Page 1
RFD20N03, RFD20N03SM
Data Sheet July 1999 File Number
20A, 30V, 0.025 Ohm, N-Channel Power
MOSFETs
The RFD20N03 and RFD20N03SM N-Channel power
MOSFETs are manufactured using the MegaFET process.
This process which uses feature sizes approaching those of
LSI integrated circuits, gives optimum utilization of silicon,
resulting in outstanding performance. They were designed
for use in applications such as switching regulators,
switching converters, motor drivers, and relay drivers.These
transistors can be operated directly from integrated circuits.
Formerly developmental type TA49235.
Ordering Information
PART NUMBER PACKAGE BRAND
RFD20N03 TO-251AA F20N03
RFD20N03SM TO-252AA F20N03
NOTE: When ordering,use theentire partnumber. Addthesuffix 9A to
obtain the TO-252AA variant in tape and reel, e.g., RFD20N03SM9A.
Features
• 20A, 30V
DS(ON)
= 0.025Ω
®
Model
•r
• Temperature Compensating PSPICE
• Thermal Impedance SPICE Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
o
C Operating Temperature
• 175
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
D
G
4350.1
Packaging
(FLANGE)
DRAIN
S
JEDEC TO-251AA JEDEC TO-252AA
SOURCE
DRAIN
GATE
GATE
SOURCE
DRAIN
(FLANGE)
4-427
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
PSPICE® is a registered trademark of MicroSim Corporation.
http://www.intersil.com or 407-727-9207
| Copyright © Intersil Corporation 1999
Page 2
RFD20N03, RFD20N03SM
Absolute Maximum Ratings T
= 25oC, Unless Otherwise Specified
C
UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain to Gate Voltage (RGS = 20kΩ ) (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
DSS
DGR
GS
30 V
30 V
± 20 V
Drain Current
Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .E
Power Dissipation (Figure 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P
D
DM
AS
D
Derate Above 25oC (Figure 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TJ, T
STG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
Package Body for 10s, See Techbrief 334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
pkg
20
Figure 5
Figure 6
90
0.60
-55 to 175
300
260
A
W
W/oC
o
C
o
C
o
C
NOTE:
1. TJ = 25oC to 150oC.
Electrical Specifications T
= 25oC, Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BV
Gate to Source Threshold Voltage V
Zero Gate Voltage Drain Current I
DSSID
GS(TH)VGS
DSS
= 250µ A, VGS = 0V (Figure 11) 30 - - V
= VDS, ID = 250µ A (Figure 10) 2 - 4 V
VDS = 30V, VGS = 0V - - 1 µ A
VDS = 30V, VGS = 0V, TC = 150oC- - 5 0µA
Gate to Source Leakage Current I
Drain to Source On Resistance r
DS(ON)ID
Turn-On Time t
Turn-On Delay Time t
d(ON)
Rise Time t
Turn-Off Delay Time t
d(OFF)
Fall Time t
Turn-Off Time t
Total Gate Charge Q
g(TOT)VGS
Gate Charge at 10V Q
Threshold Gate Charge Q
Input Capacitance C
Output Capacitance C
Reverse Transfer Capacitance C
Thermal Resistance Junction to Case R
Thermal Resistance Junction to Ambient R
GSS
ON
OFF
g(10)
g(TH)VGS
OSS
RSS
VGS = ± 20V - - 100 nA
= 20A, VGS = 10V (Figure 9) - 0.022 0.025 Ω
VDD = 15V, ID≅ 20A,
RL =0.75Ω , VGS= 10V,
RGS = 9.1Ω
r
- - 60 ns
-1 0-n s
-3 0-n s
-1 2-n s
f
-3 2-n s
- - 66 ns
= 0V to 20V VDD = 15V, ID≅ 20A,
VGS = 0V to 10V - 28 40 nC
= 0V to 2V - 2.4 2.9 nC
VDS = 25V, VGS = 0V, f = 1MHz
ISS
RL = 0.75Ω
I
= 1.0mA
g(REF)
(Figure 13)
(Figure 12)
-6 07 5n C
- 1150 - pF
- 550 - pF
- 110 - pF
(Figure 3) - - 1.66oC/W
θ JC
TO-251, TO-252 - - 100
θ JA
o
C/W
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage V
Reverse Recovery Time t
Reverse Recovered Charge Q
4-428
SD
rr
RR
ISD = 20A - - 1.25 V
ISD = 20A, dISD/dt = 100A/µ s- - 7 0 n s
ISD = 20A, dISD/dt = 100A/µ s - - 145 nC
Page 3
Typical Performance Curves
RFD20N03, RFD20N03SM
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 150
125 175
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWERDISSIPATION vs CASE
TEMPERATURE
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
0.1
, NORMALIZED
JC
θ
Z
THERMAL IMPEDANCE
0.01
-5
10
SINGLE PULSE
-4
10
-3
10
t, RECTANGULAR PULSE DURATION (s)
25
20
15
10
, DRAIN CURRENT (A)
D
I
5
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (oC)
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
P
DM
t
1
t
NOTES:
DUTY FACTOR: D = t
PEAK TJ = PDM x Z
-2
10
-1
10
1/t2
x R
JC
JC
θ
θ
0
10
175
2
+ T
C
1
10
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
500
100
10
, DRAIN CURRENT (A)
D
I
OPERATION IN THIS
AREA MAY BE
LIMITED BY r
1
1
VDS, DRAIN TO SOURCE VOLTAGE (V)
DS(ON)
V
DSS(MAX)
10
TJ = MAX RATED
T
C
= 30V
= 25oC
100µ s
1ms
10ms
100ms
DC
100
500
VGS = 20V
100
, PEAK CURRENT (A)
DM
I
VGS = 10V
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
10
-5
10
-4
10
TC = 25oC
FOR TEMPERATURES
ABOVE 25
CURRENT AS FOLLOWS:
I = I
-3
10
-2
10
t, PULSE WIDTH (s)
o
25
-1
10
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. PEAK CURRENT CAPABILITY
4-429
C DERATE PEAK
175 - T
C
150
0
10
1
10
Page 4
RFD20N03, RFD20N03SM
Typical Performance Curves
300
100
, AVALANCHE CURRENT (A)
AS
I
10
If R = 0
tAV = (L)(IAS)/(1.3*RATED BV
If R ≠ 0
= (L/R)ln[(IAS*R)/(1.3*RATED BV
t
AV
STARTING TJ = 150oC
0.001
0.01
tAV, TIME IN AVALANCHE (ms)
0.1
(Continued)
- VDD)
DSS
- VDD) + 1]
DSS
STARTING TJ = 25oC
1
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPEDINDUCTIVE SWITCHING
CAPABILITY
100
PULSE DURATION = 80µ s
DUTY CYCLE = 0.5% MAX
= 15V
V
DD
80
60
-55oC
25oC
175oC
100
80
60
40
, DRAIN CURRENT (A)
D
I
20
10
VGS = 20V
0
012345
V
= 10V
GS
VDS, DRAIN TO SOURCE VOLTAGE (V)
PULSE DURATION = 80µ s
DUTY CYCLE = 0.5% MAX
T
= 25oC
C
VGS = 7V
VGS = 6V
VGS = 5V
FIGURE 7. SATURATION CHARACTERISTICS
2.0
PULSE DURATION = 80µ s
DUTY CYCLE = 0.5% MAX
V
= 10V, ID = 20A
GS
1.5
40
20
, ON-STATE DRAIN CURRENT (A)
D(ON)
I
0
04 6 8 1 0 2
VGS, GATE TO SOURCE VOLTAGE (V)
FIGURE 8. TRANSFER CHARACTERISTICS FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
1.2
1.0
0.8
NORMALIZED GATE
0.6
THRESHOLD VOLTAGE
0.4
-80 -40 0 40 80 120 160
TJ, JUNCTION TEMPERATURE (oC)
VGS = VDS, ID = 250µ A
200
1.0
ON RESISTANCE
NORMALIZED DRAIN TO SOURCE
0.5
-80 -40 0 40 80 120 160
TJ, JUNCTION TEMPERATURE (oC)
RESISTANCE vs JUNCTION TEMPERATURE
1.2
ID = 250µ A
1.1
1.0
0.9
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.8
-80 -40 0 40 80 120 160
TJ, JUNCTION TEMPERATURE (oC)
200
200
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGEvs
JUNCTION TEMPERATURE
4-430
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
Page 5
RFD20N03, RFD20N03SM
Typical Performance Curves
1800
1500
C
ISS
(Continued)
VGS = 0V, f = 1MHz
C
= CGS + C
ISS
C
= C
RSS
OSS
GD
≈ CDS + C
C
GD
10
VDD = 15V
8
GD
1200
6
900
C
OSS
600
C, CAPACITANCE (pF)
300
C
RSS
0
01 02 03 0
V
, DRAIN TO SOURCE VOLTAGE (V)
DS
4
2
, GATE TO SOURCE VOLTAGE (V)
GS
V
0
61 2
Qg, GATE CHARGE (nC)
WAVEFORMS IN
DESCENDING ORDER:
ID = 20A
ID = 15A
I
= 10A
D
= 5A
I
D
18 24 30 0
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 13. GATECHARGE WAVEFORMSFOR CONSTANT
GATE CURRENT
Test Circuits and Waveforms
V
DS
BV
DSS
VARY t
TO OBTAIN
P
REQUIRED PEAK I
V
GS
AS
L
R
G
+
V
DD
-
DUT
t
P
I
AS
V
DS
V
DD
0V
P
I
AS
0.01Ω
0
t
AV
t
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
V
I
g(REF)
DS
R
L
V
GS
+
V
DD
-
DUT
V
DD
VGS= 2V
0
I
g(REF)
Q
g(TOT)
V
DS
Q
g(10)
V
GS
Q
g(TH)
VGS = 10V
0
FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORM
VGS= 20V
4-431
Page 6
RFD20N03, RFD20N03SM
Test Circuits and Waveforms
V
V
GS
R
GS
V
GS
FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
(Continued)
DS
R
L
DUT
t
ON
t
d(ON)
t
V
DS
+
V
DD
-
0
V
GS
0
90%
10%
r
10%
50%
PULSE WIDTH
t
d(OFF)
90%
t
OFF
50%
t
f
90%
10%
4-432
Page 7
RFD20N03, RFD20N03SM
PSPICE Electrical Model
SUBCKT RFD20N03, RFD20N03SM 2 1 3 ; rev 28 Jul 97
CA 12 8 1.3e-9
CB 15 14 1.3e-9
CIN 6 8 9.9e-10
7
RVTEMP
19
-
+
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 33.15
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
IT 8 17 1
LDRAIN 2 5 1.00e-9
GATE
1
LGATE 1 9 3.57e-9
LSOURCE 3 7 4.25e-9
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 5e-4
RGATE 9 20 1.24
RLDRAIN 2 5 10
RLGATE 1 9 28.6
RLSOURCE 3 7 26.9
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 6.2e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1AMOD
LGATE
RLGATE
RGATE
9
CA
-
ESG
+
EVTEMP
+
-
18
22
20
S1A
12
13
8
S1B
EGS EDS
6
8
13
10
RSLC2
6
14
13
+
+
6
8
-
-
DPLCAP
EVTHRES
+
S2A
S2B
5
RSLC1
51
+
5
ESLC
51
-
50
RDRAIN
16
21
-
19
8
MSTRO
CIN
15
CB
+
8
14
5
8
-
MMED
DBREAK
11
EBREAK
MWEAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
+
17
18
-
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*120),3))}
.MODEL DBODYMOD D (IS = 9e-13 RS = 6.4e-3 IKF=7.4 TIKF=0.005 N=1.02 TRS1 = 3.5e-3 TRS2 =-1e-5 CJO = 1.78e-9 TT = 4.0e-8 M = 0.4053)
.MODEL DBREAKMOD D (RS = 0.1 N=3.5 IKF=-1e-3 TRS1 = -1e-3 TRS2 =1e-6)
.MODEL DPLCAPMOD D (CJO = 1.3e-9 IS = 1e-30 N = 10 M = 0.62)
.MODEL MMEDMOD NMOS (VTO = 3.17 KP = 1.3 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.24)
.MODEL MSTROMOD NMOS (VTO = 3.68 KP = 13 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 2.68 KP = 0.009 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 12.4 RS = 0.1)
.MODEL RBREAKMOD RES (TC1 = 8e-4 TC2 = 4.5e-7)
.MODEL RDRAINMOD RES (TC1 = 3.5e-2 TC2 = 4.5e-4)
.MODEL RSLCMOD RES (TC1 = 1e-3 TC2 = 1e-6)
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)
.MODEL RVTHRESMOD RES (TC = -1.2e-3 TC2 = -2e-5)
.MODEL RVTEMPMOD RES (TC1 = -3.5e-3 TC2 = 1e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -8.60 VOFF= -2.50)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.50 VOFF= -8.60)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.00 VOFF= 0.30)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.30 VOFF= 0.00)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options ; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
4-433
Page 8
SPICE Thermal Model
REV 28 July 97
RFD20N03, RFD20N03SM
CTHERM1 7 6 9.9e-7
CTHERM2 6 5 1.5e-3
CTHERM3 5 4 2.2e-3
CTHERM4 4 3 5.7e-3
CTHERM5 3 2 7.5e-2
CTHERM6 2 1 5.4e-1
RTHERM1 7 6 8e-3
RTHERM2 6 5 2.3e-2
RTHERM3 5 4 9.0e-2
RTHERM4 4 3 6.9e-1
RTHERM5 3 2 6.1e-1
RTHERM6 2 1 8.0e-2
RFD20N03, RFD20N03SM
RTHERM1
RTHERM2
JUNCTION
7
CTHERM1
6
CTHERM2
5
RTHERM3
RTHERM4
RTHERM5
RTHERM6
CTHERM3
4
CTHERM4
3
CTHERM5
2
CTHERM6
CASE
1
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly ,the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
4-434