Electrostatic discharge voltage (Human Body Model)
V
ESD
according to ANSI EOS/ESD - S5.1 - 1993
ESD STM5.1 - 1998
Input pin
all other pins
Thermal Characteristics
Thermal resistance @ min. footprintR
Thermal resistance @ 6 cm2 cooling area
1
Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain
connection. PCB is vertical without blown air. (see page 16)
2
not subject to production test, specified by design
3
V
Loaddump
Supply voltages higher than V
150Ω resistor in GND connection. A resistor for the protection of the input is integrated.
is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 .
require an external current limit for the GND pin, e.g. with a
bb(AZ)
1)
R
th(JA
th(JA
-95-K/W
-7083
kV
± 1
± 5
Page 3
2006-03-09
ISP 762 T
j
)
p)
Electrical Characteristics
Parameter and ConditionsSymbolValuesUnit
at T
= -40...+150°C, V
= 13,5V, unless otherwise specifiedmin.typ.max.
bb
Load Switching Capabilities and Characteristics
On-state resistance
T
= 25 °C, IL = 2 A, Vbb = 9...40 V
j
T
= 150 °C
j
Nominal load current; Device on PCB 1)
T
= 85 °C, T
C
Turn-on time to 90% V
R
= 47 Ω
L
Turn-off time to 10% V
R
= 47 Ω
L
Slew rate on 10 to 30% V
R
= 47 Ω
L
Slew rate off 70 to 40% V
R
= 47 Ω
L
≤ 150 °C
j
OUT
OUT
OUT
OUT
,
,
Operating Parameters
R
ON
I
L(nom)
t
on
t
off
dV/dt
-dV/dt
on
off
-
-
70
140
100
200
mΩ
22.4-A
-90170
µs
-90230
-0.81.7
V/µs
-0.81.7
Operating voltageV
Undervoltage shutdown of charge pump
T
= -40...+85 °C
j
T
= 150 °C
j
Undervoltage restart of charge pumpV
Standby current
T
= -40...+85 °C, VIN = 0 V
j
Tj = 150°C2) , VIN = 0 V
Leakage output current (included in I
bb(off)
)
bb(on
V
bb(under)
bb(u c
I
bb(off)
I
L(off)
5-34V
-
-
-45.5
-
-
--5
VIN = 0 V
Operating current
I
GND
-0.51.3mA
VIN = 5 V
1
Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain
connection. PCB is vertical without blown air. (see page 16)
2
higher current due temperature sensor
-
-
-
-
4
5.5
10
15
µA
Page 4
2006-03-09
ISP 762 T
j
j
j
Electrical Characteristics
Parameter and ConditionsSymbolValuesUnit
at T
= -40...+150°C, V
Protection Functions
= 13,5V, unless otherwise specifiedmin.typ.max.
bb
1)
Initial peak short circuit current limit (pin 5 to 3)
T
= -40 °C, Vbb = 20 V, tm = 150 µs
j
T
= 25 °C
j
T
= 150 °C
j
Repetitive short circuit current limit
I
L(SCp)
I
L(SCr)
Tj = Tjt (see timing diagrams)
Output clamp (inductive load switch off)
at V
= Vbb - V
OUT
ON(CL)
,
V
Ibb = 4 mA
Overvoltage protection 2)
V
Ibb = 4 mA
Thermal overload trip temperatureT
Thermal hysteresis∆T
Reverse Battery
Reverse battery
Drain-source diode voltage (V
T
= 150 °C
j
3)
OUT
> Vbb)
-V
-V
ON(CL)
bb(AZ)
t
t
bb
ON
-
-
4
10
-
18
-
A
-
-
-7-
4147-V
41--
150--°C
-10-K
--32V
-600-mV
1
Integrated protection functions are designed to prevent IC destruction under fault conditions
described in the data sheet. Fault conditions are considered as "outside" normal operating range.
Protection functions are not designed for continuous repetitive operation .
2
see also V
3
Requires a 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has
to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the
voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation!
Input current has to be limited (see max. ratings page 3).
in circuit diagram on page 7
ON(CL)
Page 5
2006-03-09
ISP 762 T
j
)
Electrical Characteristics
Parameter and ConditionsSymbolValuesUnit
at T
= -40...+150°C, V
= 13,5V, unless otherwise specifiedmin.typ.max.
bb
Input
Input turn-on threshold voltage
V
(see page 12)
Input turn-off threshold voltage
V
(see page 12)
Input threshold hysteresis∆V
Off state input current (see page 12)
I
IN(off)
VIN = 0.7 V
On state input current (see page 12)
I
IN(on)
VIN = 5 V
Input resistance (see page 7)R
IN(T+)
IN(T-)
IN(T
I
--2.2V
0.8--
-0.3-
1-25µA
3-25
1.53.55kΩ
Page 6
2006-03-09
ISP 762 T
V
Terms
I
bb
V
R
GND
bb
PROFET
GND
I
GND
OUT
I
IN
IN
V
IN
V
bb
Input circuit (ESD protection)
R
ESD-
I
ZD
I
I
I
GND
IN
Inductive and overvoltage output clamp
+ V
bb
V
Z
V
I
V
L
V
ON
GND
OUT
ON
OUT
VON clamped to 47V typ.
Overvoltage protection of logic part
+
bb
V
Z2
R
I
IN
V
Z1
Logic
The use of ESD zener diodes as voltage clamp
at DC conditions is not recommended
Reverse battery protection
Logic
R
IN
R
=150Ω, RI=3.5kΩ typ.,
GND
Temperature protection is not active during
inverse current
I
Signal GND
Power
Inverse
Diode
GND
R
GND
Power GND
GND
R
GND
Signal GND
V
=6.1V typ., VZ2=V
V
-
bb
OUT
R
L
Z1
R
=3.5 kΩ typ., R
I
GND
=47V typ.,
bb(AZ)
=150Ω
Page 7
2006-03-09
ISP 762 T
GND disconnect
V
bb
VbbV
IN
PROFET
GND
IN
V
GND
OUT
GND disconnect with GND pull up
V
bb
IN
PROFET
GND
V
bb
V
IN
V
OUT
GND
Vbb disconnect with charged inductive
load
V
bb
high
V
bb
IN
PROFET
GND
OUT
Inductive Load switch-off energy
dissipation
E
bb
E
AS
E
E
E
Load
L
R
V
bb
IN
PROFET
=
GND
OUT
L
Z
L
{
R
L
Energy stored in load inductance: EL = ½ * L * I
While demagnetizing load inductance,
the enérgy dissipated in PROFET is
E
= Ebb + EL - E
AS
with an approximate solution for R
= V
R
ON(CL)
* iL(t) dt,
> 0Ω:
L
IL
*
E
AS
Page 8
L
=++
*
2
VV
*(|)*ln(
L
bbOUT CL
R
()|
1
2006-03-09
2
L
IR
*
LL
V
||
OUT CL
()
)
ISP 762 T
Typ. transient thermal impedance
Z
=f(tp) @ 6cm2 heatsink area
thJA
Parameter: D=tp/T
2
10
10
10
10
10
-1
-2
1
0
10
D=0.5
D=0.2
D=0.1
D=0.05
D=0.02
D=0.01
-7
10
D=0
-6
10
-5
-4
-3
-2
10
10
10
-1
10
10 0 10 1 10
K/W
thJA
Z
Typ. transient thermal impedance
Z
=f(tp) @ min. footprint
thJA
Parameter: D=tp/T
2
10
10
10
-1
-2
1
0
10
D=0.5
D=0.2
D=0.1
D=0.05
D=0.02
D=0.01
D=0
-7
10
-6
-5
-4
-3
-2
10
10
10
10
-1
10
10 0 10 1 10
2
t
4
10
s
p
K/W
thJA
Z
10
2
t
4
10
s
p
10
Typ. on-state resistance
R
= f(Tj) ; V
ON
160
mΩ
120
ON
100
R
80
60
40
20
0
-40 -20020 40 60 80 100 120
= 13,5V ; V
bb
= high
in
°C
T
Typ. on-state resistance
R
= f(Vbb); IL = 0.5A ; V
ON
200
mΩ
150
ON
125
R
100
75
50
25
160
j
0
051015202530
= high
in
150°C
25°C
-40°C
V
V
40
bb
Page 9
2006-03-09
ISP 762 T
Typ. turn on time
t
= f(Tj); R
on
160
µs
120
on
100
t
80
60
40
20
0
-40 -20020 40 60 80 100 120
= 47Ω
L
°C
T
Typ. turn off time
t
= f(Tj); R
off
160
µs
9V
13.5V
32V
160
j
120
100
off
t
80
60
40
20
0
-40 -20020 40 60 80 100 120
= 47Ω
L
°C
T
32V
9V
160
j
Typ. slew rate on
dV/dt
V/µs
dV
= f(Tj) ; R
on
2
1.6
on
1.4
dt
1.2
1
0.8
0.6
0.4
0.2
0
-40 -20020 40 60 80 100 120
= 47 Ω
L
°C
T
Typ. slew rate off
dV/dt
V/µs
-dV
32V
13.5V
9V
160
j
= f(Tj); R
off
2
1.6
off
1.4
dt
1.2
1
0.8
0.6
0.4
0.2
0
-40 -20020 40 60 80 100 120
= 47 Ω
L
°C
T
32V
13.5V
9V
160
j
Page 10
2006-03-09
ISP 762 T
Typ. standby current
I
bb(off)
= f(Tj) ; V
7
= 32V ; V
bb
µA
5
bb(off)
I
4
3
2
1
0
-40 -20020 40 60 80 100 120
IN
= low
°C
T
Typ. leakage current
I
= f(Tj) ; Vbb = 32V ; VIN = low
L(off)
2
µA
1.6
1.4
L(off)
I
1.2
1
0.8
0.6
0.4
0.2
0
160
j
-40 -20020 40 60 80 100 120
°C
T
160
j
Typ. initial peak short circuit current limit
I
L(SCp)
= f(Tj) ; V
14
bb
= 20V
A
10
L(SCp)
I
8
6
4
2
0
-40 -20020 40 60 80 100 120
°C
T
160
j
Typ. initial short circuit shutdown time
t
off(SC)
= f(T
3.5
j,start
) ; V
bb
= 20V
ms
2.5
off(SC)
t
2
1.5
1
0.5
0
-40 -20020 40 60 80 100 120
°C
T
j
160
Page 11
2006-03-09
ISP 762 T
Typ. input current
I
IN(on/off)
V
INlow
µA
IN
I
= f(Tj); V
≤ 0,7V; V
14
10
8
6
4
2
0
-40 -20020 40 60 80 100 120
INhigh
= 13,5V; V
bb
= 5V
Typ. input threshold voltage
V
IN(th)
= f(Tj) ; V
= 13,5V
bb
= low/high
IN
°C
T
Typ. input current
IIN = f(VIN); V
200
µA
160
140
on
off
160
j
IN
I
120
100
80
60
40
20
0
024
= 13.5V
bb
-40...25°C
150°C
V
8
V
IN
Typ. input threshold voltage
V
= f(Vbb) ; Tj = 25°C
IN(th)
2
V
1.6
1.4
IN(th)
V
1.2
1
0.8
0.6
0.4
0.2
0
-40 -20020 40 60 80 100 120
°C
T
2
V
on
off
160
j
1.6
1.4
IN(th)
V
1.2
1
0.8
0.6
0.4
0.2
0
510152025
on
off
V
35
V
bb
Page 12
2006-03-09
ISP 762 T
Maximum allowable load inductance
for a single switch off
L = f(IL); T
3000
mH
2000
L
1500
1000
500
0
00.511.5
=150°C, Vbb=13.5V, R
jstart
L
A
I
L
=0Ω
2.5
Maximum allowable inductive switch-off
energy, single pulse
EAS = f(IL); T
2500
mJ
AS
E
1500
1000
500
0
00.511.5
= 150°C, Vbb = 13,5V
jstart
A
2.5
I
L
Page 13
2006-03-09
Timing diagrams
ISP 762 T
Figure 1a: Vbb turn on:
IN
V
bb
V
OUT
Figure 2b: Switching a lamp,
IN
OUT
I
L
t
t
Figure 2a: Switching a resistive load,
turn-on/off time and slew rate definition
IN
V
OUT
90%
10%
I
L
t
on
dV/dton
t
off
dV /d to ff
Figure 2c: Switching an inductive load
IN
V
OUT
I
L
t
t
Page 14
2006-03-09
ISP 762 T
Figure 3a: Turn on into short circuit,
shut down by overtemperature, restart by cooling
IN
t
I
L
I
t
t
off(SC)
L(SCp)
m
I
L(SCr)
t
Heating up of the chip may require several milliseconds, depending
on external conditions.
Figure 4: Overtemperature:
Reset if Tj < T
jt
Figure 5: Undervoltage restart of charge pump
V
o n
V
b b ( u c p )
V
b b ( u n d e r )
V
b b
IN
V
OUT
T
J
t
Page 15
2006-03-09
Package and ordering code
all dimensions in mm
ISP 762 T
Package:
Ordering code:
PG-DSO-8SP000221228
Printed circuit board (FR4, 1.5mm thick, one
layer 70µm, 6cm2 active heatsink area ) as
a reference for max. power dissipation P
The information herein is given to describe certain components and shall not be considered as a guarantee
of characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement,
regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your
nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide
(see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the
types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device
or system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
nominal load current I
resistance R
thja
L(nom)
and thermal
tot
Page 16
2006-03-09
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.