De dietrich DD 3009 GLASS BROCHURE

Page 1
DD 3009 GLASS
EFFICIENCY
PROVED BY TIME
Page 2
EQUIPMENT, SYSTEMS, SERVICES
DD 3009 GLASS
Glass-lined steel is mandatory when service conditions of the process are particularly difficult. With the DD 3009 glass, De Dietrich® offers an excel­lent resistance to corrosion, abrasion, mechanical and thermal shocks.
To increase productivity or to succeed in new syntheses, the chemical indus­try continually extends the limits of its processes: higher temperatures, lower temperatures, higher pressures, higher concentrations. This trend is possible only if at the same time the chemical and mechanical resistances of the glass that protects vessels, tanks and parts follow these requirements.
This is the reason why De Dietrich® has always invested in research and deve­lopment of new glass formulas with greater capabilities. The result of our ongoing research enabled us to offer the DD 3009 glass. The formulation of this multipurpose glass gives the optimum properties of chemical resis­tance to acidic and alkaline mediums, of mechanical resistance to shocks and abrasion, of easy cleaning and anti-adhesion.
Across the world, all De Dietrich® plants apply the same quality of glass, the production of which is centralized in France. During the preparation of each batch of DD 3009 glass, numerous tests assure us a perfect and reproducible quality, suppressing any risk of production defect. Thanks to su ch rig orous contr ol, we can confidently state that, at De Dietrich®, “Quality” is an everyday occurrence.
Monitoring R&D and production of our own glass in for De Dietrich® an emblem of quality, of competence, of independence.
ONE GLASS WITH OPTIMUM QUALITY
DD 3009, ONE GLASS WITH OPTIMUM QUALITY FOR ALL PRODUCTS ALL OVER THE WORLD:
• HIGHLY CORROSIVE PROCESSES
• MULTIPURPOSE MATERIAL / VARIETY OF USES
• ADAPTED TO MENTS, CLEANING, CLEANLINESS, STERILIZATION
• IMPERVIOUS: NO CATALYTIC EFFECT, NO CONTAMINATION
• ANTI-ADHESIVE: POLYMERIZATION PROCESSES
cGMP REQUIRE-
ONE GLASS WITH
OPTIMUM QUALITY ALL
OVER THE WORLD
Page 3
CHEMICAL PROPERTIES
190
180
170
160
150
140
130
120
110
10 40 60
°C
20 30 50 70
HNO
3
Weight %
0.2 mm/year
0.1 mm/year
210
200
190
180
170
160
150
140
130
10 40 60
0.2 mm/year
°C
20 30 50 70 80
H2SO
4
Weight %
0.1 mm/year
180
170
160
150
140
130
120
110
10 20 30
Weight %
°C
HCI
0.2 mm/year
0.1 mm/year
190
180
170
160
150
140
130
120
110
10 40 60
Weight %
°C
20 30 50 70 80
H3PO
4
0.2 mm/year
0.1 mm/year
230
220
210
200
190
180
170
160
140
10 40 60
0.2 mm/year
°C
20 30 50 70 80
CH3COOH
90 100
0.1 mm/year
Weight %
RESISTANCE TO ACIDS
Generally, DD 3009 glass has a high degree of resistance to acids whatever their concentration, up to relatively high temperatures. For most of the inorganic acids, the resistance of the glass passes through a minimum for a concentration of 20-30% weight, then
increases with the acid concentration. For example, the 0.1 mm/year rate is found at 128°C in H2SO4 30% and at 180°C in H2SO4 60%. Exceptionally, in the case of phosphoric acid, the speed of attack increases with the concentration: 0.1 mm/year at 163°C for 10% concentration and at 112°C for 70% concentration.
Hy dro flu ori c ac id c omp let ely and quickly dissolves the glass whatever the temperature is. Its concentration in the product must not exceed 0.002% (20 ppm).
RESISTANCE TO ORGANIC SUBSTANCES
Chemical attack is very low in organic substances. If water is given off during the reaction, the rate of attack will depend on the amount of water in the solution. In the case of 0.1N sodium hydroxide in anhydrous alcohol at
ISOCORROSION CURVES
OUR ISOC ORROSION CURVES ARE ESTABLISHED FOR MOST CURRENT PRODUCTS. THEY SHO W AS A FUNCTION OF PRODUCT CONCENTRATION THE TEMPERATURES AT WHICH THE WEIG HT LOSSES CORRESPOND TO 0.1 AND 0.2 MM/YEAR.
TH E USE OF GLASS IS NOT ADVISABLE
CA RE MU ST BE TAKEN OF THE ADVANCE OF THE CORROSION
GL ASS C AN BE USED WITHOUT PROBLEMS
ALL THE TEST HAVE B EEN PERFORMED IN TANTALUM LINED REACTORS AND USING A RATIO VOLUME OF P RODUC T / SURFACE OF ENAMEL (V/S) > 20 TO AVOID THE INHIBI TIO N OF THE ATTACK BY D ISSOLVED SILIC A.
80°C, the rate of attack is virtually nil. In methanol, there has to be more than 10% water before the loss of weight can be measured, whereas in ethanol with 5% water, the weight loss is already half of what it is in aqueous solution.
-
Page 4
RESISTANCE TO ALKALIS
110
100
90
80
70
60
50
40
10
-2
10
-1
1 10 30
Weight %
0.2 mm/year
0.1 mm/year
°C
Na2CO
3
120
110
100
90
80
70
60
50
10
-3
10
-2
10-10,4 4
0.2 mm/year
0.1 mm/year
°C
0,04 1 10 30 50
11 12 13 14 pH
NaOH
Weight %
150
140
130
120
110
100
90
80
10
-2
0,4 4
0.2 mm/year
0.1 mm/year
°C
0,04 1 10 3010
-1
NH
3
Weight %
100
80
60
40
20
20
Speed of attack (%)
HCI 20 % at 160°C
Micronised silica
(Levilite)
40 60 80 100
ppm of added silica
%
100
80
60
40
20
50
H2SO4 30% at 160 °C
Micronised silica
(Levilite)
100 150 200 250
Speed of attack (%)
ppm of added silica
HCI 20 % at 160°C: 0.5 mm/year
With 100 ppm SiO2: 0.05 mm/year
180
160
140
120
100
10 20 30 40
0.2 mm/year
0.1 mm/year
°C
Weight %
Here the permissible temperature limits are lower than for acids. At pH = 13 (NaOH 0.1N) this maximum is 70°C. Therefore, it is important to be cautious
when using hot alkalis. Temperature must be controlled, as an increase of 10°C doubles the rate of attack of the glass. Care must be taken for the introduction of alkalis into a vessel.
Avoid the flow of alkalis along the warm vessel wall by using a dip pipe.
RESISTANCE TO WATER VAPOR
Resistance to water is excellent. The behavior of glass in neutral solutions depends on each individual case but in general is very satisfactory.
CORROSION INHIBITION
Chemical reactions are sometimes so severe they cause a rapid wear on the enamel surface. The use of additives
NaOH 1N 80 °C 0.18 mm/year 0.09 mm/year
Buffer pH= 1 ; 100°C + HF 430 ppm 1.5 mm/year 0.42 mm/year
HCI 20 % vapor 110 °C 0.036 mm/year < 0.005 mm/year
to the reacting substance can inhibit this corrosion permitting the use of glass-lined equipment. When using acids, several tens or several hundreds ppm of silica protect th e enamel and considerably reduce the rate of corrosion during the liquid phase. The same result can be obtained at the vapor stage by adding silicon oils. Generally speaking, the higher the temperature, the greater the quantity of silica required, and more the acid
Pure Product 500 ppm CaCO
is concentrated, the more the amount of silica can be reduced. In presence of fluorine, silica also has a favorable influence. We always recommend a pre-test as each reaction is different. An attack inhibitor can be useful in one case and yet non-effective in another.
3
300 ppm SiO
2
Silicon Oil 2 ml/l
Page 5
MECHANICAL PROPERTIES
Ena mel is a gl ass wit h its quali­tie s but also its main weaknesses whi ch are brittleness and low ten­sil e strength. Since the res istan ce of gla ss to compression is well above its tensi le strength , one of the solu­tio ns to improve the mec hanic al res istan ce is to put the glazed layer und er compressive pre-stress. This is achieved during controlled cooling after each firing. During mechanical work (de forma tion, mechanical or thermal sho ck) the compressive stress must fir st be offset by an equivalent ten­sil e befo re the glass could be put und er da ngerous tensile stress.
ABRASION
The abrasion test (DIN 51152) is far from the actual working conditions of a glass-lined reactor where the effects of the chemical attack enhance those of abrasion. Nevertheless, it allows a comparison between glasses, showing DD 3009 advantageously. Statistically, it has been shown that in practice the cases of destruction by abrasion are negligible. However, should any doubt arise when an abrasive substance is being used, only a comparative test performed with that product could lead to a conclusion.
MECHANICAL SHOCK
The different experimental arrange­ments used for measuring the mecha­nical shock resistance produce results which cannot be compared to each other. Therefore, there is little use trying to give intrinsic values of the mechanical shock resistance. The only way to compare different glasses is to use the same method and the same criteria.
In our method, a 1 kg mass equipped with a 15 mm ball is dropped onto a glass-lined plate (glass thickness:
1.5 mm). This plate is locked onto a magnetic base, thereby making it thicker and increasing the shock ef fici ency ( n o ener gy abs orpt ion through steel vibrations). The plate is electrically grounded, and the electric current going through an electrolyte deposited at the shock location is used as assessment criteria. When tested to this procedure, which is close to the real service conditions, the mechanical shock resistance of the DD 3009 glass is about 80 % greater than that of the former glass.
UNITS DD 3009 GLASS
HCI – Vapor – DIN 51157 - ISO 2743 mm/year 0.036
HCI – 20 % 140 °C – V/S = 20 mm/year 0.2
NaOH 1N 80 °C – DIN 51158 – ISO 2745 mm/year 0.19
NaOH 1N 80 °C – V/S = 20 mm/year 0.35
NaOH 0.1 N 80 °C – V/S = 20 mm/year 0.18
H2O – Vapor – DIN 51165 – ISO 2744 mm/year 0.017
Thermal shocks – Statiflux surface cracks °C 220
Abrasion – DIN 51152 mg/cm2/h 2.35
Mechanical shocks Improvement against former glass: 80 %
Page 6
THERMAL PROPERTIES
The large majority of equipment that we manufacture is designed with a system that enables the heating and cooling of their contents. As heat transfers may cause serious damage to the enamelled coating, the user should respect the limits described in this chapter, which take account both of the data in the EN 15159 standard (parts 1, 2 and 3) and our experience as a constructor of glass-lined equipment.
A DISTINCTION SHOULD BE MADE BETWEEN :
• The “thermal shock” proper, which is characterised by an abrupt change in temperature applied either to the surface of the enamel (introduction of a product into the appliance: reagent, cleaning water), or to the steel (such as jacket nozzle location when introducing for example super-heated steam).
• The «thermal stresses», which are mechanical stresses related to tem­perature gradients which appear tem­porarily in the steel during phases of temperature changes. These are related to the design of equipment and may generate stresses in the enamel, which may cause its rupture, and/or result in fissuring of the passivation layer in coils and foster the development of corrosion under stresses, which may lead to the appearance of transverse cracks.
are different from standard (very high temperature, very low temperature, high pressure, …), or because of a particular material or design such as
The maximum ΔT values given in these tables MUST be respected. They are limit values which must not be
exceeded. glass-lined stainless steel equipment, columns without compensator, dissym­metrical appliances (lyre and lateral nozzle), non-standard thicknesses, non-standard lengths, jacketed piping, etc...
NOTE
Instructions devoted entirely to the
thermal properties of the enamel are
attached to the Maintenance Manual of
our equipment to enable their installa­The following table is provided to enable you to validate your operating conditions and obviate the creation of
tion and use in complete safety, as far
as both your operators and the equip-
ment are concerned. excessive thermal shocks when intro­ducing products into standard equip­ment or on changes in temperature in the thermal fluid (Multifluid system).
GENERAL CASE OF STANDARD VESSELS CALCULATED FROM -25°C TO +200°C EN 15159 NORM
WHEN INTRODUCING THE THERMAL FLUID
IN THE JACKET
A
WHEN LOADING
PRODUCT
INTO THE VESSEL
B
Glass-lined equipment is more or less sensitive to thermal shocks and thermal stress es, depend ing on their geo ­metrical or structural characteristics. This requires us to make a distinction between:
• On one hand, standard equipment, in which the calculation data are –25°C to +200°C regarding the temperature, and –1 to 6 bar regarding the pressure.
• On the other hand, specific equip­ment, either because of their calcula­tion and/or operating conditions, which
Example A
If the product and the glass-lined wall are
at 170°C, the fluid temperature should be
between +30°C and +200°C.
Example B
If the glass-lined wall and the thermal
fluid are at 20°C, products between -25°C
and +165°C may be safely introduced.
Thermal fluid
T° not to exceed
mini maxi
-25 120 -25
-25 125 -20
-25 135 -10
-25 145 0
-25 155 10
-25 165 20
-25 170 30
-25 175 40
-25 180 50
-25 185 60
-25 190 70
-25 195 80
-25 200 90
-25 200 100
-25 200 110
-20 200 120
-10 200 130 0 200 140
10 200 150 20 200 160 30 200 170 40 200 180 50 200 190 60 200 200
Product
and wall T°
Product T°
not to exceed
mini maxi
-25 125 -25
-25 130 -20
-25 140 -10
-25 150 0
-25 157 10
-25 165 20
-25 175 30
-25 180 40
-25 190 50
-25 200 60
-25 200 70
-25 200 80
-25 200 90
-25 200 100
-25 200 110
-25 200 120
-25 200 130
-5 200 140 5 200 150
20 200 160 30 200 170 45 200 180 60 200 190 75 200 200
Thermal fluid
and wall T°
Page 7
GUARANTEED TRACEABILITY
PRODUCTION OF ENAMEL
Each batch of enamel is comprised of carefully selected and rigidly control­led raw materials, which are melted in a rotary furnace at approximately
1.400°C. The melted glass is then poured into water. This sudden tem­pering breaks the enamel into grains, whic h are dri ed and then groun d and screened. To prevent any con­tamination, each batch is processed separately, between each operation, in closed containers.
GLASSING
A suspension is prepared with enamel powder and sprayed like a paint on the surfaces to be glass-lined. After this coat, called “biscuit”, is air dried, the parts are charged into a furnace and fired at temperatures that affect fusion between glass particles.
After cooling, the result is an impervi­ous, smooth coating of glass. The coat is then submitted to various controls: thickness, spark testing and visual inspection.
Then the item is sprayed with another coat that will be air dried, fired and Q.C. tested. These cycles are repeated, always by the same technician who will adjust and complete his work, until obtaining perfect glass lining:
• Thickness between 1 and 2 mm
• Minimum spark test contact
• Good visual quality, smooth without any color variation
COLOUR
DD 3009 glass is available in two colours having exactly the same chemical and mechanical properties:
• Blue (DD 3009)
• White (DD 3009U)
Page 8
DE DIETRICH SAS
Château de Reichshoffen F 67891 Niederbronn Cedex Phone +33 3 88 80 26 00 Fax +33 3 88 80 26 95 www.dedietrich.com
SAS. All rights reserved. 001-04/09. © endostock - Fotolia.com
®
BENELUX
De Dietrich Process Systems N.V. B - Heverlee-Leuven Phone +32 16 40 5000 Fax +32 16 40 5500 info@benelux.dedietrich.com
BRAZIL
De Dietrich Do Brasil Ltda São Paulo Phone +55 11 2703 7380 Fax +55 11 2702 4284 brasil@dedietrich.com.br
CHINA
De Dietrich Process Systems Co. Ltd Wuxi Phone +86 510 8855 7500 Fax +86 510 8855 9618 info@dedietrichchina.com
FRANCE
De Dietrich S.A.S. Zinswiller Phone +33 3 88 53 23 00 Fax +33 3 88 53 23 99 sales@dedietrich.com
De Dietrich S.A.S. Evry Phone +33 1 69 47 04 00 Fax +33 1 69 47 04 10 eivs@dedietrich.com
De Dietrich Process Systems Semur S.A.S. Semur-en-Auxois Phone +33 3 80 97 12 23 Fax +33 3 80 97 07 58 info@rosenmund.com
GERMANY
De Dietrich Process Systems GmbH Mainz Phone +49 6131 9704 0 Fax +49 6131 9704 500 mail@qvf.de
GREAT BRITAIN
De Dietrich Process Systems Ltd Stafford Phone +44 1785 609 900 Fax +44 1785 609 899 sales@qvf.co.uk
INDIA
De Dietrich Process Systems (India) Pvt, Ltd Mumbai Phone +91 22 28 505 794 Fax +91 22 28 505 731 ddps.india@dedietrich.com
IRELAND
De Dietrich Process Systems Ireland Ltd Shannon Phone +353 61 366924 Fax +353 61 366854 sales@dedietrich.ie
ITALY
De Dietrich Process Systems Srl San Dona’ Di Piave (VE) Phone. +39 0421 222 128 Fax +39 0421 224 212 info-it@dedietrich.com
RUSSIA
De Dietrich Rep. Office Moscow Phone +7 495 663 9904 Fax +7 495 663 9905 info@ddps.ru
SINGAPORE
De Dietrich Singapore (PTE) Ltd Singapore Phone +65 68 61 12 32 Fax +65 68 61 61 12 info.sg@dedietrich.com
SOUTH AFRICA
De Dietrich South Africa (PTY) Ltd Dunswart Phone +27 11 918 4131 Fax +27 11 918 4133 info.za@dedietrich.com
SPAIN
De Dietrich Equipos Quimicos S.L. Barcelona Phone +34 93 292 0520 Fax +34 93 21 84 709 comercial@dedietrich.es
SWITZERLAND
De Dietrich Process Systems AG Liestal Phone +41 61 925 11 11 Fax +41 61 921 99 40 info@rosenmund.com
UNITED STATES
De Dietrich Process Systems Inc. Mountainside, NJ Phone +1 908 317 2585 Fax +1 908 889 4960 sales@ddpsinc.com
Charlotte, NC Phone +1 704 587 04 40 Fax +1 704 588 68 66 rosenmund@ddpsinc.com
The information contained in this brochure is for general guidance only and is not contractual. We reserve the right to modify, alter, delete or supersede any of the products and services
described herein without notice or liability. © 2009 De Dietrich
The international business group De Dietrich Process Systems is the leading provider of system solutions and reactors for corrosive applications as well as plants for mechanical solid/liquid separation and drying. The system solutions from De Dietrich Process Systems are used in the industrial areas of pharmaceuticals, chemicals and allied industries.
www.dedietrich.com
contain no solvents, are environmentally-friendly and free of volatile organic compounds.
This document has been printed on paper from sustainably managed forests. Inks being used
Loading...