Datasheet RFD15N06LE, RFD15N06LESM Datasheet (Intersil)

Page 1
RFD15N06LE, RFD15N06LESM
Data Sheet April 1999
These are N-Channel power MOSFETs manufacturedusing the MegaFET process. This process, which uses feature sizes approaching those of LSI circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers, and relay drivers. These transistors can be operated directly from integrated circuits.
Formerly developmental type TA49165.
Ordering Information
PART NUMBER PACKAGE BRAND
RFD15N06LE TO-251AA F15N6L RFD15N06LESM TO-252AA F15N6L
NOTE: When ordering,usethe entire part number.For ordering intape and reel,add the suffix 9A to the partnumber, i.e. RFD15N06LESM9A.
File Number
Features
• 15A, 60V
DS(ON)
= 0.065
•r
• 2kV ESD Protected
• Temperature Compensating PSPICE™ Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
o
C Operating Temperature
• 175
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount Components to PC Boards”
Symbol
D
G
4079.1
Packaging
DRAIN (FLANGE)
S
JEDEC TO-251AA JEDEC TO-252AA
SOURCE
DRAIN
GATE
GATE
SOURCE
DRAIN (FLANGE)
6-149
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
PSPICE™ is a trademark of MicroSim Corporation.
http://www.intersil.com or 407-727-9207
| Copyright © Intersil Corporation 1999
Page 2
RFD15N06LE, RFD15N06LESM
Absolute Maximum Ratings T
= 25oC, Unless Otherwise Specified
C
RFD15N06LE, RFD15N06LESM UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . V
DSS
DGR
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .E
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P
Derate above 25oC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TJ, T
STG
GS
DM
AS
D
Refer to Peak Current Curve
D
60 V 60 V
±10 V
15
Refer to UIS Curve
72
0.48
-55 to 175
A
W
W/oC
o
C
Electrostatic Discharge Rating MIL-STD-883, Category B(2) . . . . . . . . . . . . . . ESD 2 kV
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . T
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . T
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
pkg
300 260
o
C
o
C
NOTE:
1. TJ= 25oC to 150oC.
Electrical Specifications T
= 25oC, Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BV Gate Threshold Voltage V
GS(TH)
Zero Gate Voltage Drain Current I
Gate to Source Leakage Current I Drain to Source On Resistance r
DS(ON)ID
Turn-On Time t Turn-On Delay Time t
d(ON)
Rise Time t Turn-Off Delay Time t
d(OFF)
Fall Time t Turn-Off Time t Total Gate Charge Q
g(TOT)
Gate Charge at 5V Q Threshold Gate Charge Q
Input Capacitance C Output Capacitance C Reverse Transfer Capacitance C Thermal Resistance Junction to Case R Thermal Resistance Junction to Ambient R
DSS
DSS
GSS
ON
r
f
OFF
g(5)
g(TH)
ISS OSS RSS
θJC
θJA
ID = 250µA, VGS = 0V, Figure 13 60 - - V VGS= VDS, ID = 250µA, Figure 12 1 - 2 V VDS = 48V,
VGS = 0V
TC = 25oC--1µA TC = 150oC--50µA
VGS = ±10V - - 10 µA
= 15A, VGS = 5V - - 0.065
VDD = 30V, ID = 15A, RL = 2.0Ω, VGS = 5V, RGS = 2.5 Figures 10, 18, 19
- - 77 ns
-11- ns
-40- ns
-30- ns
-18- ns
- - 75 ns VGS = 0V to 10V VDD = 48V, VGS = 0V to 5V - 21 26 nC VGS = 0V to 1V - 0.95 1.20 nC
ID = 15A, RL = 3.20 Figures 20, 21
VDS = 25V, VGS = 0V, f = 1MHz Figure 14
-3949nC
- 855 - pF
- 240 - pF
-75- pF
- - 2.08 TO-251 and TO-252 - - 100
o o
C/W C/W
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage V Diode Reverse Recovery Time t
SD
rr
NOTES:
2. Pulse Test: Pulse Width 300ms, Duty Cycle 2%.
3. Repetitive Rating: Pulse Width limited by max junction temperature. See Transient Thermal Impedance Curve (Figure 3) and Peak Current Capability Curve (Figure 5).
6-150
ISD = 15A - - 1.5 V ISD = 15A, dISD/dt = 100A/µs--80ns
Page 3
RFD15N06LE, RFD15N06LESM
Typical Performance Curves
Unless Otherwise Specified
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 175
125
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWERDISSIPATION vs CASE
TEMPERATURE
2
1
0.5
150
20
15
10
, DRAIN CURRENT (A)
D
I
5
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (oC)
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
175
0.2
0.1
0.1
, NORMALIZED Z
θJC
THERMAL IMPEDANCE
0.05
0.02
0.01 SINGLE PULSE
0.01
-5
10
-4
10
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
200
TC = 25oC, TJ = MAX RATED
100
10
, DRAIN CURRENT (A)
D
I
OPERATION IN THIS AREA MAY BE LIMITED BY r
1
110
DS(ON)
VDS, DRAIN TO SOURCE VOLTAGE (V)
-3
10
-2
10
t, RECTANGULAR PULSE DURATION (s)
200
100
100µs
1ms
10ms
100ms
DC
10060
, PEAK CURRENT CAPABILITY (A)
DM
I
10
10
NOTES: DUTY FACTOR: D = t PEAK TJ = PDM x Z
-1
10
TC = 25oC
VGS = 10V
VGS = 5V
THERMAL IMPEDANCE MAY LIMIT CURRENT IN THIS REGION
-5
-4
10
10
P
DM
1/t2
θJC 0
10
FOR TEMPERATURES ABOVE 25 CURRENT AS FOLLOWS:
I = I
25
-3
-2
10
t, PULSE WIDTH (s)
t
1
t
2
x R
+ T
θJC
C
o
C DERATE PEAK
175 - T
C
150
-1
10
10
1
10
0
1
10
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. PEAK CURRENT CAPABILITY
6-151
Page 4
RFD15N06LE, RFD15N06LESM
Typical Performance Curves
50
STARTING TJ = 150oC
10
, AVALANCHE CURRENT (A)
If R = 0
AS
I
tAV = (L)(IAS)/(1.3*RATED BV If R 0
t
= (L/R)ln[(IAS*R)/(1.3*RATED BV
AV
1
tAV, TIME IN AVALANCHE (ms)
DSS
0.1 1 100.001 0.01
Unless Otherwise Specified (Continued)
STARTING TJ = 25oC
- VDD)
- VDD) +1]
DSS
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
30
25
20
15
= 15V
V
DD
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
-55oC
25oC
175oC
30
VGS = 10V
25
20
15
10
, DRAIN CURRENT (A)
D
I
5
0
0 1.5 3.0 4.5 6.0
VGS = 5V
VGS = 4V
VDS, DRAIN TO SOURCE VOLTAGE (V)
TC = 25oC PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX.
VGS = 3.5V
VGS = 3V
VGS = 2.5V
FIGURE 7. SATURATION CHARACTERISTICS
200
150
ID = 15A
ID = 7.5A
100
ID = 30A
10
, DRAIN TO SOURCE CURRENT (A)
5
DS(ON)
I
0
0 3 4.5 61.5
VGS, GATE TO SOURCE VOLTAGE (V)
, DRAIN TO SOURCE
50
ON RESISTANCE (m)
DS(ON)
r
0
ID = 3.75A
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
2.0 3.5 4.5 5.04.02.5
3.0
, GATE TO SOURCE VOLTAGE (V)
V
GS
FIGURE 8. TRANSFER CHARACTERISTICS FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
250
VDD = 30 V, ID =15A, RL= 2.00
200
150
100
SWITCHING TIME (ns)
50
0
10
RGS, GATE TO SOURCE RESISTANCE ()
t
d(OFF)
t
r
t
f
t
d(ON)
20 30 40 500
2.5
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX.
2.0
1.5
ON RESISTANCE
1.0
NORMALIZED DRAIN TO SOURCE
0.5
-80 -40 0 40 80 120 160
ID = 15AVGS = 5V,
TJ, JUNCTION TEMPERATURE (oC)
200
FIGURE 10. SWITCHING TIME vs GATE RESISTANCE FIGURE 11. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
6-152
Page 5
RFD15N06LE, RFD15N06LESM
Typical Performance Curves
1.2
1.0
0.8
NORMALIZED GATE
0.6
THRESHOLD VOLTAGE
0.4
-80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC)
Unless Otherwise Specified (Continued)
VGS = VDS,
I
= 250µA
D
FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
1200
1000
C
ISS
800
600
400
C, CAPACITANCE (pF)
200
0
0 5 10 15 20 25
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 0V, f = 1MHz
= CGS + C
C C C
ISS RSS OSS
= C
GD
CDS + C
GD
GD
C
C
OSS
RSS
FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
200
1.2 ID = 250µA
1.1
1.0
0.9
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.8
-80 -40 0 40 80 120 160 T
, JUNCTION TEMPERATURE (oC)
J
FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
60
45
30
15
, DRAIN TO SOURCE VOLTAGE (V)
DS
V
0
VDD = BV
I
20
------------------------ ­I
DSS
RL =4.00
= 0.44mA
I
G(REF)
V
= 5V
GS
PLATEAU VOLTAGES IN DESCENDING ORDER:
VDD = BV VDD = 0.75 BV VDD = 0.50 BV VDD = 0.25 BV
G REF() GACT()
t, TIME (ms)
DSS
DSS DSS DSS
VDD = BV
I
GREF()
80
------------------------ ­I
GACT()
5.00
DSS
3.75
2.50
1.25
0
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 15. NORMALIZED SWITCHINGWAVEFORMS FOR
CONSTANT GATE CURRENT
200
, GATE TO SOURCE VOLTAGE (V)
GS
V
Test Circuits and Waveforms
V
DS
BV
DSS
L
VARY tP TO OBTAIN REQUIRED PEAK I
V
GS
t
0V
P
AS
R
G
DUT
I
AS
0.01
+
V
DD
-
0
FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 17. UNCLAMPED ENERGY WAVEFORMS
6-153
t
P
I
AS
t
AV
V
DS
V
DD
Page 6
RFD15N06LE, RFD15N06LESM
Test Circuits and Waveforms
V
GS
0V
FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
V
GS
I
G(REF)
V
GS
R
GS
V
DS
(Continued)
R
L
V
DS
DUT
R
L
DUT
t
ON
t
d(ON)
t
V
DS
+
­0
90%
r
10%
t
d(OFF)
t
OFF
t
f
90%
10%
90%
V
GS
10%
0
V
DD
50%
PULSE WIDTH
Q
g(TOT)
V
DS
50%
VGS= 10V
Q
+
V
DD
-
V
GS
g(5)
VGS= 5V
VGS= 1V
0
Q
g(TH)
I
G(REF)
0
FIGURE 20. GATE CHARGE TEST CIRCUIT FIGURE 21. GATE CHARGE WAVEFORMS
6-154
Page 7
RFD15N06LE, RFD15N06LESM
PSPICE Electrical Model
SUBCKT RFD15N06LE 2 1 3 ; rev 5/13/95
CA 12 8 2.50e-9 CB 15 14 2.4e-9 CIN 6 8 7.70e-10
DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DESD1 91 9 DESD1MOD DESD2 91 7 DESD2MOD DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 65.18 EDS 14 8 5 8 1
EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1
ESG
EVTEMP 20 6 18 22 1 IT 8 17 1
LDRAIN 2 5 1e-9 LGATE 1 9 2.77e-9 LSOURCE 3 7 2.98e-9
MMED 16 6 8 8 MMEDMOD
GATE
1
LGATE
RLGATE
RGATE 9
DESD1
91
DESD2
EVTEMP
+
20
18
22
MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 14.52e-3
S1A
12
13
RGATE 9 20 2.6 RLDRAIN 2 5 10 RLGATE 1 9 27.7 RLSOURCE 3 7 29.8 RSLC1 5 51 RSLCMOD 1e-6
S1B
CA
RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 20.05e-3 RVTHRES 22 8 RVTHRESMOD 1
EGS
RVTEMP 18 19 RVTEMPMOD 1 S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1 ESLC 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*72),5))} .MODEL DBODYMOD D (IS = 6.5e-13 RS = 1.20e-2 TRS1 = 1.75e-3 TRS2 = 5.08e-6 CJO = 7.45e-10 TT = 4.61e-8 M = 0.46)
.MODEL DBREAKMOD D (RS = 1.28e-1 TRS1 = -2.15e-3 TRS2 = 1.05e-5) .MODEL DESD1MOD D (BV = 12.7 TBV1 = 0 TBV2 = 0 RS = 35 TRS1 = 1.2e-6 TRS2 = 0) .MODEL DESD2MOD D (BV = 12.7 TBV1 = 0 TBV2 = 0 RS = 0 TRS1 =0 TRS2 = 0) .MODEL DPLCAPMOD D (CJO = 4.32e-10 IS = 1e-30 N = 10 M = 0.54) .MODEL MMEDMOD NMOS (VTO = 1.60 KP = 1.75 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.60) .MODEL MSTROMOD NMOS (VTO = 1.93 KP = 26.0 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.39 KP = 0.09 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 26.0 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 9.76e-4 TC2 = 5.11e-7) .MODEL RDRAINMOD RES (TC1 = 1.30e-2 TC2 = 4.49e-5) .MODEL RSLCMOD RES (TC1 =3.00e-3 TC2 = 6.00e-6) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC1 = -1.43e-3 TC2 = -6.72e-6) .MODEL RVTEMPMOD RES (TC1 = -9.91e-4 TC2 = 1.02e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.85 VOFF = -1.85) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.85 VOFF = -4.85) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.35 VOFF = 1.65) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 1.65 VOFF = -1.35
DPLCAP
10
RSLC2
6 8
+
EVTHRES
+
6
S2A
14
8
13
S2B
13
+
6 8
19
8
15
EDS
CIN
CB
+
5 8
5
RSLC1
51 +
5
51
50 RDRAIN
MSTRO
14
ESLC
16
21
8
MMED
8
DBREAK
EBREAK
MWEAK
RSOURCE
RBREAK
17
IT
RVTHRES
RLDRAIN
11
+
17 18
7
RLSOURCE
18
RVTEMP
19
VBAT
+
22
LDRAIN
DBODY
LSOURCE
DRAIN
2
SOURCE
3
.ENDS
NOTE: For further discussion of the PSPICEmodel, consult A New PSPICE Sub-Circuit forthe Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991.
6-155
Page 8
RFD15N06LE, RFD15N06LESM
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserv esthe right to make changes in circuit design and/or specifications at any time with­out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believedto be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240
6-156
EUROPE
Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029
Loading...