Datasheet TDE1891V, TDE1891L, TDE1890V, TDE1890D Datasheet (SGS Thomson Microelectronics)

Page 1
TDE1890
INDUSTRIALINTELLIGENT POWER SWITCH
2A OUTPUT CURRENT 18V TO35V SUPPLY VOLTAGE RANGE INTERNALCURRENT LIMITING THERMALSHUTDOWN OPENGROUNDPROTECTION INTERNALNEGATIVE VOLTAGE CLAMPING
TOV DIFFERENTIAL INPUTS WITH LARGE COM-
MON MODE RANGE AND THRESHOLD HYSTERESIS
UNDERVOLTAGELOCKOUTWITHHYSTERESIS OPENLOAD DETECTION TWODIAGNOST ICOUTPU TS OUTPUTSTATUSLEDDRIVER
DESCRIPTION
The TDE1890/1891 is a monolithic Intelligent Power Switch in Multipower BCD Technology, for
BLOCK DIAGRAM
- 50VFOR FASTDEMAGNETIZATION
S
TDE1891
2A HIGH-SIDE DRIVER
MULTIPOWER BCD TECHNOLOGY
MULTIWATT11 MULTIWATT11V PowerSO20
(In line)
ORDERING NUMBERS:
TDE1891L TDE1890V TDE1890D
TDE1891V
driving inductive or resistive loads. An internal ClampingDiode enablesthe fast demagnetization of inductiveloads. Diagnostic for CPU feedback and extensive use of electrical protections make this device ex­tremely rugged and specially suitable for indus­trial automationapplications.
July 1998
1/12
Page 2
TDE1890 - TDE1891
PIN CONNECTION (Topview)
11 10
9 8 7 6 5 4 3 2 1
D93IN022
OUTPUT SUPPLY VOLTAGE OUTPUT N.C. N.C. GND OUTPUT STATUS INPUT ­INPUT + DIAGNOSTIC 2 DIAGNOSTIC 1
GND OUTPUT OUTPUT
N.C. SUPPLY VOLTAGE SUPPLY VOLTAGE
N.C.
OUTPUT OUTPUT N.C.
GND GND
2 3 4 5 6 7 8 9 10
20 19 18 17 16 15 14 13 12 11
GND1 OUTPUT STATUS INPUT ­INPUT + N.C. DIAGNOSTIC 2 DIAGNOSTIC 1 N.C.
D93IN021
Note: Output pins mustbe must be connectedexternally to the package touse allleadsfor the outputcurrent (Pin9 and 11 for Multiwatt
package, Pin 2, 3, 8 and 9 for PowerSO20package).
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
V
V
S–VO
V V
I P T
T
E
S
I
O
tot op stg
Supply Voltage (Pin 10) (TW< 10ms) 50 V Supply toOutputDifferential Voltage. Seealso VCl(Pins10 - 9) internally limited V Input Voltage (Pins 3/4) -10 to VS +10 V
i
Differential Input Voltage (Pins 3 - 4) 43 V
i
Input Current (Pins 3/4) 20 mA
i
Output Current(Pin 9). See also ISC (Pin 9) internally limited A Power Dissipation.See also THERMAL CHARACTERISTICS. internally limited W Operating Temperature Range (T
) -25 to +85 °C
amb
Storage Temperature -55 to 150 °C Energy Induct.Load TJ=85°C1J
I
THERMAL DATA
Symbol Description Multiwatt PowerSO20 Unit
Thermal Resistance Junction-case Max. 1.5 1.5 ÉC/W Thermal Resistance Junction-ambient Max. 35 ÉC/W
2/12
R
th j-case
R
th j-amb
Page 3
TDE1890 - TDE1891
ELECTRICALCHARACTERISTICS (VS= 24V; T
= –25 to +85°C, unlessotherwisespecified)
amb
Symbol Parameter Test Condition Min. Typ. Max. Unit
V
smin
Supply Voltage for Valid
I
> 0.5mA ; V
diag
= 1.5V 9 35 V
dg1
Diagnostics
V
s
I
q
V
sth1
V
sth2
V
shys
I
sc
V
don
I
oslk
V
ol
V
cl
Supply Voltage (operative) 18 24 35 V Quiescent Current
I
out=Ios
=0
V V
il ih
3 5
7
8 Undervoltage Threshold 1 (See fig. 1),Tamb = 0 to +85°C11 V Undervoltage Threshold 2 15.5 V Supply Voltage Hysteresis 1 V Short Circuit Current VS= 18 to 35V; RL=2 2.6 5 A Output VoltageDrop Iout = 2.0A Tj=25°C
T
= 125°C
I
= 2.5A Tj=25°C
out
j
T
= 125°C
j
360 575 440 700
500 800 575
920 Output LeakageCurrent Vi=Vil;Vo= 0V 500 µA Low State Out Voltage Vi=Vil;RL= Internal Voltage Clamp (VS-VO)IO=1A
48 53 58 V
0.8 1.5 V
Single Pulsed: Tp = 300µs
I
old
V
id
I
ib
V
ith
V
iths
Open Load Detection Current Vi=Vih;T Common Mode Input Voltage
Range (Operative)
VS= 18 to 35V, V
S-Vid
= 0 to +85°C 0.5 9.5 mA
amb
–7 15 V
< 37V Input Bias Current Vi= –7 to 15V;–In = 0V –250 250 µA Input Threshold Voltage V+In > V–In 0.8 1.4 2 V Input Threshold Hysteresis
V+In > V–In 50 400 mV
Voltage
R
id
I
ilk
V
oth1
Diff. Input Resistance 0 < +In < +16V; –In = 0V
–7 < +In < 0V ; –In = 0V
Input Offset Current V+In = V–In +Ii
0V < V
<5.5V –Ii
i
–In = GND +Ii 0V < V+In <5.5V –Ii –250
+In = GND +Ii 0V < V–In <5.5V –Ii
Output StatusThreshold 1
(See fig. 1) 11.5 V
400 150
–20 –75 –25
+10
–125
–100
–50
–30 –15
+20 µA
+50 µA
Voltage
V
oth2
Output StatusThreshold 2
(See fig. 1) 8.5 V
Voltage
V
ohys
Output StatusThreshold
(See fig. 1) 0.7 V
Hysteresis
I
osd
V
osd
I
oslk
V
dgl
I
dglk
Output StatusSource Current V Active Output Status Driver
Drop Voltage Output StatusDriver Leakage
Current
out>Voth1;Vos
VS – Vos;Ios= 2mA T
= -25 to +85°C
amb
V
out<Voth2;Vos
V
= 18 to 35V
S
Diagnostic Drop Voltage D1 / D2 = L ; I
D1/D2=L; I
= 2.5V 2 4 mA
=0V
= 0.5mA
diag
= 3mA
diag
Diagnostic Leakage Current D1 / D2 =H ; 0 < Vdg < V
5V
25 µA
250
1.5
s
25 µA
VS= 15.6 to 35V
V
fdg
Clamping Diodes at the
Idiag = 5mA; D1 / D2 = H 2 V Diagnostic Outputs. Voltage Drop to V
Note Vil< 0.8V, Vih> 2V @ (V+In > V–In)
S
mA mA
mV mV mV mV
K K
µ
µA µA
µ
mV
V
A
A
3/12
Page 4
TDE1890 - TDE1891
SOURCEDRAIN NDMOS DIODE
Symbol Parameter Test Condition Min. Typ. Max. Unit
V
fsd
I
fp
t
rr
t
fr
THERMALCHARACTERISTICS
Ø Lim Junction Temp. Protect. 135 150 °C
T
H
SWITCHING CHARACTERISTICS (VS= 24V; RL=12Ω)
Forward On Voltage @ Ifsd = 2.5A 1 1.5 V Forward Peak Current t = 10ms; d = 20% 6 A Reverse Recovery Time If = 2.5A di/dt = 25A/µs 200 ns Forward Recovery Time 100 ns
Thermal Hysteresis 30 °C
t
on
t
off
t
d
Turn on Delay Time 200 µs Turn off Delay Time 40 µs Input Switchingto Diagnostic
200 µs
Valid
Note Vil < 0.8V, Vih > 2V@ (V+In> V–In)
Figure 1
TRUE FALSE
HIGH LOW
DIAGNOSTICTRUTHTABLE
Diagnostic Conditions Input Output Diag1 Diag2
Normal Operation L
H
Open Load Condition (I
)L
o<Iold
H
Short to V
S
L
H
Short Circuit to Ground (I
) (**) TDE1891
O=ISC
TDE1890
H <H (*) H L HH
Output DMOS Open L
H
Overtemperature L
H
Supply Undervoltage (V
S<Vsth2
)L
H
(*) According to theintervention of the current limitingblock. (**) A cold lampfilament,or a capacitiveload may activate the current limiting circuit of the IPS, when the IPSis initially turned on. TDE1891
uses Diag2 to signal such condition, TDE1890 does not.
L
H
L
H H
H
L L
L L
L L
L
H H
H
L L
L
H H
H
L
H H
L L
H H
H H
H H
H H
H H
L L
L L
4/12
Page 5
TDE1890 - TDE1891
APPLICATIONINFORMATION
DEMAGNETIZATION OF INDUCTIVE LOADS An internal zener diode, limiting the voltage
across the Power MOS to between 50 and 60V (V
), provides safe and fast demagnetization of
cl
inductiveloads without externalclamping devices. The maximum energy that can be absorbed from
an inductive load is specified as 1J (at T
=85°C).
j
To define the maximumswitching frequencythree points haveto be considered:
1) The total power dissipation is the sum of the On State Power and of the Demagnetization Energy multiplied by the frequency.
2) The total energy W dissipated in the device during a demagnetizationcycle(figg.2, 3) is:
W=V
L
[Io–
V
cl–Vs
R
log
L
 
L
cl
R
1
+
Vcl–V
V
s
]
s
Where:
= clampvoltage;
V
cl
L = inductiveload;
=resistiveload;
R
L
Vs = supply voltage; I
O=ILOAD
3) In normal conditions the operating Junction temperatureshouldremain below 125°C.
If the demagnetization energy exceeds the rated value, an externalclamp between output and +V must be externallyconnected(see fig. 5).
The external zener will be chosen with V
zener
value lower than the internal Vclminimum rated value and significantly (at least 10V) higher than the voltage that is externally supplied to pin 10, i.e. than the supplyvoltage.
Alternative circuit solutions can be implemented to divert the demagnetization stress from the TDE1890/1, if it exceeds 1J. In all cases it is rec­ommended that at least 10V are available to de­magnetizethe loadin the turn-offphase.
A clampingcircuitconnected between ground and the output pin is not recommended. An interrup­tion of the connection between the ground of the load and the ground of the TDE1890/1 would leave the TDE1890/1 alone to absorb the full amountof the demagnetizationenergy.
S
Figure 2: InductiveLoad EquivalentCircuit
5/12
Page 6
TDE1890 - TDE1891
Figure 3: DemagnetizationCycle Waveforms
Figure4: NormalizedR
Temperature
α
1.8 RDSON (Tj)
α=
1.6
1.4
1.2
1.0
0.8
0.6
-25 0 25 50 75 100 125 Tj (°C)
RDSON (Tj=25°C)
DSON
vs. Junction
D93IN018
Figure 5.
6/12
Page 7
TDE1890 - TDE1891
WORST CONDITION POWER DISSIPATION IN THE ON-STATE
In IPS applications the maximum average power dissipation occurs when the device stays for a long time in the ON state. In such a situation the internal temperature depends on delivered cur­rent (and related power), thermal characteristics of the packageandambient temperature.
At ambient temperature close to upper limit (+85°C) and in the worstoperating conditions, it is possible that the chip temperature could increase so much to make the thermal shutdown proce­dure untimelyintervene.
Our aim is to find the maximum current the IPS can withstand in the ON state without thermal shutdown intervention, related to ambient tem­perature. To this end, we should consider the fol­lowing points:
1) The ON resistance R
DSON
of the output NDMOS (the real switch) of the device in­creaseswithits temperature. Experimentalresults show that silicon resistiv­ity increases with temperature at a constant rate,rising of 60% from 25°C to 125°C. The relationship between R
DSON
and tem-
peratureis therefore:
R
DSON
=
R
DSON0
( 1 +k)
( Tj− 25 )
where:
T
isthe silicon temperaturein °C
j
DSON0
is R
R k isthe constantrate (k=4.711
DSON
atTj=25°C
3
10
)
(seefig. 4).
the third element are constant, while the first one increases with temperature because R
increasesas well.
DSON
3) The chip temperature must not exceed ΘLim in order do not lose the control of the device. The heat dissipation path is represented by the thermal resistance of the system device­ambient (R parameter relates the power dissipated P the silicon temperature T temperatureT
T
T
j
). In steady state conditions, this
th
and the ambient
j
th
amb
:
amb
= Pon⋅ R
on
(2)
From this relationship, the maximum power
which can be dissipated without exceed-
P
on
ing ΘLim at a given ambient temperature T
is:
amb
Θ
Lim−T
=
P
on
amb
R
th
Replacing the expression (1) in this equation and solving for I
, we can find the maximum
out
current versus ambient temperature relation­ship:
Θ
I
Lim−T

=
outx
amb
R
Pq−P
DSONx
R
th
os
to
2) In the ON state the power dissipated in the deviceis due to three contributes:
a) power lost in the switch:
P
out
2
=
out
R
I
DSON
(I
is the outputcur-
out
rent);
b) power due to quiescentcurrentin the ON
state Iq, sunk by the devicein addition to
=
:P
I
out
I
q
(Vsisthe supplyvoltage);
V
q
s
c) an external LED could be usedto visualize
the switch state (OUTPUT STATUSpin). Such a LED is drivenby an internalcurrent source(deliveringI
) and therefore, if Vosis
os
the voltage drop across the LED, the dissi-
=
⋅(
)
pated power is: P
I
os
V
s
os
.
V
os
Thus the total ON state power consumptionis given by:
P
on
= P
+ Pq+ P
out
os
(1)
In the right sideof equation1, the second and
where R course, I maximumoperativecurrent I
xisR
DSON
values are top limited by the
outx
at Tj=ΘLim. Of
DSON
outx
(2Anominal). From the expression (2) we can also find the maximum ambient temperature T a givenpower P
T
amb
Lim−
(I
out
canbe dissipated:
on
LimPon⋅ Rth=
2
R
+ Pq+ Pos) R
DSONx
amb
at which
th
In particular, this relation is useful to find the maximum ambient temperature T whichI
T
ambx
+ P
can be delivered:
outx
Lim −(I + Pos) R
q
th
outx
2
R
DSONx
+
(4)
ambx
at
Referring to application circuit in fig. 6, let us con­sider the worst case:
- The supply voltage is at maximum value of in­dustrial bus (30V instead of the 24V nominal value). This means also that I
risesof 25%
outx
(2.5A instead of 2A).
7/12
Page 8
TDE1890 - TDE1891
- All electricalparametersof the device, con­cerningthe calculation,areat maximumval­ues.
- Thermal shutdownthresholdis at minimum value.
Therefore: V
= 30V, R
s
@V R
thj-amb
= 2.5V, ΘLim = 135°C
os
=35°C/W
= 0.23Ω,Iq= 8mA, Ios= 4mA
DSON0
Figure 6: ApplicationCircuit
DC BUS 24V +/-25%
+IN
-IN
µP POLLING
D1 D2
It follows: I
outx
P
= 110mW
os
= 2.5A,R
= 0.386Ω,Pq= 240mW,
DSONx
From equation 4 we can see that, without any heatsink, it is not possible to operate in the ON steady state at the maximum current value. A derating curve for this case is reported in fig. 7. Usingan external heatsink,in order to obtain a to­tal R
of 15°C/W, we obtain the derating curve
th
reportedin fig. 8.
+Vs
+
-
CONTROL
LOGIC
Ios
OUTPUT
LOAD
D93IN014
Figure 7: Max. OutputCurrentvs. Ambient
Temperature(Multiwatt without
(A)
2.5
2.0
1.5
1.0
0.5
Io
heatsink,R
th j-amb
=35°C/W)
D93IN033
OUTPUT STATUSGND
Figure8: Max. OutputCurrent vs. Ambient
Temperature(Multiwattwith heatsink,
=15°C/W)
D93IN020A
(A)
2.5
2.0
1.5
1.0
0.5
R
th j-amb
Io
8/12
0.0 0 20406080100120
0.0
T
(°C)
amb
0 20 40 60 80 100 120
T
amb
(°C)
Page 9
MULTIWATT11 (Vertical) PACKAGE MECHANICAL DATA
TDE1890 - TDE1891
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A 5 0.197 B 2.65 0.104 C 1.6 0.063 D 1 0.039 E 0.49 0.55 0.019 0.022
F 0.88 0.95 0.035 0.037
G 1.45 1.7 1.95 0.057 0.067 0.077 G1 16.75 17 17.25 0.659 0.669 0.679 H1 19.6 0.772 H2 20.2 0.795
L 21.9 22.2 22.5 0.862 0.874 0.886 L1 21.7 22.1 22.5 0.854 0.87 0.886 L2 17.4 18.1 0.685 0.713 L3 17.25 17.5 17.75 0.679 0.689 0.699 L4 10.3 10.7 10.9 0.406 0.421 0.429 L7 2.65 2.9 0.104 0.114
M 4.25 4.55 4.85 0.167 0.179 0.191
M1 4.73 5.08 5.43 0.186 0.200 0.214
S 1.9 2.6 0.075 0.102
S1 1.9 2.6 0.075 0.102
Dia1 3.65 3.85 0.144 0.152
mm inch
9/12
Page 10
TDE1890 - TDE1891
MULTIWATT11 (In line) PACKAGE MECHANICAL DATA
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A 5 0.197 B 2.65 0.104 C 1.6 0.063 E 0.49 0.55 0.019 0.022
F 0.88 0.95 0.035 0.037
G 1.57 1.7 1.83 0.062 0.067 0.072 G1 16.87 17 17.13 0.664 0.669 0.674 H1 19.6 0.772 H2 20.2 0.795
L 26.4 26.9 1.039 1.059 L1 22.35 22.85 0.880 0.900 L3 17.25 17.5 17.75 0.679 0.689 0.699 L4 10.3 10.7 10.9 0.406 0.421 0.429 L7 2.65 2.9 0.104 0.114
S 1.9 2.6 0.075 0.102
S1 1.9 2.6 0.075 0.102
Dia1 3.65 3.85 0.144 0.152
mm inch
10/12
Page 11
PowerSO20PACKAGE MECHANICAL DATA
TDE1890 - TDE1891
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
mm inch
A 3.6 0.142 a1 0.1 0.3 0.004 0.012 a2 3.3 0.130 a3 0 0.1 0.000 0.004
b 0.4 0.53 0.016 0.021 c 0.23 0.32 0.009 0.013
D (1) 15.8 16 0.622 0.630
D1 9.4 9.8 0.370 0.386
E 13.9 14.5 0.547 0.570
e 1.27 0.050
e3 11.43 0.450
E1 (1) 10.9 11.1 0.429 0.437
E2 2.9 0.114 E3 5.8 6.2 0.228 0.244
G 0 0.1 0.000 0.004
H 15.5 15.9 0.610 0.626
h 1.1 0.043
L 0.8 1.1 0.031 0.043 N10°(max.) S8°(max)
T 10 0.394
(1) ”D and F” do not include mold flash or protrusions.
- Moldflash or protrusionsshall not exceed 0.15mm (0.006”).
- Criticaldimensions: ”E”, ”G” and ”a3”
NN
a2
b
E2
hx45°
DETAIL A
e3
H
D
T
110
e
1120
A
E1
DETAIL B
PSO20MEC
R
lead
a3
Gage Plane
BOTTOM VIEW
E
DETAIL B
0.35
S
D1
a1
L
DETAIL A
slug
(COPLANARITY)
E3
c
-C-
SEATING PLANE
GC
11/12
Page 12
TDE1890 - TDE1891
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as criticalcomponents in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
MULTIWATTis a RegisteredTrademark of STMicroelectronics
PowerSO20is a Trademark of STMicroelectronics
1998 STMicroelectronics – Printed in Italy – AllRights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta- Mexico - Morocco -The Netherlands -
Singapore - Spain - Sweden - Switzerland- Taiwan - Thailand - United Kingdom - U.S.A.
12/12
Loading...