Datasheet RFG70N06, RFP70N06 Datasheet (Fairchild Semiconductor)

Page 1
G
D
S
DRAIN
(FLANGE)
GATE
SOURCE
DRAIN
SOURCE
GATE
DRAIN
(FLANGE)
RFG70N06, RFP70N06, RF1S70N06,
RF1S70N06SM
Data Sheet January 2002
70A, 60V, 0.014 Ohm, N-Channel Power MOSFETs
These are N-Channel power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers and relay drivers. These transistors can be operated directly from integrated circuits.
Formerly developmental type TA78440.
Ordering Information
PART NUMBER PACKAGE BRAND
RFG70N06 TO-247 RFG70N06
RFP70N06 TO-220AB RFP70N06
RF1S70N06 TO-262AA F1S70N06
RF1S70N06SM TO-263AB F1S70N06
NOTE: When ordering use the entire part number. Add the suffix 9A to obtain the TO-263AB variant in tape and reel, e.g. RF1S70N06SM9A.
Features
• 70A, 60V
DS(on)
= 0.014
®
Model
•r
• Temperature Compensated PSPICE
• Peak Current vs Pulse Width Curve
• UIS Rating Curve (Single Pulse)
o
• 175
C Operating Temperature
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount Components to PC Boards”
Symbol
Packaging
JEDEC STYLE TO-247
SOURCE
DRAIN
DRAIN
GATE
GATE
DRAIN
(BOTTOM
SIDE METAL)
JEDEC TO-220AB
SOURCE
DRAIN
(FLANGE)
©2002 Fairchild Semiconductor Corporation RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM Rev. C
JEDEC TO-263AB
JEDEC TO-262AA
Page 2
±
µ
µ
θ
θ
RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM
Absolute Maximum Ratings
o
T
= 25
C, Unless Otherwise Specified
C
RFG70N06, RFP70N06
RF1S70N06, RF1S70N06SM UNITS
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain to Gate Voltage (R
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
= 20k ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . V
GS
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Single Pulse Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . .T
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . T
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
DSS
DGR
D
DM
GS
AS
D
, T
J
STG
L
pkg
Refer to Peak Current Curve
60 V 60 V 70
20 V
Refer to UIS Curve A
150
1.0
W/
-55 to 175
300 260
A
W
o
C
o
C
o
C
o
C
NOTE:
J
= 25
o
1. T
Electrical Specifications
C to 150
o
C.
o
T
= 25
C, Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BV
Gate Threshold Voltage V
GS(TH)
Zero Gate Voltage Drain Current I
Gate to Source Leakage Current I
Drain to Source On Resistance (Note 2) r
DS(ON)
Turn-On Time t
Turn-On Delay Time t
d(ON)
Rise Time t
Turn-Off Delay Time t
d(OFF)
Fall Time t
Turn-Off Time t
Total Gate Charge Q
(OFF)
g(TOT)
Gate Charge at 10V Q
Threshold Gate Charge Q
Input Capacitance C
Output Capacitance C
Reverse Transfer Capacitance C
Thermal Resistance, Junction to Case R
Thermal Resistance, Junction to Ambient R
DSS
DSS
GSS
(ON)
r
f
g(10)
g(TH)
ISS
OSS
RSS
JC
JA
I
= 250 µ A, V
D
V
= V
GS
V
= 60V, V
DS
V
= 0.8 x Rated BV
DS
V
= ± 20V - - ± 100 nA
GS
I
= 70A, V
D
V
= 30V, I
DD
V
= 10V, R
GS
(Figure 13)
= 0V (Figure 11) 60 - - V
GS
, I
= 250 µ A (Figure 10) 2 - 4 V
DS
D
= 0V - - 1
GS
, T
DSS
= 10V (Figure 9) - - 0.014
GS
D
GS
70A, R
= 2.5
= 0.43 ,
L
= 150
C
o
C--25
- - 125 ns
-12- ns
-50- ns
-40- ns
-15- ns
- - 125 ns
V
= 0V to 20V V
GS
V
= 0V to 10V - 100 115 nC
GS
V
= 0V to 2V - 5.5 6.5 nC
GS
V
= 25V, V
DS
= 0V, f = 1MHz
GS
(Figure 12)
= 48V, I
DD
R
= 0.68
L
I
= 2.2mA
g(REF)
(Figure 13)
= 70A,
D
- 185 215 nC
- 3000 - pF
- 900 - pF
- 300 - pF
- - 1.0
TO-220 and TO-263 - - 62
TO-247 - - 30
o
o
o
A
A
C/W
C/W
C/W
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage V
Reverse Recovery Time t
SD
rr
NOTES:
2. Pulse test: pulse width 300ms, duty cycle 2%.
3. Repetitive rating: pulse width is limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3) and Peak Current Capability Curve (Figure 5).
©2002 Fairchild Semiconductor Corporation RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM Rev. C
I
= 70A - 1.5 V
SD
I
= 70A, dI
SD
/dt = 100A/ µ s - 125 ns
SD
Page 3
30
10
0
25 50 75 100
125
150
50
I
D
, DRAIN CURRENT (A)
TC, CASE TEMPERATURE (oC)
70
175
40
20
60
80
t, PULSE WIDTH (s)
50
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
10
1
100
I
DM
, PEAK CURRENT (A)
1000
FOR TEMPERATURES ABOVE 25
o
C DERATE PEAK
CURRENT AS FOLLOWS:
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION
VGS = 10V
II
25
175 T
C
150
-----------------------



=
TC = 25oC
RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM
Typical Performance Curves
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 175
TC, CASE TEMPERATURE (oC)
T
= 25
C
125 150
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
1
0.5
o
C, Unless Otherwise Specified
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
0.1
, NORMALIZED
JC
θ
Z
THERMAL IMPEDANCE
0.01 10
500
100
©2002 Fairchild Semiconductor Corporation RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM Rev. C
OPERATION IN THIS AREA MAY BE
10
LIMITED BY r
, DRAIN CURRENT (A)
D
I
T
= 25oC
C
= MAX RATED
T
J
SINGLE PULSE
1
1
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. PEAK CURRENT CAPABILITY
0.2
0.1
0.05
0.02
0.01
SINGLE PULSE
-5
-4
10
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
DS(ON)
VDS, DRAIN TO SOURCE VOLTAGE (V)
10
P
DM
t
1
t
x R
2
+ T
JC
C
θ
1
10
-3
10
t, RECTANGULAR PULSE DURATION (s)
100µs
1ms
10ms
-2
10
NOTES: DUTY FACTOR: D = t
PEAK TJ = PDM x Z
-1
10
1/t2
JC
θ
0
10
100
Page 4
0
80
0123 5
120
160
I
D
, DRAIN CURRENT (A)
VDS, DRAIN TO SOURCE VOLTAGE (V)
V
GS
= 7V
V
GS
= 10V
200
4
V
GS
= 5V
V
GS
= 4.5V
V
GS
= 20V
V
GS
= 8V
40
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC
VGS = 6V
0
0.5
1
1.5
-80 -40 0 40 80 120 160
NORMALIZED DRAIN TO SOURCE
TJ, JUNCTION TEMPERATURE (oC)
200
2
2.5
VGS = 10V, ID = 70A
PULSE DURATION = 250µs
ON RESISTANCE
DUTY CYCLE = 0.5% MAX
2.0
1.5
1.0
0.5
0
-80 -40 0 40 80 120 160
T
J
, JUNCTION TEMPERATURE (oC)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
200
ID = 250µA
RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM
Typical Performance Curves T
300
100
, AVALANCHE CURRENT (A)
STARTING TJ = 150oC
AS
I
10
0.01
If R = 0 tAV = (L)(IAS)/(1.3*RATED BV
If R 0 t
= (L/R) ln [(IAS*R)/(1.3*RATED BV
AV
STARTING TJ = 25oC
0.1
tAV, TIME IN AVALANCHE (ms)
= 25oC, Unless Otherwise Specified (Continued)
C
- VDD)
DSS
) +1]
DSS-VDD
1
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
200
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX V
= 15V
DD
160
-55oC
25oC
175oC
10
FIGURE 7. SATURATION CHARACTERISTICS
120
80
40
, DRAIN TO SOURCE CURRENT (A)
DS(ON)
I
0
0
VGS, GATE TO SOURCE VOLTAGE (V)
468102
FIGURE 8. TRANSFER CHARACTERISTICS
2.0 VGS = VDS, ID = 250µA
1.5
1.0
NORMALIZED GATE
THRESHOLD VOLTAGE
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs
©2002 Fairchild Semiconductor Corporation RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM Rev. C
0.5
0
-80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC)
JUNCTION TEMPERATURE
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
200
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
Page 5
60
45
30
15
0
10
7.5
5
2.5
0
V
DS
, DRAIN TO SOURCE VOLTAGE (V)
V
GS
, GATE TO SOURCE VOLTAGE (V)
I
G(REF)
I
G(ACT)
20
I
G(REF)
I
G(ACT)
80
t, TIME (µs)
RL = 0.86
I
G(REF)
= 2.2mA
V
GS
= 10V
0.75 BV
DSS
0.50 BV
DSS
0.25 BV
DSS
VDD = BV
DSS
VDD = BV
DSS
V
DD
V
DS
BV
DSS
t
P
I
AS
t
AV
0
t
ON
t
d(ON)
t
r
90%
10%
V
DS
90%
10%
t
f
t
d(OFF)
t
OFF
90%
50%
50%
10%
PULSE WIDTH
V
GS
0
0
RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM
Typical Performance Curves T
= 25oC, Unless Otherwise Specified (Continued)
C
5000
VGS = 0V, f = 1MHz
= CGS + C
C
4000
C
ISS
C C
ISS RSS OSS
= C C
GD
DS
+ C
3000
2000
C
C, CAPACITANCE (pF)
1000
0
0 5 10 15 20
OSS
C
RSS
, DRAIN TO SOURCE VOLTAGE (V)
V
DS
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
Test Circuits and Waveforms
V
DS
GD
GS
25
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.
FIGURE 13. NORMALIZED SWITCHING WAVEFORMS FOR
CONSTANT GATE CURRENT
L
VARY t
TO OBTAIN
P
REQUIRED PEAK I
V
GS
AS
R
G
+
V
DD
-
DUT
0V
P
I
AS
t
0.01
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
V
DS
R
DUT
L
+
V
DD
-
V
GS
V
GS
FIGURE 16. SWITCHING TIME TEST CIRCUIT FIGURE 17. SWITCHING WAVEFORMS
©2002 Fairchild Semiconductor Corporation RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM Rev. C
R
GS
Page 6
V
DD
Q
g(TH)
V
GS
= 2V
Q
g(10)
VGS = 10V
Q
g(TOT)
V
GS
= 20V
V
DS
V
GS
I
g(REF)
0
0
RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM
Test Circuits and Waveforms (Continued)
V
DS
R
L
V
I
g(REF)
GS
DUT
+
V
-
DD
FIGURE 18. GATE CHARGE TEST CIRCUIT
FIGURE 19. GATE CHARGE WAVEFORM
©2002 Fairchild Semiconductor Corporation RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM Rev. C
Page 7
RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM
PSPICE Electrical Model
.SUBCKT RFG70N06 2 1 3 ; rev 3/20/92
CA 12 8 5.56e-9 CB 15 14 5.30e-9 CIN 6 8 2.63e-9
DBODY 7 5 DBDMOD DBREAK 5 11 DBKMOD DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 65.18 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTO 20 6 18 8 1
IT 8 17 1
LDRAIN 2 5 1e-9 LGATE 1 9 3.10e-9 LSOURCE 3 7 1.82e-9
MOS1 16 6 8 8 MOSMOD M = 0.99 MOS2 16 21 8 8 MOSMOD M = 0.01
RBREAK 17 18 RBKMOD 1 RDRAIN 50 16 RDSMOD 4.66e-3 RLDRAIN 2 5 10 RGATE 9 20 1.21 RLGATE 1 9 31 RIN 6 8 1e9 RSOURCE 8 7 RDSMOD 3.92e-3 RLSOURCE 3 7 18.2 RVTO 18 19 RVTOMOD 1
RLGATE
GATE
1
LGATE
9
RGATE
10
-
6
ESG
8
+
EVTO
20
+
18
8
S1A
12
S1B
CA CB
6
-
RIN
S2A
13814
13
13
+
6
EGS
8
--
DPLCAP
VTO
-
15
S2B
EDS
CIN
RLDRAIN
5
LDRAIN
RSCL1RSCL2
+
51
5
ESCL
51
50
RDRAIN
16
+
21
MOS1
14
+
5 8
8
DBREAK
EBREAK
MOS2
RSOURCE
17
11
17 18
+
DBODY
-
RLSOURCE
7
LSOURCE
RBREAK
IT
2
DRAIN
3
SOURCE
18
RVTO
19
VBAT
+
S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD
VBAT 8 19 DC 1 VTO 21 6 0.605
.MODEL DBDMOD D (IS = 7.91e-12 RS = 3.87e-3 TRS1 = 2.71e-3 TRS2 = 2.50e-7 CJO = 4.84e-9 TT = 4.51e-8) .MODEL DBKMOD D (RS = 3.9e-2 TRS1 =1.05e-4 TRS2 = 3.11e-5) .MODEL DPLCAPMOD D (CJO = 4.8e-9 IS = 1e-30 N = 10) .MODEL MOSMOD NMOS (VTO = 3.46 KP = 47 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL RBKMOD RES (TC1 = 8.46e-4 TC2 = -8.48e-7) .MODEL RDSMOD RES (TC1 = 2.23e-3 TC2 = 6.56e-6) .MODEL RVTOMOD RES (TC1 = -3.29e-3 TC2 = 3.49e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -8.35 VOFF= -6.35) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.35 VOFF= -8.35) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.0 VOFF= 3.0) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 3.0 VOFF= -2.0)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global Temperature Options; written by William J. Hepp and C. Frank Wheatley.
©2002 Fairchild Semiconductor Corporation RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM Rev. C
Page 8
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ EcoSPARK™ E2CMOS EnSigna
TM
TM
FACT™ FACT Quiet Series™
STAR*POWER is used under license
FAST FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™
OPTOLOGIC™ OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench
QFET™ QS™ QT Optoelectronics™ Quiet Series™ SILENT SWITCHER
SMART START™ STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™
UltraFET
VCX™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
PRODUCT STATUS DEFINITIONS Definition of Terms
Datasheet Identification Product Status Definition
Advance Information
Preliminary
No Identification Needed
Formative or In Design
First Production
Full Production
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or
effectiveness.
This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. H4
Loading...