITCHING PARAMETERS
Q
g
Q
gs
Q
gd
t
D(on)
t
r
t
D(off)
t
f
t
rr
Q
rr
A: The value of R
in any given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.
B: Repetitive rating, pulse width limited by junction temperature.
C. The R
D. The static characteristics in Figures 1 to 6,12,14 are obtained using 80 µs pulses, duty cycle 0.5% max.
E. These tests are performed with the device mounted on 1 in
curve provides a single pulse rating.
Rev 3 : Sept 2005
Total Gate Charge
Gate Source Charge
Gate Drain Charge
Turn-On DelayTime
Turn-On Rise Time
Turn-Off DelayTime
Turn-Off Fall Time
Body Diode Reverse Recovery Time
Body Diode Reverse Recovery Charge
is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T
θJA
is the sum of the thermal impedence from junction to lead R
θJA
2
FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. The SOA
V
=-10V, VDS=-15V, ID=-8A
GS
V
=-10V, VDS=-15V, RL=1.8Ω,
GS
=3Ω
R
GEN
I
=-8A, dI/dt=100A/µs
F
=-8A, dI/dt=100A/µs
I
F
and lead to ambient.
θJL
39nC
8nC
11.4nC
12.7ns
7ns
25.2ns
12ns
32
ns
26nC
=25°C. The value
A
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Page 6
AO4601
e
V
P-CHANNEL TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
50
40
-10V
-8V
-6V
-5.5V
-5V
30
(A)
D
-I
20
10
-4.5V
VGS=-4V
0
012345
-V
(Volts)
DS
Fig 1: On-Region Characteristics
30
)
Ω
(m
DS(ON)
R
25
20
15
10
VGS=-6V
VGS=-10
5
0
0510152025
-I
(A)
D
Figure 3: On-Resistance vs. Drain Current and Gat
Voltage
25
VDS=-5V
20
15
(A)
D
-I
10
125°C
5
25°C
0
00.511.522.533.544.55
-V
(Volts)
GS
Figure 2: Transfer Characteristics
1.4
ID=-8A
1.3
VGS=-10V
1.2
1.1
VGS=-4.5V
1
Normalized On-Resistance
0.9
0.8
0255075100125150175
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
60
50
ID=-8A
40
)
Ω
(m
30
DS(ON)
R
20
125°C
25°C
10
0
246810
(Volts)
-V
GS
Figure 5: On-Resistance vs. Gate-Source Voltage
1.0E+01
1.0E+00
1.0E-01
1.0E-02
(A)
S
-I
1.0E-03
1.0E-04
1.0E-05
1.0E-06
125°C
25°C
0.00.20.40.60.81.01.2
-V
(Volts)
SD
Figure 6: Body-Diode Characteristics
Alpha and Omega Semiconductor, Ltd.
Page 7
AO4601
ss
0.1s1s
d
P-CHANNEL TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
10
VDS=-15V
I
=-8A
8
D
6
(Volts)
GS
4
-V
2
0
0510152025303540
-Q
(nC)
g
Figure 7: Gate-Charge Characteristics
100.0
T
=150°C
J(Max)
T
=25°C
A
R
DS(ON)
10.0
limite
(Amps)
D
-I
1.0
100µs
1ms
10ms
3000
2500
C
iss
2000
1500
C
oss
C
r
Capacitance (pF)
1000
500
0
051015202530
(Volts)
-V
DS
Figure 8: Capacitance Characteristics
40
T
J(Max)
T
=25°C10µs
A
30
20
Power (W)
10
=150°C
0.1
0.1110100
-V
(Volts)
DS
Figure 9: Maximum Forward Biased Safe
Operating Area (Note E)
10
D=Ton/T
T
J,PK=TA+PDM.ZθJA.RθJA
R
=62.5°C/W
θJA
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0
0.010.11101001000
Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-to-
Ambient (Note E)
1
0.1
Normalized Transient
Thermal Resistance
JA
θ
Z
P
T
T
Single Pulse
0.01
0.000010.00010.0010.010.11101001000
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance
Alpha & Omega Semiconductor, Ltd.
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.