Datasheet UPC3206GR-E1, UPC3206GR Datasheet (NEC)

Page 1
DATA SHEET
DATA SHEET
BIPOLAR ANALOG INTEGRATED CI RCUIT
µµµµ
50dB AGC AMP + VIDEO AMP
DESCRIPTION
The µPC3206GR is Silicon monolithic IC designed for Digital DBS and Digital CATV receivers. This IC consists of
a two stage gain control amplifier and a wideband linear video amplifier.
This IC is packaged in 20-pin SSOP. Therefore, it can make RF block small.
FEATURES
Broadband AGC dynamic range 50 dB (MIN.)
Supply voltage 5 V
Packaged in 20-pin SSOP suitable for high-density surface mount
APPLICATIONS
Digital DBS receiver
STB of digital CATV
ORDERING INFORMATION
Part Number Package Supplying Form
µ
PC3206GR-E1 20-pin plastic SSOP
(225 mil)
To order evaluation samples, please contact your local NEC office. (Part number for sample order : µPC3206GR)
Embossed tape 12 mm wide. Pin 1 indicates pull-out di rection of tape. Qty 2.5 kp/reel.
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.
Document No. P13710EJ3V0DS00 (3rd edition) Date Published October 1999 N CP(K) Printed in Japan
Caution electro-static sensitive device
The mark shows major revised points.
1998, 1999©
Page 2
INTERNAL BLOCK DIAGRAM AND PIN CONFIGULATION (Top View)
µµµµ
PC3206GR
AGC GND1 20 AGC OUT1
TYPICAL APPLICATION
1 AGC Amp1
2AGC IN1 19 AGC IN2
3V
AGC 18 AGC VCC1
4AGC V
CC1 17 AGC OUT2
AGC Amp2
5BPCAP 16 AGC GND2
6BPCAP 15 INA
7G1A 14 INB
8G1B 13 VAMP V
CC2
VIDEO
9VAMP GND1 12 VAMP OUT1
Amp
10VAMP GND2 11 VAMP OUT2
RF IN
µ
PC2799GR
1st IF
HPF SAW
DUAL
PLL
PC1686GV
µ
PC3206GR
µ
2nd IF
SAW A/D
LPF
Video Amp.
QAM Demo. &FEC
2
Data Sheet P13710EJ3V0DS00
Page 3
PIN FUNCTIONS
µµµµ
PC3206GR
Pin
Pin Name
No.
1AGC
GND1
Pin
Voltage
Function and Explanation Equivalent Circuit
TYP.(V)
0 Ground pin of AGC amplifier1.
Form a ground pattern as wide as possi bl e t o maintain the minimum im pedance.
2 AGC IN 1
Note 1
1.02
Signal input pin to AGC ampli f i er.
1.02
3 VAGC 0 to 5 Gain control pin.
This pin’s bias govern the A G C out put level. Minimum gain at V Maximum gain at V
AGC
AGC
= 0 V
= 5 V Recommended to use by dividi ng AGC voltage with externally resis tor (ex.100 kΩ).
4AGC VCC1 5 Power supply pin of AGC ampli f i er1.
Must be connected bypass capacitor to minimize ground impedance.
Note 1
2.615 BPCAP4
Bypass pin of AGC ampli fier1 and 2. Refer to Equivalent circui t of pin1 and
2.61
Note 1
2.846 BPCAP2
2.49
Note 2
G1A
G1B
9 VAMP
GND1
10 VAMP
GND2
11 VAMP
OUT2
Note 2
Note 2
1.727
3.34
1.728
3.34
0
0
2.52
4.92
Gain control pin of video ampli fier. Maximum gain at G1A – G1B = s hort . Minimum gain at G1A – G1B = open. Gain is able to adjust by i ns erting arbitrary resistor between 7pin and 8pin.
Ground pin of video amplifier. Form a ground pattern as wide as possi bl e t o maintain the minimum im pedance.
Signal output pin of video ampl i fier. In case of R equal 2V
L
= 1 kΩ, single-end output voltage
P-P
.
4
AGC Control
2
4
AGC Control
3
pin2.
Refer to Equivalent circuit of pin14 and pin15.
13
12
REG
5
6
11
12 VAMP
OUT1
Notes 1.
2.
2.52
Note 2
above : V
4.92
AGC
= VCC1 below : V
AGC
= 0 V
above : VCC2 = 5 V below : VCC2 = 9 V
Data Sheet P13710EJ3V0DS00
3
Page 4
µµµµ
PC3206GR
Pin
Pin Name
No.
13 VAMP
CC
V
2
Pin
Voltage
Function and Explanation Equivalent Circuit
TYP.(V)
5 to 9 Power supply pin of video ampl i f i er.
Must be connected bypass capacitor to minimize ground impedance.
14
INB
Note 2
2.49
Signal input pin to video ampl i f i er.
4.13
Note 2
INA
15
2.49
4.13
16 AGC GND2 0 Ground pin of AGC amplifier2.
Form a ground pattern as wide as possi bl e t o maintain the minimum im pedance.
7 81315 14
REG
18
17 AGC O U T 2
Note 1
1.69
Signal output pin of AGC ampli fier2.
3.31
18 AG C VCC1 5 Power supply pin of AGC ampli f i er2.
Must be connected bypass capacitor to minimize ground impedance.
19 AGC IN2
Note 1
1.01
Signal input pin of AGC ampli f i er2.
1.01
20 AGC O U T 1
Note 1
Signal output pin of AGC ampli fier1.
1.71
AGC Control
17
18
5
6
19
4
20
Notes 1.
4
3.35
AGC
above : V above : VCC2 = 5 V below : VCC2 = 9 V
2.
= VCC1 below : V
Data Sheet P13710EJ3V0DS00
AGC
= 0 V
Page 5
µµµµ
PC3206GR
ABSOLUTE MAXIMUM RATINGS (TA = 25
C unless otherwise specified)
°°°°
Parameter Symbol Conditions Rating Unit Supply Voltage 1 VCC1 Supply Voltage 2 VCC2 AGC Control Voltage V
AGC
MIXER Block Video Amp Block
6.0 V
6.0 V
6.0 V Maximum Input Power Pin (MAX.) +10 dBm Power Dissipation P Operating Ambient Temperature T Storage Temperature T
D
A
stg
TA = 85 °C
Note
433 mW
–40 to +85
–55 to +150
Parameter Symbol Conditions Rating Unit Supply Voltage 1 VCC1 Supply Voltage 2 VCC2 AGC Control Voltage V
AGC
MIXER Block Video Amp Block
6.0 V
11.0 V
6.0 V Maximum Input Power Pin (MAX.) +10 dBm Power Dissipation P Operating Ambient Temperature T Storage Temperature T
D
A
stg
TA = 75 °C
Note
500 mW
–40 to +75
–55 to +150
C
°
C
°
C
°
C
°
Mounted on 50 × 50 × 1.6 mm double epoxy glass board.
Note
RECOMMENDED OPERATING RANGE
Parameter Symbol Supply Voltage 1 VCC1 Supply Voltage 2 VCC2 Operating Ambient Temperature 1 Operating Ambient Temperature 2
CC
1 = VCC2 = 4.5 to 5.5 V
Notes 1.
V VCC1 = 4.5 to 5.5 V, VCC2 = 4.5 to 10 V
2.
Note 1
Note 2
TA1 TA2
MIN. TYP. MAX. Unit
4.5 5.0 5.5 V
4.5 9.0 10.0 V –40 +25 +85 –40 +25 +75
° °
C C
Data Sheet P13710EJ3V0DS00
5
Page 6
µµµµ
PC3206GR
ELECTRICAL CHARACTERISTICS (TA = 25
C)
°°°°
Parameter Symbol Test Conditions MIN. TYP. MAX. Unit
AGC Amplifier Block (VCC1 = 5 V, fin = 100 MHz, RL = 560 Ω)
AGC
, V
AGC
AGC
AGC
AGC
AGC
AGC
= 0 V),
= 5 V = 0 V
= 5 V),
= 5 V = 0 V
= 0 to 5V
Note 1 Note 1
Note 2, 3
Note 3 Note 3 Note 3 Note 3 Note 3
Circuit Current 1 ICC1 Circuit Current 2 ICC2
no input signal, V no input signal, V
Bandwidth 1 BW1 Maximum gain (V
Pin = –60 dBm
Bandwidth 2 BW2 Minimum gain (V
Pin = –15 dBm
MIN
1
2
Pin = –60 dBm, V Pin = –15 dBm, V Pin = –35 dBm
AGC
V
= 5 V, Pin = 0 dBm
Maximum Gain 1 G
MAX
Minimum Gain 1 G Gain Control Range GCR Maximum Output Power P
o (sat)
Video Amplifier Bloc k (VCC2 = 9 V, fin = 100 MHz, RL = 1 kΩ) Circuit Current 3 ICC3 Differential Gain 1 G1 Differential Gain 2 G2
no input signal G1A-G1B pins:short G1A-G1B pins:open
Note 4 Note 5 Note 5
Video Amplifier Bloc k (VCC2 = 5 V, fin = 100 MHz, RL = 1 kΩ) Circuit Current 4 ICC4 Differential Gain 3 G3 Differential Gain 4 G4
no input signal G1A-G1B pins:short G1A-G1B pins:open
Note 4 Note 5 Note 5
Video Amplifier Bloc k (VCC2 = 5 V, 9 V Common, fin = 100 MHz , RL = 1 kΩ, single-ended) Bandwidth 1 BW
G1A-G1B pins:short
G1
Note 2, 5
11 16 22 mA 15 22 32 mA
100 220 MHz
500 MHz
36 38.5 41 dB
–28 –15 dB
50 dB
02–dBm
16 24 34.5 mA
160 260 400 V/V
22 25 30 V/V
8 12.5 18 mA 80 140 230 V/V 16 22 30 V/V
100 MHz
Notes 1.
By measurement circuit 1 –3 dB down from gain at 5 MHz
2.
By measurement circuit 2
3.
By measurement circuit 3
4.
By measurement circuit 4
5.
6
Data Sheet P13710EJ3V0DS00
Page 7
µµµµ
PC3206GR
STANDARD CHARACTERISTICS (FOR REFERENCE) (TA = 25
Parameter Symbol Test Conditions Reference Values Unit AGC Amplifier Block (VCC1 = 5 V, fin = 100 MHz, RL = 560 Ω) Noise Figure NF Output Intercept Point OIP
Maximum Gain (V fin2 = 106 MHz, Maximum Gain
3
AGC
(V
= 5 V) Video Amplifier Bloc k (VCC2 = 9 V, fin = 100 MHz, RL = 1 kΩ) Output Voltage Vout Single-end Gain 1 Avs1 Single-end Gain 2 Avs2 Input Intercept Point 1 IIP31
single-ended G1A-G1B pins:short G1A-G1B pins:open fin2 = 106 MHz,
G1A-G1B pins:short
Input Intercept Point 2 IIP32
fin2 = 106 MHz,
G1A-G1B pins:open Video Amplifier Bloc k (VCC2 = 5 V, fin = 100 MHz, RL = 1 kΩ) Single-end Gain 3 Avs3 Single-end Gain 4 Avs4 Input Intercept Point 3 IIP33
G1A-G1B pins:short
G1A-G1B pins:open
fin2 = 106 MHz,
G1A-G1B pins:short Input Intercept Point 4 IIP34
fin2 = 106 MHz,
G1A-G1B pins:open
AGC
= 5 V)
C)
°°°°
Note 1
Note 2
Note 3 Note 3 Note 3
Note 3
Note 3
Note 3 Note 3
Note 3
Note 3
5.5 dB
+4.5 dBm
2V
P-P
130 V/V
12 V/V
–16 dBm
4dBm
70 V/V 11 V/V
–15 dBm
2dBm
Total Block (VCC1 = 5 V, fin = 100 MHz, RL = 1 kΩ) Maximum Gain 2 G
Maximum Gain 3 G
Minimum Gain 2 G
Maximum Gain 4 G
Maximum Gain 5 G
Minimum Gain 3 G
Notes 1.
By measurement circuit 5 By measurement circuit 2
2.
By measurement circuit 4
3.
By measurement circuit 6
4.
MAX
MAX
MIN
MAX
MAX
MIN
2
3
2
4
5
3
AGC
V
= 5 V, VCC2 = 5 V,
G1A-G1B pins:short
AGC
V
= 5 V, VCC2 = 5 V,
G1A-G1B pins:open
AGC
V
= 0 V, VCC2 = 5 V,
G1A-G1B pins:short
AGC
V
= 5 V, VCC2 = 9 V,
G1A-G1B pins:short
AGC
V
= 5 V, VCC2 = 9 V,
G1A-G1B pins:open
AGC
V
= 0 V, VCC2 = 9 V,
G1A-G1B pins:short
76 dB
Note 4
62 dB
Note 4
10 dB
Note 4
80 dB
Note 4
63 dB
Note 4
14 dB
Note 4
Data Sheet P13710EJ3V0DS00
7
Page 8
µµµµ
PC3206GR
TYPICAL CHARACTERISTICS (TA = 25
CIRCUIT CURRENT vs. SUPPLY VOLTAGE
40
No input signal measurement
35
circuit1, 3
30
(mA)
25
CC
20
15
Circuit Current I
10
25
20
15
10
AGC
AGC
= 0 V)
(V
5
0
024
Supply Voltage V
GAIN vs. INPUT FREQUENCY
Video Amp.
AGC
AGC
= VCC1)
(V
6 8 10 12
CC
(V)
VCC1 = V P
in
= -60 dBm measurement circuit2
C)
°°°°
AGC
Note1
= 5 V
50
fin = 100 MHz
L
= 560
R
40
measurement circuit2
30
20
10
Gain (dB)
0
-
10
-
20
-
30
012
-
20
-
30
-
40
GAIN vs. INPUT FREQUENCY
GAIN vs. AGC VOLTAGE
3456
AGC
AGC Voltage V
(V)
VCC1 = 5 V V P measurement circuit2
CC
1 = 4.5 V
V V
CC
1 = 5.0 V
CC
1 = 5.5 V
V
AGC
= 0 V
in
= -15 dBm
Note1
Gain (50 /560 ) (dB)
5
0
0 100 200
OUTPUT POWER vs. INPUT POWER
0
V
AGC
= VCC1
in
= 100 MHz
f
L
= 560
R
-
10
measurement
Note2
circuit2
-
20
(50 /560 ) (dBm)
out
-
30
-
40
Output Power P
-
50
-
60-50-40
Input Frequency f
Input Power P
300 400 500
in
(MHz)
VCC1 = 4.5 V V
CC
1 = 5.0 V
CC
1 = 5.5 V
V
-
30-20-10 0
in
(dBm)
Notes 1.2.Gain = (Gain at Spectrum Analyzer) + 20 log (560 /50 )
Output Power = (Output Power at Spectrum Analyzer) + 10 log (560 /50 )
Gain (50 /560 ) (dB)
-
50
-
60
0 100 200
-
10
-
20
-
30
-
40
-
50
(50 /560 ) (dBm)
out
-
60
-
70
Output Power P
-
80
-
90
OUTPUT POWER vs. INPUT POWER
V
AGC
= 0 V
in
= 100 MHz
f
L
= 560
R measurement
Note2
circuit2
-
35
-
Input Frequency f
25
-
15
Input Power P
300 400 500
in
(MHz)
VCC1 = 4.5 V V
CC
1 = 5.0 V
CC
1 = 5.5 V
V
-
5155
in
(dBm)
8
Data Sheet P13710EJ3V0DS00
Page 9
µµµµ
PC3206GR
TYPICAL CHARACTERISTICS (TA = 25
DIFFERENTIAL GAIN vs. INPUT FREQUENCY
450
400
350
(V/V)
300
video
250
200
150
Differential Gain G
100
V
CC
50
0
CC
V
CC
V
2 = 8 V 2 = 9 V 2 = 10 V
0 50 100
Input Frequency f
DIFFERENTIAL GAIN vs. INPUT FREQUENCY
250
200
(V/V)
video
150
fin = 100 MHz
L
= 1 k
R G1A-G1B = SHORT measurement circuit4
150 200 250
in
(MHz)
fin = 100 MHz
L
= 1 k
R G1A-G1B = SHORT measurement circuit4
C)
°°°°
DIFFERENTIAL GAIN vs. INPUT FREQUENCY
40
35
fin = 100 MHz
L
= 1 k
R G1A-G1B = OPEN
30
(V/V)
25
video
measurement circuit4
20
15
10
Differential Gain G
V
CC
5
0
0 50 100
40
35
2 = 8 V
CC
2 = 9 V
V
CC
2 = 10 V
V
150 200 250
Input Frequency f
in
(MHz)
DIFFERENTIAL GAIN vs. INPUT FREQUENCY
fin = 100 MHz
L
= 1 k
R G1A-G1B = OPEN
30
(V/V)
25
video
measurement circuit4
20
100
Differential Gain G
50
V
CC
2 = 4.5 V
CC
2 = 5.0 V
V
CC
2 = 5.5 V
V
0
0 50 100
OUTPUT POWER vs. INPUT POWER
0
-
5
-
10
) (dBm)
/1 k
-
15
(50
-
20
out
-
25
-
30
Output Power P
-
35
-
40
-
50
VCC2 = 9 V
-
40
Input Frequency f
V
CC
2 = 5 V
-
30
Input Power P
150 200 250
in
(MHz)
fin = 100 MHz
L
= 1 k
R G1A-G1B = SHORT measurement
Note
circuit4
-
20
in
(dBm)
-
10 0
15
10
Differential Gain G
5
0
0 50 100
0
-
10
) (dBm)
-
20
/1 k
(50
-
30
out
-
40
-
50
Output Power P
-
60
-
50
Note Output Power = (Output Power at Spectrum Analyzer) + 10 log (1 k/50 )
CC
2 = 4.5 V
V
CC
2 = 5.0 V
V
CC
2 = 5.5 V
V
150 200 250
Input Frequency f
in
(MHz)
OUTPUT POWER vs. INPUT POWER
VCC2 = 5 V
VCC2 = 9 V
fin = 100 MHz R
L
= 1 k G1A-G1B = OPEN measurement circuit4
-
40
-
30
-
20
-
10 0 10
Input Power P
in
(dBm)
Note
Data Sheet P13710EJ3V0DS00
9
Page 10
µµµµ
PC3206GR
STANDARD CHARACTERISTICS (TA = 25
OUTPUT POWER vs. INPUT POWER
0
-
10
V
AGC
-
20
V
AGC
) (dBm)
-
30
/560
-
40
(50
out
-
50
-
60
-
70
Output Power P
-
80
-
90
= 5 V
V
AGC
= 2.8 V
V
AGC
= 2 V
-
60
-
40
Input Power P
-
20 0 20
in
(dBm)
3rd ORDER INTERMODULATION DISTORTION
0
= 3.25 V
V
AGC
VCC1 = 5 V f
in
= 100 MHz
R
L
= 560 measurement circuit2
C)
°°°°
= 0 V
Note
NOISE FIGURE vs. INPUT FREQUENCY
10
V
AGC
= VCC1
R
L
= 560
9
measurement circuit5
8 7 6 5 4 3
Noise Figure NF (dB)
2 1 0
10 100
Input Frequency f
in
(MHz)
VCC1 = 4.5 V V
CC
1 = 5.0 V
V
CC
1 = 5.5 V
1000
-
20
) (dBm)
/560
-
40
(50
out
-
60
-
80
Output Power P
-
100
-
50
-
45
-
40
-
35
Input Power P
VCC1 = V f f R measurement circuit2
-
in
(dBm)
AGC
in
1 = 100 MHz
in
2 = 106 MHz
L
= 560
Note
30
-
25 –20
= 5 V
Note Output Power = (Output Power at Spectrum Analyzer) + 10 log (560 /50 )
10
Data Sheet P13710EJ3V0DS00
Page 11
µµµµ
PC3206GR
STANDARD CHARACTERISTICS (TA = 25
3rd ORDER INTERMODULATION DISTORTION
0
-
10
-
20
) (dBm)
-
30
/1 k
-
40
-
50
-
60
-
70
Output Power Pout (50
-
80
-
90
-
50
3rd ORDER INTERMODULATION DISTORTION
0
-
40
Input Power P
-
30
in (dBm)
VCC2 = 9 V fin = 100 MHz fin2 = 106 MHz RL = 1 k G1A-G1B = SHORT measurement circuit4
-
20
Note
C)
°°°°
3rd ORDER INTERMODULATION DISTORTION
0
-
10
-
20
) (dBm)
-
30
/1 k
-
40
-
50
-
60
-
70
Output Power Pout (50
-
80
-
-
10
90
-
50
3rd ORDER INTERMODULATION DISTORTION
0
-
40
Input Power P
-
30
in (dBm)
VCC2 = 5 V fin = 100 MHz fin2 = 106 MHz RL = 1 k G1A-G1B = SHORT measurement
Note
circuit4
-
20
-
10
-
10
-
20
) (dBm)
-
30
/1 k
-
40
-
50
-
60
-
70
Output Power Pout (50
-
80
-
90
-
25
Note Output Power = (Output Power at Spectrum Analyzer) + 10 log (1 k/50 )
-
20
Input Power P
-
15
-
10
in (dBm)
VCC2 = 9 V fin = 100 MHz fin2 = 106 MHz RL = 1 k G1A-G1B = OPEN measurement
Note
circuit4
-
50
-
10
-
20
) (dBm)
-
30
/1 k
-
40
-
50
-
60
-
70
Output Power Pout (50
-
80
-
90
-
25
-
20
Input Power P
VCC2 = 5 V fin = 100 MHz fin2 = 106 MHz RL = 1 k G1A-G1B = OPEN measurement
Note
circuit4
-
15
-
10
in (dBm)
-
50
Data Sheet P13710EJ3V0DS00
11
Page 12
µµµµ
PC3206GR
STANDARD CHARACTERISTICS (TA = 25
100
80
60
VCC1 = 5 V
Gain (dB)
VCC2 = 9 V
40
VAGC = 5 V fin1 = 100 MHz RL = 1 k
20
G1A-G1B = SHORT measurement circuit6
0
0 100
70
60
50
40
VCC1 = 5 V
30
Gain (dB)
VCC2 = 9 V VAGC = 3 V fin1 = 100 MHz
20
RL = 1 k G1A-G1B
10
= SHORT measurement circuit6
0
0 100
25
20
15
VCC1 = 5 V V
Gain (dB)
10
V f
in
R
5
G1A-G1B = SHORT measurement circuit6
0
0 100
GAIN vs. INPUT FREQUENCY
200 300 400 500
Input Frequency f
GAIN vs. INPUT FREQUENCY
200 300 400 500
Input Frequency f
GAIN vs. INPUT FREQUENCY
CC
2 = 9 V
AGC
= 0 V
1 = 100 MHz
L
= 1 k
200 300 400 500
Input Frequency f
in (MHz)
in (MHz)
in (MHz)
C)
°°°°
GAIN vs. INPUT FREQUENCY
100
80
60
VCC1 = 5 V
Gain (dB)
VCC2 = 5 V
40
VAGC = 5 V fin1 = 100 MHz RL = 1 k
20
G1A-G1B = SHORT measurement circuit6
0
0 100
200 300 400 500
Input Frequency f
in (MHz)
GAIN vs. INPUT FREQUENCY
70
VCC1 = 5 V VCC2 = 5 V
60
VAGC = 3 V fin1 = 100 MHz
50
RL = 1 k G1A-G1B = SHORT
40
30
Gain (dB)
measurement circuit6
20
10
0
0 100
200 300 400 500
Input Frequency f
in (MHz)
GAIN vs. INPUT FREQUENCY
25
20
VCC1 = 5 V V
CC
2 = 5 V
V
AGC
= 0 V
f
in
1 = 100 MHz
R
L
= 1 k
G1A-G1B
15
= SHORT measurement circuit6
Gain (dB)
10
5
0
0 100
200 300 400 500
Input Frequency f
in (MHz)
12
Data Sheet P13710EJ3V0DS00
Page 13
µµµµ
PC3206GR
STANDARD CHARACTERISTICS (TA = 25
80
60
40
VCC1 = 5 V
Gain (dB)
VCC2 = 9 V VAGC = 5 V f RL = 1 k
20
G1A-G1B = OPEN measurement circuit6
0
0 100
40
30
20
VCC1 = 5 V
Gain (dB)
VCC2 = 9 V VAGC = 3 V fin1 = 100 MHz RL = 1 k
10
G1A-G1B = OPEN measurement circuit6
0
0 100
GAIN vs. INPUT FREQUENCY
in1 = 100 MHz
200 300 400 500
Input Frequency f
GAIN vs. INPUT FREQUENCY
200 300 400 500
Input Frequency f
in (MHz)
in (MHz)
C)
°°°°
80
60
40
VCC1 = 5 V
Gain (dB)
VCC2 = 5 V VAGC = 5 V f RL = 1 k
20
G1A-G1B = OPEN measurement circuit6
0
0 100
40
30
20
Gain (dB)
10
0
0 100
GAIN vs. INPUT FREQUENCY
in1 = 100 MHz
200 300 400 500
Input Frequency f
GAIN vs. INPUT FREQUENCY
200 300 400 500
Input Frequency f
in (MHz)
VCC1 = 5 V VCC2 = 5 V VAGC = 3 V fin1 = 100 MHz RL = 1 k G1A-G1B = OPEN measurement circuit6
in (MHz)
Data Sheet P13710EJ3V0DS00
13
Page 14
µµµµ
PC3206GR
STANDARD CHARACTERISTICS (TA = 25
3rd ORDER INTERMODULATION DISTORTION
0
-
10
-
20
(50 /1 k) (dBm)
-
30
out
-
40
-
50
Output Power P
-
60
-
70
-
65
-
60
Input Power P
3rd ORDER INTERMODULATION DISTORTION
0
-
20
VCC1 = 5 V VCC2 = 9 V V f fin2 = 106 MHz RL = 1 k G1A-G1B = SHORT measurement circuit6
in
(dBm)
AGC
= 5 V
in
1 = 100 MHz
-
55
Note
C)
°°°°
3rd ORDER INTERMODULATION DISTORTION
0
-
10
-
20
(50 /1 k) (dBm)
-
30
out
-
40
-
50
Output Power P
-
60
-
-
50
70
-
65
-
60
Input Power P
in
(dBm)
VCC1 = 5 V VCC2 = 5 V V
AGC
= 5 V fin1 = 100 MHz fin2 = 106 MHz RL = 1 k G1A-G1B = SHORT measurement
Note
circuit6
-
55
-
50
(50 /1 k) (dBm)
-
40
out
-
60
Output Power P
-
80
-
15
-
10
-
50 5
Input Power P
3rd ORDER INTERMODULATION DISTORTION
0
-
20
(50 /1 k) (dBm)
-
40
out
-
60
Output Power P
-
80
-
60
-
50
Input Power P
VCC1 = 5 V VCC2 = 9 V V f fin2 = 106 MHz RL = 1 k G1A-G1B = SHORT measurement circuit6
in
(dBm)
VCC1 = 5 V VCC2 = 9 V V f fin2 = 106 MHz RL = 1 k G1A-G1B = OPEN measurement circuit6
-
40
in
(dBm)
AGC
= 0 V
in
1 = 100 MHz
Note
AGC
= 5 V
in
1 = 100 MHz
Note
3rd ORDER INTERMODULATION DISTORTION
0
-
20
(50 /1 k) (dBm)
-
40
out
-
60
Output Power P
-
-
30
80
-
60
Note Output Power = (Output Power at Spectrum Analyzer) + 10 log (1 k/50 )
-
50
Input Power P
-
in
(dBm)
40
VCC1 = 5 V VCC2 = 5 V V
AGC
= 5 V f
in
1 = 100 MHz fin2 = 106 MHz RL = 1 k G1A-G1B = OPEN measurement
Note
circuit6
-
30
14
Data Sheet P13710EJ3V0DS00
Page 15
µµµµ
PC3206GR
STANDARD CHARACTERISTICS (TA = 25
NOISE FIGURE vs. INPUT FREQUENCY
10
9 8 7 6 5
VCC1 = 5 V
4
VCC2 = 9 V VAGC = 5 V
3
Noise Figure NF (dB)
RL = 1 k
2
G1A-G1B = SHORT
1
measurement circuit7
0
10 100
Input Frequency f
NOISE FIGURE vs. INPUT FREQUENCY
10
in (MHz)
C)
°°°°
NOISE FIGURE vs. INPUT FREQUENCY
10
9 8 7 6 5
VCC1 = 5 V
4
VCC2 = 5 V VAGC = 5 V
3
Noise Figure NF (dB)
RL = 1 k
2
G1A-G1B = SHORT
1
measurement circuit7
0
1000
10 100
Input Frequency f
NOISE FIGURE vs. INPUT FREQUENCY
10
1000
in (MHz)
9 8 7 6 5
VCC1 = 5 V
4
VCC2 = 9 V VAGC = 5 V
3
Noise Figure NF (dB)
RL = 1 k
2
G1A-G1B = OPEN
1
measurement circuit7
0
10 100
Input Frequency f
in (MHz)
1000
9 8 7 6 5
VCC1 = 5 V
4
VCC2 = 5 V VAGC = 5 V
3
Noise Figure NF (dB)
RL = 1 k
2
G1A-G1B = OPEN
1
measurement circuit7
0
10 100
Input Frequency f
1000
in (MHz)
Data Sheet P13710EJ3V0DS00
15
Page 16
INPUT IMPEDANCE (2 PIN)
µµµµ
PC3206GR
START 0.045000000 GHz STOP 0.250000000 GHz
OUTPUT IMPEDANCE (20 PIN)
MARKER Z 1 45 MHz 938.4 Ω – j604.8 2 100 MHz 434.7 Ω – j573.8 3 250 MHz 122.5 Ω – j324.9
Conditions TA = 25°C
CC
V
1
2
3
1 = 5 V
in
Ω Ω Ω
2
3
1
START 0.045000000 GHz STOP 0.250000000 GHz
MARKER Z 1 45 MHz 19.86 Ω + 3.83 2 100 MHz 20.28 Ω + 9.26 3 250 MHz 22.28 Ω + 22.48
Conditions TA = 25°C
CC
V
1 = 5 V
out
Ω Ω
16
Data Sheet P13710EJ3V0DS00
Page 17
INPUT IMPEDANCE (19 PIN)
µµµµ
PC3206GR
START 0.045000000 GHz STOP 0.250000000 GHz
OUTPUT IMPEDANCE (17 PIN)
MARKER Z 1 45 MHz 965.8 Ω – j601.2 2 100 MHz 446.6 Ω – j661.8 3 250 MHz 126.8 Ω – j312.4
Conditions TA = 25°C
CC
V
1
2
3
1 = 5 V
in
Ω Ω Ω
2
3
1
START 0.045000000 GHz STOP 0.250000000 GHz
MARKER Z 1 45 MHz 10.32 Ω + j2.88 2 100 MHz 10.86 Ω + j6.42 3 250 MHz 12.67 Ω + j15.39
Conditions TA = 25°C
CC
V
1 = 5 V
OUT
Ω Ω
Data Sheet P13710EJ3V0DS00
17
Page 18
INPUT IMPEDANCE (15 PIN)
(i) TA = 25°C, VCC2 = 5 V
µµµµ
PC3206GR
START 0.045000000 GHz STOP 0.250000000 GHz
MARKER Z 1 45 MHz 840.0 Ω – j2560 2 100 MHz 50.19 Ω – j1259 3 250 MHz 52.03 Ω – j475.6
1
2
3
in
Ω Ω
(ii) TA = 25°C, VCC2 = 9 V
START 0.045000000 GHz STOP 0.250000000 GHz
MARKER Z 1 45 MHz 478.3 Ω – j3091 2 100 MHz 106.13 Ω – j1368 3 250 MHz 55.11 Ω – j501.3
1
2
3
in
18
Data Sheet P13710EJ3V0DS00
Page 19
OUTPUT IMPEDANCE (12 PIN)
µµµµ
PC3206GR
(i) TA = 25°C, VCC2 = 5 V, 11 pin is grounded through 50
2
3
1
START 0.045000000 GHz STOP 0.250000000 GHz
resistor.
ΩΩΩΩ
MARKER Z 1 45 MHz 9.88 Ω + j6.25 2 100 MHz 14.21 Ω + j11.78 3 250 MHz 23.64 Ω + j15.73
out
Ω Ω
(ii) TA = 25°C, VCC2 = 9 V, 11 pin is grounded through 50
2
3
1
START 0.045000000 GHz STOP 0.250000000 GHz
resistor.
ΩΩΩΩ
MARKER Z 1 45 MHz 7.36 Ω + j4.85 2 100 MHz 10.50 Ω + j9.58 3 250 MHz 19.37 Ω + j13.70
out
Data Sheet P13710EJ3V0DS00
19
Page 20
THERMAL CHARACTERISTICS (FOR REFERENCE)
µµµµ
PC3206GR
CIRCUIT CURRENT vs. AMBIENT TEMPERATURE
(AGC BLOCK)
30
no input signal
CC
1 = 5 V
V measurement
25
circuit1
V
20
(mA)
CC
15
AGC
AGC
V
10
Circuit Current I
5
0
-
50
-
25 0 25 50 75
A
Ambient Temperature T
(°C)
OUTPUT POWER vs. INPUT POWER
0
VCC1 = 5 V
AGC
= VCC1
V
in
= 100 MHz
f
L
= 560
R
-
10
measurement
Note
circuit2
-
20
= 0 V
= 5 V
100
CIRCUIT CURRENT vs. AMBIENT TEMPERATURE
(VIDEO AMP BLOCK)
30
no input signal measurement circuit3
25
VCC2 = 9 V
20
(mA)
CC
15
CC
10
V
Circuit Current I
5
0
-
50
-
25 0 25 50 75
A
Ambient Temperature T
(°C)
OUTPUT POWER vs. INPUT POWER
-
10
VCC1 = 5 V
AGC
= 0 V
V
-
20
in
= 100 MHz
f
L
= 560
R
-
30
measurement
Note
circuit2
-
40
2 = 5 V
100
-
(50 /560 ) (dBm)
out
-
30
-
40
Output Power P
-
50
-
60
-
50
-
40
-
30
Input Power P
in
(dBm)
-
20
TA = -40 °C
A
= +25 °C
T
A
= +85 °C
T
-
10
0
50
(50 /560 ) (dBm)
out
-
60
-
70
Output Power P
-
80
-
90
-
35
Note Output Power = (Output Power at Spectrum Analyzer) + 10 log (560 /50 )
-
25
Input Power P
TA = -40 °C
A
= +25 °C
T
A
= +85 °C
T
-
15
-
55
in
(dBm)
15
20
Data Sheet P13710EJ3V0DS00
Page 21
THERMAL CHARACTERISTICS (FOR REFERENCE)
µµµµ
PC3206GR
DIFFERENTIAL GAIN vs. INPUT FREQUENCY
450
400
350
300
250
200
150
Differential Gain Gvideo (V/V)
100
TA = -40 °C
50
TA = +25 °C TA = +85 °C
0
0 50 100 150 200
in (MHz)
50
VCC1 = 5 V fin = 100 MHz
40
RL = 560 measurement
30
circuit2
Input Frequency f
GAIN vs. AGC VOLTAGE
VCC2 = 9 V fin = 100 MHz RL = 1 k G1A-G1B = SHORT measurement circuit4
250
DIFFERENTIAL GAIN vs. INPUT FREQUENCY
250
200
150
100
Differential Gain Gvideo (V/V)
50
TA = -40 °C TA = +25 °C TA = +85 °C
0
0 50 100 150 200
Input Frequency f
in (MHz)
VCC2 = 5 V fin = 100 MHz RL = 1 k G1A-G1B = SHORT measurement circuit4
250
20
10
Gain (dB)
0
-
10
-
20
-
30
012345
AGC Voltage V
AGC (V)
TA = -40 °C TA = +25 °C TA = +85 °C
6
Data Sheet P13710EJ3V0DS00
21
Page 22
MEASUREMENT CIRCUIT 1
0.022 F
µ
V
AGC
1 F
µ
VCC1
100 k
1 F 0.022 F
µ
0.022 F
0.1 F
µ
0.1 F
100 k
µ
µµµµ
PC3206GR
200
1 AGC Amp1
2IN
20
4700pF
19
µ
318
417
µ
516
615
AGC Amp2
1 F
µµ
510
0.1 F
0.1 F
µ
VCC1
AGC OUT
0.022 F
0.1 F
µ
MEASUREMENT CIRCUIT 2
Note
SG1
(50 )
V
AGC
MIXPAD
VCC1
SG2
(50 )
100 k
1 F
µ
1 F 0.022 F
µ
0.022 F
0.1 F
0.022 F
100 k
µ
µ
µ
0.1 F
714
µ
813
912
10 11
1 AGC Amp1
2
VIDEO
Amp
200
20
4700pF
19
µ
318
417
µ
516
615
AGC Amp2
1 F
µµ
510
0.1 F
0.1 F
µ
Spectrum Analyzer (50 )
VCC1
22
0.1 F
In the case of measurement of IM
Note
0.022 F
µ
µ
714
813
912
10 11
3
VIDEO
Amp
Data Sheet P13710EJ3V0DS00
Page 23
MEASUREMENT CIRCUIT 3
µµµµ
PC3206GR
1 AGC Amp1
219
318
417
516
615
714
open /short
813
912
10 11
MEASUREMENT CIRCUIT 4
VIDEO
Amp
AGC Amp2
20
0.1 F
1000pF
0.022 F
µ
0.022 F 950
µ
0.022 F 950
µ
µ
IN1
51
VCC2
OUT1
OUT2
1 AGC Amp1
219
318
417
516
615
714
open /short
In the case of measurement of IM
Note
813
912
10 11
VIDEO
Amp
20
Note
AGC Amp2
0.1 F
1000pF
0.022 F
0.022 F 950
µ
0.022 F
µ
3
SG1
(50 )
µ
MIXPAD
51
µ
1 k
SG2
(50 )
VCC2
Spectrum Analyzer (50 )
Data Sheet P13710EJ3V0DS00
23
Page 24
MEASUREMENT CIRCUIT 5
µµµµ
PC3206GR
VIDEO
Amp
NF METER
AGC Amp2
200
20
4700pF
19
1 F
µµ
510
0.1 F
0.1 F
µ
VCC1
Noise Source
1 AGC Amp1
0.022 F
µ
2
AGC
V
1 F
µ
VCC1
100 k
µ
1 F 0.022 F
0.022 F
0.1 F
µ
100 k
µ
0.1 F
µ
0.022 F
0.1 F
µ
318
417
µ
516
615
714
µ
813
912
10 11
MEASUREMENT CIRCUIT 6
SG1
(50 )
V
AGC
1 F
µ
VCC1
0.022 F
µ
100 k
1 F 0.022 F
µ
0.022 F
0.1 F
µ
0.022 F
0.1 F
µ
100 k
µ
µ
open /short
0.1 F
µ
200
1 AGC Amp1
2
318
417
µ
516
615
714
813
912
10 11
VIDEO
Amp
AGC Amp2
20
4700pF
19
1 F
µµ
510
1000pF
0.022 F 950
0.022 F
0.1 F
0.022 F
µ
µ
µ
1 k
0.1 F
µ
Spectrum Analyzer (50 )
VCC1
VCC2
24
Data Sheet P13710EJ3V0DS00
Page 25
MEASUREMENT CIRCUIT 7
µµµµ
PC3206GR
VIDEO
Amp
NF METER
AGC Amp2
200
20
4700pF
19
1 F
µµ
510
1000pF
0.022 F 950
0.022 F
0.1 F
0.022 F
µ
µ
µ
1 k
0.1 F
µ
VCC1
VCC2
NOISE SOURCE
1 AGC Amp1
0.022 F
µ
2
V
AGC
1 F
µ
VCC1
100 k
1 F 0.022 F
µ
0.022 F
0.1 F
µ
0.022 F
0.1 F
µ
100 k
µ
µ
open /short
0.1 F
µ
318
417
µ
516
615
714
813
912
10 11
Data Sheet P13710EJ3V0DS00
25
Page 26
ILLUSTRATION OF THE EVALUATION BOARD FOR MEASUREMENT CIRCUIT6
AGC IN AGC OUT VDEO IN
VCC
VAGC
µ
VCC
µ
1F
0.022
1F
100 k
0.022
µ
0.1
200
4700 P
0.1
510
µ
1
µ
µ
0.1
100 k
µ
0.1
µ
µ
0.022
µ
µµµµ
PC3206GR
0.022
µ
PC3206
Notes on evaluation board
(1) GND pattern on rear side (2) : Through hole (3) : represents cutout
µ
µ
0.1
short/open
NEC
FXTR
µ
0.022
950 950
0.022
0.022
µ
1000 P
µ
VCC
VDEO OUTVDEO OUT
26
Data Sheet P13710EJ3V0DS00
Page 27
PACKAGE DIMENSIONS
20 PIN PLASTIC SSOP (225 mil) (UNIT: mm)
µµµµ
PC3206GR
20
110
6.7 ± 0.3
1.8 MAX.
1.5 ± 0.1
11
detail of lead end
6.4 ± 0.2
4.4 ± 0.1
+7˚ –3˚
1.0 ± 0.2
NOTE
0.5 ± 0.2
0.15
+0.10 –0.05
0.1 ± 0.1
0.65
0.22
+0.10 –0.05
0.10
0.15
M
0.575 MAX.
Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.
Data Sheet P13710EJ3V0DS00
27
Page 28
µµµµ
PC3206GR
NOTE ON CORRECT USE
(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesires osillation).
(3) Keep the track length of the ground pins as short as possible.
CC
(4) A low pass filter must be attached to V
line.
(5) A matching circuit must be externally attached to output port.
RECOMMENDED SOLDERING CONDITIONS
This product should be soldered under the following recommended conditions. For soldering methods and
conditions other than those recommended below, contact your NEC sales representative.
Soldering Method Soldering Conditions
Infrared Reflow Package peak t em perature: 235°C or below
Time: 30 seconds or less (at 210°C) Count: 3, Exposure limi t
VPS P ackage peak temperature: 215°C or below
Time: 40 seconds or less (at 200°C) Count: 3, Exposure limi t
Partial Heating Pin temperature: 300° C
Time: 3 seconds or less (per side of device) Exposure limit
After opening the dry pack, keep it in a place below 25°C and 65% RH for the allowable storage period.
Note
Note
: None
Note
Note
: None
: None
Recommended Condition Symbol
IR35-00-3
VP15-00-3
Caution Do not use different soldering methods together (except for partial heating).
For details of the recommended soldering conditions for surface mounting, refer to infor mation document
SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E)
.
28
Data Sheet P13710EJ3V0DS00
Page 29
[MEMO]
µµµµ
PC3206GR
Data Sheet P13710EJ3V0DS00
29
Page 30
[MEMO]
µµµµ
PC3206GR
30
Data Sheet P13710EJ3V0DS00
Page 31
[MEMO]
µµµµ
PC3206GR
Data Sheet P13710EJ3V0DS00
31
Page 32
µµµµ
PC3206GR
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
M7 98. 8
Loading...