Datasheet MTU423 Datasheet (MYSON)

Page 1
MYSON TECHNOLOGY
MTU423
Universal Remote Controller
This datasheet contains new product information. Myson Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No right s under any patent accompany the sale of the product.
MTU423 Revision 2.5 02/25/1997
FEATURES
4-bit microcomputer-based.
Low current dissipation in STOP mode:
- 1.0uA (typical) 3.58MHz (@ 3.0V)
Powerful instruction set (73 instructions):
- Binary addition, subtraction adjustment, logical operation in direct addressing mode and index addressing mode.
- Single-bit manipulation instruction (set, reset, decision for branch).
- 4-bit input/output instruction.
- Various conditional branch instructions.
- 8 working registers and manipulation instructions.
- Index ROM data transfer instruction.
ROM/RAM /Index ROM capacity:
- ROM capacity 2048 x 16 bits.
- RAM capacity 64 x 4 bits.
- Index ROM capacity 40960 x 4 bits.
Input/Output ports:
- Input ports 2 ports/ 8pins (input port M/S).
- I/O ports 2 ports/ 8pins (input/output port I/OA, I/OB).
2 control outputs: carrier, light.
Built-in carrier duty cycle divider.
One 6-bit programmable timer.
4 levels of stack for nest subroutine.
Operating voltage: 2.4V ~ 3.6V.
GENERAL DESCRIPTION
MTU423 is a high-frequency, high-performance, 4-bit microcomputer-based universal remote controller. It contains a 4-bit ALU, ROM, RAM, input/output ports, timer, clock generator, index ROM and carrier control in a single chip. The high frequency (3.58Hz) provides a wide range of infrared carrier output. The 40Kx4 index ROM stores information of various remote controllers. The instruction set includes basic 4-bit instructions and special instructions such as index ROM moving, auto-incrementation and carrier control instruction.
The STOP instruction can stop all internal operations such as the oscillator and divider, hence minimum power dissipation can be achieved.
With an external 0.1µF capacitor, SRAM data can be saved for 3 minutes, which is long enough for a battery change.
Page 2
MYSON TECHNOLOGY
MTU423
MTU423 Revision 2.5 02/25/1997
2/7
BLOCK DIAGRAM
I/O PORT
OUTPUT
PORT
INDEX ROM
40K x 4
INPUT
PORT
4-BIT DATA BUS
OSCILLATOR
PREDIVIDER
DUTY CYCLE
DIVIDER
6-BIT
PRESET TIMER
CONTROL
CIRCUIT
ALU RAM 64 x 4
4-LEVEL STACK
11-BIT PROGRAM
COUNTER
PROM
2048 x 16
OSC IN
OSC OUT
A1~4 B1~4 M1~4 S1~4
CARRIER
LIGHT
RESET
MTU423
M1
RESET
VDD
OSCOUT
OSCIN
VCC
IOB4
IOB3
IOB2
IOB1
IOA4
IOA3
S4
LIGHT
CARRIER
GND
IOA1
IOA2
S3
S2
S1
M4
M3
M2
PIN NUMBER PIN NAME %(um) y(um)
1 RESET 2848.8 1989.6 2 M1 2848.8 2380 3 M2 2503.7 2678.2 4 M3 2058.5 2678.2 5 M4 1668.1 2678.2 6 S1 1277.7 2678.2 7 S2 887.3 2678.2 8 S3 496.9 2678.2 9 S4 130.2 2335.2
Page 3
MYSON TECHNOLOGY
MTU423
MTU423 Revision 2.5 02/25/1997
3/7
10 LIGHT 130.2 1954.4 11 CARRIER 130.2 1501.6 12 GND 130.2 1203.2 13 IOA1 130.2 905 14 IOA2 130.2 462 15 IOA3 452.6 130.2 16 IOA4 895.6 130.2 17 IOB1 1330.2 130.2 18 IOB2 1751.4 130.2 19 IOB3 2067.8 130.2 20 IOB4 2489 130.2 21 VCC 2848.8 333.4 22 OSCIN 2848.8 604 23 OSCOUT 2848.8 1341.2 24 VDD 2848.8 1579.2
1.0 PIN ASSIGNMENT
(use 300mil DIP)
Pin No. Pin Name Type Description
1 RESET I System reset pin (with internal pull-low). 2 M 1 I Input port (with internal pull-low). 3 M 2 I Input port (with internal pull-low). 4 M 3 I Input port (with internal pull-low). 5 M 4 I Input port (with internal pull-low). 6 S 1 I Output port (with internal pull-low). 7 S 2 I Output port (with internal pull-low). 8 S 3 I Output port (with internal pull-low).
9 S 4 I Output port (with internal pull-low). 10 LIGHT O Output port only for LED drive use. 11 CARRIER O Output port only for CARRIER OUT signal. 12 VSS Negative power supply pin.
13 IOA 1 I/O Input/Output port ( special use for low battery detection ).
14 IOA 2 I/O Input/Output port. 15 IOA 3 I/O Input/Output port. 16 IOA 4 I/O Input/Output port. 17 IOB 1 I/O Input/Output port. 18 IOB 2 I/O Input/Output port. 19 IOB 3 I/O Input/Output port. 20 IOB 4 I/O Input/Output port. 21 VCC Positive power supply pin for SRAM.
22 23
OSCIN
OSCOUT
IOTypically, a 3.58MHz crystal is connected across OSCIN/OSCOUT for
oscillation. R/C oscillation mode also available.
24 VDD Positive power supply pin.
Page 4
MYSON TECHNOLOGY
MTU423
MTU423 Revision 2.5 02/25/1997
4/7
2.0 ABSOLUTE MAXIMUM RATINGS
at Ta = 0 to 70oC, VSS = 0V
Name Symbol Range Unit
Maximum Supply Voltage VDD -0.3 to +3.6 V Maximum Input Voltage Vin -0.3 to VDD+0.3 V Maximum Output Voltage Vout -0.3 to VDD+0.3 V Maximum Operating Temperature Topg 0 to +70 o
C
Maximum Storage Temperature Tstg -25 to +125 o
C
3.0 ALLOWABLE OPERATING CONDITIONS
at Ta = 0 to 70oC, VSS = 0V
Name Symbol Condition Min. Max. Unit
Supply Voltage VDD 2.4 3.6 V Input "H" Voltage Vih1 0.7 x VDD VDD V Input "L" Voltage Vil1
all inputs except OSCIN
0 0.3 x VDD V Input "H" Voltage Vih2 0.8 x VDD VDD V Input "L" Voltage Vil2
OSCIN at RC OSC. mode
0 0.2 x VDD V
Fopg1
crystal OSC. mode
34MHz Operating Freq.
Fopg2
RC OSC. mode
25MHz
4.0 ELECTRICAL CHARACTERISTICS
at Ta = 0 to 70oC, VSS = 0V
Input Resistance
at VDD = 2.4V
Name Symbol Condition Min. Typ. Max. Unit
M / S Pull-Down Tr Rmsd
Vi = VDD
200 500 1000 Kohm
RES Pull-Down R Rres
Vi = VDD
5 20 50 Kohm
DC Output Characteristics
Name Symb. Condition For Min. Typ. Max. Unit
Output "H" Voltage Vohl
Ioh = -1mA (VDD =2.4V )
1.8 2.1 V
Output "L" Voltage Voll
Iol = 5mA (VDD =2.4V )
LIGHT
0.5 V
Output "H" Voltage Voh2
Ioh = -1mA (VDD = 3V )
1.8 2.1 V
Output "L" Voltage Vol2
Iol = 30mA (VDD = 3V )
Carrier
1.3 V
Output "H" Voltage Voh3
Ioh = -500uA (VDD =2.4V)
1.8 2.1 V
Output "L" Voltage Vol3
Iol = 5 mA (VDD = 2.4V)
IO_A port
0.5 V
Output "H" Voltage Voh4
Ioh = -500uA (VDD =2.4V)
1.8 2.1 V
Output "L" Voltage Vol4
Iol = 1mA (VDD = 2.4V)
I/O_B port
0.6 1 V
5.0 INSTRUCTION TABLE
Instruction Machine Code Function Flag/Remark
NOP 0000 0000 0000 0000 No Operation OPA Rx 0000 1000 10XX XXXX Port(A) <= (Rx)
Page 5
MYSON TECHNOLOGY
MTU423
MTU423 Revision 2.5 02/25/1997
5/7
Instruction Machine Code Function Flag/Remark
OPB Rx 0001 0000 10XX XXXX Port(B) <= (Rx) MRA Rx 0001 1010 10XX XXXX CF <= Rx3 CF ADC Rx 0010 0000 00XX XXXX (AC) <= (Rx)+(AC)+(CF) CF ADC* Rx 0010 0001 00XX XXXX (AC),(Rx) <= (Rx)+(AC)+(CF) CF SBC Rx 0010 0010 00XX XXXX (AC) <= (Rx)+(AC)B+(CF) CF SBC* Rx 0010 0011 00XX XXXX (AC),(Rx) <= (Rx)+(AC)B+(CF) CF ADD Rx 0010 0100 00XX XXXX (AC) <= (Rx)+(AC) CF ADD* Rx 0010 0101 00XX XXXX (AC),(Rx) <= (Rx)+(AC) CF SUB Rx 0010 0110 00XX XXXX (AC) <= (Rx)+(AC)B+1 CF SUB* Rx 0010 0111 00XX XXXX (AC),(Rx) <= (Rx)+(AC)B+1 CF ADN Rx 0010 1000 00XX XXXX (AC) <= (Rx)+(AC) ADN* Rx 0010 1001 00XX XXXX (AC),(Rx) <= (Rx)+(AC) AND Rx 0010 1010 00XX XXXX (AC) <= (Rx) AND (AC) AND* Rx 0010 1011 00XX XXXX (AC),(Rx) <= (Rx) AND (AC) EOR Rx 0010 1100 00XX XXXX (AC) <= (Rx) EOR (AC) EOR* Rx 0010 1101 00XX XXXX (AC),(Rx) <= (Rx) EOR (AC) OR Rx 0010 1110 00XX XXXX (AC) <= (Rx) OR (AC) OR* Rx 0010 1111 00XX XXXX (AC),(Rx) <= (Rx) OR (AC) ADCI Ry,D 0011 0000 DDDD 0YYY (AC) <= (Ry)+(D)+(CF) CF ADCI* Ry,D 0011 0001 DDDD 0YYY (AC),(Ry) <= (Ry)+(D)+(CF) CF SBCI Ry,D 0011 0010 DDDD 0YYY (AC) <= (Ry)+(D)B+(CF) CF SBCI* Ry,D 0011 0011 DDDD 0YYY (AC),(Ry) <= (Ry)+(D)B+(CF) CF ADDI Ry,D 0011 0100 DDDD 0YYY (AC) <= (Ry)+(D) CF ADDI* Ry,D 0011 0101 DDDD 0YYY (AC),(Ry) <= (Ry)+(D) CF SUBI Ry,D 0011 0110 DDDD 0YYY (AC) <= (Ry)+(D)B+1 CF SUBI* Ry,D 0011 0111 DDDD 0YYY (AC),(Ry) <= (Ry)+(D)B+1 CF ADNI Ry,D 0011 1000 DDDD 0YYY (AC) <= (Ry)+(D) ADNI* Ry,D 0011 1001 DDDD 0YYY (AC),(Ry) <= (Ry)+(D) ANDI Ry,D 0011 1010 DDDD 0YYY (AC) <= (Ry) AND (D) ANDI* Ry,D 0011 1011 DDDD 0YYY (AC),(Ry) <= (Ry) AND (D) EORI Ry,D 0011 1100 DDDD 0YYY (AC) <= (Ry) EOR (D) EORI* Ry,D 0011 1101 DDDD 0YYY (AC),(Ry) <= (Ry) EOR (D) ORI Ry,D 0011 1110 DDDD 0YYY (AC) <= (Ry) OR (D) ORI* Ry,D 0011 1111 DDDD 0YYY (AC),(Ry) <= (Ry) OR (D) IPS Rx 0100 0000 00XX XXXX (AC),(Rx) <= Port(S) IPM Rx 0100 0001 00XX XXXX (AC),(Rx) <= Port(M) IPA Rx 0100 0010 00XX XXXX (AC),(Rx) <= Port(A) IPA* Rx 0100 0010 10XX XXXX (AC),(Rx) <= Port(A) I/OA <= I/P IPB Rx 0100 0011 00XX XXXX (AC),(Rx) <= Port(B) IPB* Rx 0100 0011 10XX XXXX (AC),(Rx) <= Port(B) I/OB <= I/P STA Rx 0100 0101 00XX XXXX (Rx) <= (AC) SR0 Rx 0100 0110 00XX XXXX ACn, Rxn
AC3, Rx3
<= Rx(n+1) <= 0
SR1 Rx 0100 0110 10XX XXXX ACn, Rxn
AC3, Rx3
<=(Rx(n+1) <= 1
SL0 Rx 0100 0111 00XX XXXX ACn, Rxn
AC0, Rx0
<= Rx(n-1) <= 0
SL1 Rx 0100 0111 10XX XXXX ACn, Rxn
AC0, Rx0
<= Rx(n-1) <= 1
LDS Rx,D 0100 1DDD D0XX XXXX (AC),(Rx) <= (D)
Page 6
MYSON TECHNOLOGY
MTU423
MTU423 Revision 2.5 02/25/1997
6/7
Instruction Machine Code Function Flag/Remark
MID Rx 0101 0000 00XX XXXX (AC),(Rx)
(ID)
<= (@ID)
<= (ID+1) MSC Rx 0110 0000 00XX XXXX (AC),(Rx) <= STS3 B1 : TMRF MAF Rx 0110 0010 00XX XXXX (AC),(Rx) <= STS1 TF2 : AC=0
TF3 : CF LDA Rx 0110 1110 10XX XXXX (AC) <= (Rx) MRW
Ry,Rx
0111 00YY Y0XX XXXX (AC),(Ry) <= (Rx)
MWR
Rx,Ry
0111 10YY Y0XX XXXX (AC),(Rx) <= (Ry) JB0 X 1000 0XXX XXXX XXXX (PC) <= X if (AC0) = 1 JB1 X 1000 1XXX XXXX XXXX (PC) <= X if (AC1) = 1 JB2 X 1001 0XXX XXXX XXXX (PC) <= X if (AC2) = 1 JB3 X 1001 1XXX XXXX XXXX (PC) <= X if (AC3) = 1 JNZ X 1010 0XXX XXXX XXXX (PC) <= X
if (AC) ≠ 0 JNC X 1010 1XXX XXXX XXXX (PC) <= X if (CF) = 0 JZ X 1011 0XXX XXXX XXXX (PC) <= X if (AC) = 0 JC X 1011 1XXX XXXX XXXX (PC) <= X if (CF) = 1 JMP X 1100 0XXX XXXX XXXX (PC) <= X CALL X 1100 1XXX XXXX XXXX (STACK)
(PC)
<= (PC)+1
<= X RTS 1101 0000 0000 0000 (PC) <= (STACK) CALL Return TMS Rx 1110 0100 00XX XXXX X3 ~X0
X5 ~X4
<= (Rx)
<= (AC1,0) SF X 1110 1000 000X XXXX X0
X1 X2 X3 X4
:CF Set
:RL Set
:CO Set
:LIGHT reset to “L”
:BIT Control Set
CF RL CO LIGHT BC
RF X 1110 1010 000X XXXX X0
X1 X2 X3 X4
:CF Reset
:RL Reset
:CO Reset
:LIGHT set to “H”
:BIT Control Reset
CF RL CO LIGHT BC
ALM D,Rx 1110 1100 DDXX XXXX P3 ~ P0
P7 ~ P4 D7 , D6 = 00 D7 , D6 = 01 D7 , D6 = 1X
<= ( Rx )
<= ( AC )
1/4 DUTY
1/3 DUTY
1/2 DUTY
P7~P0 :Pre_ Divider Data
PLC X 1111 1000 0000 00X0 X1 : Reset TMRF LIDL Rx 1111 1100 XXXX XXXX ID0-3
ID4-7
<= (Rx)
<= (AC) LIDH Rx 1111 1101 XXXX XXXX ID8-11
ID12-15
<= (Rx)
<= (AC) STOP 1111 1111 1111 1111 Stop operatio
n
Symbol Description
AC : Accumulator D : Immediate Data ACn : Accumulator Bit N PC : Program Counter Rx : Memory of Address X X : Address Rxn : Memory Bit N of Address X CF : Carry Flag Ry : Memory of Working Register Y IDh,l : Index Address @ID : Memory of Index Address
Page 7
MYSON TECHNOLOGY
MTU423
MTU423 Revision 2.5 02/25/1997
7/7
6.0 TYPICAL APPLICATION CIRCUIT DIAGRAM
RESET M1 M2 M3 M4 S1 S2 S3 S4 LIGHT CARRIER VSS
VDD
OSCOUT
OSCIN
VCC
B4 B3 B2 B1 A4 A3 A2 A1
D2C4
D1
C1
VDD
C2
VDD
D3
VDD
R4 180K
C6
TEST MODE
R1
0.1K
VDD
R2
0.005K~0.01K
VDD
LED
D3
1K
IR LED
D4
3.58MHz
Q1
C1, C2 :20pf D1, D2 :(VT≅
0.2V)
C3 :100µfD3:LED C4 :0.1µf D4 :IR LED C5 :47µf C6 :0.047µf
Note: The threshold voltage of D1, D2 cannot exceed the cutin voltage of Q1, or the IR LED (D4) will always turn
on.
7.0 PACKAGE DIMENSION
300 mil 24 PDIP Unit: mil
930+/-10
R40
55+/-20
312+/-12
R10Max (4X)
80+/-20
250+/-4
350+/-20
10
18+/-2Typ 60+/-5Typ
15Min.
15Max
115Min
100Typ
35+/-5
7Typ
1245+/-10
65+/-4
65+/-4
Loading...