Page 1
RFD16N06LE, RFD16N06LESM
Data Sheet October 1999
16A, 60V, 0.047 Ohm, Logic Level,
N-Channel Power MOSFETs
These are N-Channel power MOSFETs manufacturedusing
a modern process. This process, which uses feature sizes
approaching those of LSI integrated circuits gives optimum
utilization of silicon, resulting in outstanding performance.
They were designed for use in applications such as
switching regulators, switching converters, motor drivers,
relaydriversand emitter switches forbipolar transistors.This
performance is accomplished through a special gate oxide
design which provides full rated conductance at gate bias in
the 3V to 5V range, thereby facilitating true on-off power
control directly from logic level (5V) integrated circuits.
Formerly developmental type TA49027.
Ordering Information
PART NUMBER PACKAGE BRAND
RFD16N06LE TO-251AA 16N06L
RFD16N06LESM TO-252AA 16N06LE
NOTE: When ordering, use the entire part number. Add suffix 9Ato
obtain the TO-252AA variant in the tape and reel, i.e.,
RFD16N06LESM9A.
File Number 3628.3
Features
• 16A, 60V
DS(ON)
= 0.047Ω
®
Model
•r
• Temperature Compensating PSPICE
• Can be Driven Directly from CMOS, NMOS, TTL
Circuits
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
D
G
S
Packaging
DRAIN (FLANGE)
JEDEC TO-251AA JEDEC TO-252AA
SOURCE
DRAIN
GATE
GATE
SOURCE
DRAIN (FLANGE)
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
PSPICE® is a registered trademgark of MicroSim Corporation.
http://www.intersil.com or 407-727-9207
| Copyright © Intersil Corporation 1999
Page 2
RFD16N06LE, RFD16N06LESM
Absolute Maximum Ratings T
= 25oC, Unless Otherwise Specified
C
RFD16N06LE, RFD16N06LESM UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Drain to Gate Voltage (RGS = 20kΩ ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
DSS
DGR
GS
DM
AS
D
Refer to Peak Current Curve
D
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, T
STG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . T
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
pkg
60 V
60 V
+10, -8 V
16
Refer to UIS Curve
90
0.606
-55 to 175
300
260
A
W
W/oC
o
C
o
C
o
C
NOTE:
1. TJ= 25oC to 150oC.
Electrical Specifications T
= 25oC, Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BV
Gate Threshold Voltage V
Zero Gate Voltage Drain Current I
DSS
GS(TH)
DSS
ID = 250µ A, VGS = 0V, Figure 11 60 - - V
VGS = VDS, ID = 250µ A, Figure 10 1 - 3 V
VDS = 55V, VGS = 0V - - 1 µ A
VDS = 50V, VGS = 0V, TC = 150oC - - 250 µ A
Gate to Source Leakage Current I
Drain to Source On Resistance (Note 2) r
DS(ON)ID
Turn-On Time t
Turn-On Delay Time t
d(ON)
Rise Time t
Turn-Off Delay Time t
d(OFF)
Fall Time t
Turn-Off Time t
Total Gate Charge Q
g(TOT)
Gate Charge at 5V Q
Threshold Gate Charge Q
Input Capacitance C
Output Capacitance C
Reverse Transfer Capacitance C
Thermal Resistance Junction to Case R
Thermal Resistance Junction to Ambient R
GSS
ON
r
f
OFF
g(5)
g(TH)
ISS
OSS
RSS
θJC
θJA
VGS = +10, -8V - - 10 µ A
= 16A, VGS = 5V - - 0.047 Ω
VDD = 30V, ID = 16A, RL = 1.88Ω ,
VGS = 5V, RGS = 5Ω
Figures 16, 17
- - 100 ns
-1 1- n s
-6 0- n s
-4 8- n s
-3 5- n s
- - 115 ns
VGS = 0V to 10V VDD = 48V,
VGS = 0V to 5V - 29 35 nC
ID = 16A, RL = 3Ω
Figures 18, 19
-5 16 2n C
VGS = 0V to 1V - 1.8 2.6 nC
VDS = 25V, VGS = 0V,
f = 1MHz
Figure 12
- 1350 - pF
- 300 - pF
-9 0- p F
- - 1.65
TO-251AA, TO-252AA - - 80
o
o
C/W
C/W
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage (Note 2) V
Diode Reverse Recovery Time t
SD
rr
NOTES:
2. Pulse Test: Pulse Width ≤ 300µ s, Duty Cycle ≤ 2%.
3. Repetitive Rating: Pulse Width limited by max junction temperature.
2
ISD = 16A - - 1.5 V
ISD = 16A, dISD/dt = 100A/µ s - - 125 ns
Page 3
RFD16N06LE, RFD16N06LESM
Typical Performance Curves Unless Otherwise Specified
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
25 50 75 100
0
0
TC, CASE TEMPERATURE (oC)
125
150
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
200
100
TC = 25oC
T
= MAX RATED
J
100µ s
175
20
15
10
, DRAIN CURRENT (A)
D
5
I
0
25
50
75 100 125 150 175
TC, CASE TEMPERATURE (oC)
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
500
TC = 25oC
VGS = 10V
100
FOR TEMPERATURES
ABOVE 25
CURRENT AS FOLLOWS:
I = I
25
o
C DERATE PEAK
175 - T
(
C
150
)
10
DRAIN CURRENT (A)
D,
I
1
OPERATION IN THIS
AREA MAY BE
LIMITED BY r
11 0
VDS, DRAIN TO SOURCE VOLTAGE (V)
DS(ON)
V
DSS
MAX = 60V
1ms
10ms
100
VGS = 5V
, PEAK CURRENT CAPABILITY (A)
DM
I
10
10-610
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
-4
-5
10
10
t, PULSE WIDTH (s)
-2
-3
10
FIGURE 3. FORWARD BIAS SAFE OPERATING AREA FIGURE 4. PEAK CURRENT CAPABILITY
100
STARTING T
STARTING TJ = 150oC
10
If R = 0
, AVALANCHE CURRENT (A)
tAV = (L)(IAS)/(1.3*RATED BV
AS
I
If R ≠ 0
t
= (L/R)ln[(IAS*R)/(1.3*RATED BV
AV
1
0.01 0.1 1 10
tAV, TIME IN AVALANCHE (ms)
DSS
- VDD)
DSS
= 25oC
J
- VDD) +1]
100
TC =25oC
80
60
40
, DRAIN CURRENT (A)
D
I
20
0
0 1.5 3.0 4.5 6.0 7.5
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 10V
PULSE DURATION = 80µ s
DUTY CYCLE = 0.5% MAX.
10-110
VGS = 5V
V
V
V
0
GS
GS
GS
= 4.5V
= 4V
= 3V
1
10
FIGURE 5. UNCLAMPED INDUCTIVE SWITCHING FIGURE 6. SATURATION CHARACTERISTICS
3
Page 4
RFD16N06LE, RFD16N06LESM
Typical Performance Curves Unless Otherwise Specified (Continued)
100
V
= 15V
DD
PULSE DURATION = 80µ s
DUTY CYCLE = 0.5% MAX
80
60
40
20
, ON STATE DRAIN CURRENT (A)
D(ON)
I
0
0
V
GS
-55oC
3.0
, GATE TO SOURCE VOLTAGE (V)
25oC
4.5
6.0
175oC
7.5 1.5
2.5
2.0
1.5
1.0
ON RESISTANCE
0.5
NORMALIZED DRAIN TO SOURCE
0
-80 -40
PULSE DURATION = 80µ s
DUTY CYCLE = 0.5% MAX.
VGS = 5V, ID = 16A
04 08 0
, JUNCTION TEMPERATURE (oC)
T
J
FIGURE 7. TRANSFER CHARACTERISTICS FIGURE8. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
2.0
1.5
1.0
VGS= VDS,
I
= 250µ A
D
2.0
1.5
1.0
ID = 250µ A
120
160
200
NORMALIZED GATE
0.5
THRESHOLD VOLTAGE
0
-80
-40
04 08 0
TJ, JUNCTION TEMPERATURE (oC)
160
120 200
FIGURE 9. NORMALIZED GATE THRESHOLD VOLTAGEvs
TEMPERATURE
2000
C
1500
1000
500
C, CAPACITANCE (pF)
0
0 5 10 15 20 25
VDS, DRAIN TO SOURCE VOLTAGE (V)
ISS
VGS = 0V, f = 1MHz
C
= CGS + C
ISS
C
= C
RSS
C
≈ CDS + C
C
OSS
C
RSS
OSS
GD
GD
GD
FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
0.5
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0
-80 -40 0 40 80 120 160 200
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED DRAIN TOSOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
60
45
30
15
, DRAIN TO SOURCE VOLTAGE (V)
DS
V
0
VDD = BV
I
GREF ()
--------------------- -
20
I
GACT ()
DSS
0.75 BV
0.50 BV
0.25 BV
RL = 3.75Ω
I
VGS = 5V
DSS
DSS
DSS
= 0.65mA
G(REF)
t, TIME (µ s)
0.75 BV
0.50 BV
0.25 BV
VDD = BV
DSS
DSS
DSS
I
GREF ()
--------------------- -
80
I
GACT ()
DSS
5.00
3.75
2.50
1.25
0
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 12. NORMALIZED SWITCHING WAVEFORMSFOR
CONSTANT GATE CURRENT
, GATE TO SOURCE VOLTAGE (V)
GS
V
4
Page 5
RFD16N06LE, RFD16N06LESM
Test Circuits and Waveforms
V
DS
BV
DSS
t
AV
VARY t
TO OBTAIN
P
REQUIRED PEAK I
V
GS
AS
L
R
G
+
V
DD
-
t
P
I
AS
DUT
0V
P
I
AS
0.01Ω
0
t
FIGURE 13. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 14. UNCLAMPED ENERGY WAVEFORMS
V
DS
V
DD
t
t
d(ON)
90%
ON
50%
10%
t
r
PULSE WIDTH
V
DS
R
DUT
L
+
V
DD
-
V
GS
R
GS
V
GS
V
DS
V
GS
10%
FIGURE 15. SWITCHING TIME TEST CIRCUIT FIGURE 16. RESISTIVE SWITCHING WAVEFORMS
V
I
g(REF)
DS
R
L
V
GS
+
V
DD
-
DUT
V
DD
VGS= 2V
0
Q
g(TOT)
V
DS
Q
OR Q
g(10)
V
GS
= 1V FOR
V
GS
g(5)
V
GS
VGS= 5V FOR
2
L
DEVICES
L2 DEVICES
Q
g(TH)
t
d(OFF)
90%
= 10V
t
OFF
t
f
10%
50%
VGS= 20V
= 10V FOR
V
GS
L2 DEVICES
90%
I
g(REF)
0
FIGURE 17. GATE CHARGE TEST CIRCUIT FIGURE 18. GATE CHARGE WAVEFORMS
5
Page 6
RFD16N06LE, RFD16N06LESM
PSPICE Electrical Model
SUBCKT RFD16N06LE 2 1 3 ; rev 8/2/93
CA 12 8 1.46e-9
CB 15 14 1.46e-9
CIN 6 8 1.0e-9
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 66.0
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
IT 8 17 1
LDRAIN 2 5 1e-9
LGATE 1 9 5.5e-9
LSOURCE 3 7 4.4e-9
GATE
1
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 7.0e-3
RGATE 9 20 3.6
RLDRAIN 2 5 10
RLGATE 1 9 55
RLSOURCE 3 7 44
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 1.45e-2
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
LGATE
RLGATE
RGATE
9
CA
ESG
EVTEMP
+
18
22
20
S1A
12
13
8
S1B
EGS EDS
-
+
-
6
8
13
10
RSLC2
6
14
13
+
+
6
8
-
-
DPLCAP
EVTHRES
+
19
8
S2A
S2B
15
CIN
CB
-
+
-
5
51
5
51
MSTRO
14
5
8
RSLC1
+
ESLC
-
50
RDRAIN
16
21
8
MMED
DBREAK
EBREAK
MWEAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
11
+
17
18
-
7
S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*100),3.5))}
.MODEL DBODYMOD D (IS = 6.3e-13 RS = 6.8e-3 TRS1 = 1e-3 TRS2 = 1e-6 XTI = 4.3 CJO = 1.28e-9 TT = 5.1e-8 M = 0.5)
.MODEL DBREAKMOD D (RS = 2.9e-1 TRS1 = 1e-4 TRS2 = 0)
.MODEL DPLCAPMOD D (CJO = 9.5e-10 IS = 1e-30 N = 10 M = 0.82)
.MODEL MMEDMOD NMOS (VTO = 2.10 KP = 6 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.6)
.MODEL MSTROMOD NMOS (VTO = 2.45 KP = 60.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 1.79 KP = 0.13 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 36 RS = 0.1)
.MODEL RBREAKMOD RES (TC1 = 1.2e-3 TC2 = -5e-7)
.MODEL RDRAINMOD RES (TC1 = 1.3e-2 TC2 = 3.1e-5)
.MODEL RSLCMOD RES (TC1 = 5.5e-3 TC2 = 7e-6)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)
.MODEL RVTHRESMOD RES (TC1 = -1.8e-3 TC2 = -5.8e-6)
.MODEL RVTEMPMOD RES (TC1 = -1.7e-3 TC2 = 8e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.8 VOFF= -2.8)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.8 VOFF= -4.8)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.6 VOFF= 0.5)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF= -0.6)
.ENDS
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
RVTEMP
19
-
VBAT
+
22
DRAIN
2
SOURCE
3
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
NOTE:
6
Page 7
RFD16N06LE, RFD16N06LESM
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However,no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
7
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029