Datasheet HA13571FR Datasheet (HIT)

Page 1
HA13571FR
Combo (Spindle & VCM) Driver for HDD
ADE-207-269 (Z)
1st Edition
February 1999
Description
The HA13571FR is combination of Spindle and VCM Driver designed for HDD and have following functions and features.
2.2 A/phase spindle motor driver
1.5 A VCM driver
Soft switching control circuit
B-EMF detection circuit
Selectable PWM or linear drive (spindle motor driver)
Power down brake & retract
PWM DAC & filter (VCM driver)
5 V, 12 V power supply monitor
Watch dog timer
Features
Low thermal resistance package (θj-a ≤ 25°C/W)
Full programable commutation structure
Low output saturation voltageSpindle motor driverVCM driver
Built-in PWM DAC with filter
Low noise drive by soft switching
Page 2
HA13571FR
Pin Arrangement
RETADJ
NC1
VCMN
NC NC
BSTFLT BSTCP1 BSTCP2
OSCTC
GND GND
SDRVW
NC
SISENH
SISINK SISINK
NC
SDRVN
SCOMP
SDRVU
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
VISENHNCVCMP
60
1 2 3 4 5 6 7 8 9 1011121314151617181920
VCMP
VCMP
VCCV12
SHPWR
POR12VADJ
VCMREF
WDTIN
GNDNCGND
595857 56 555453 52 515049 48 474645 44 434241
VISENL
POR5VADJ
CPORNCPORN
VISENS
VCMINP
40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21
VFLTOUT VFLTINP VFLTINP VREFOUT VPCNTL VIPWMH VIPWML NC NC NC NC GND NC VCCA12 SENU SENV SENWIS SCNTL1 SCNTL2 GND (CTLAMP)
2
Notes: 1.
NC
NC
NC
NC
TEMP
SDRVV
SLOPEC
SPWMTC
All same name pins must be connected together.
2.
"NC" and "NC1" denotes no connection pins.
3.
ALL "NC" pins must be connected to GND or opened.
4.
"NC1" pin must be connected to VCMN or opened.
VCCS12
(Top view)
NC
GND
SISENL
NC
GND
SLOPER
VCC5
SIPWM
SPWMFLT
SMODE
SCNTL3
Page 3
Block Diagram
HA13571FR
SLOPER
SLOPEC
SENU
SPWMFLT
VREFOUT
VIPWML
VIPWMH
OSCTC
15
3
26
25SENV
24SENWIS 23SCNTL1 22SCNTL2 20SCNTL3
0.5VCC5
19SMODE
18SIPWM 17
0.5VCC5
51WDTIN 36VPCNTL
37
34 35
69
SOFT
SWITCH
CONTROL
MPX
SMODE
COMP
PWM
DECODER
FILTER
SLEEP
VREFOUT
4.0V
PWM
DECODER
SLEEP
BOOSTER
BST
BST
CP2
CP2
0.1µF
SLEEP SOFT
0.75VCC5
0.25VCC5
0.5VCC5
WATCH DOG
SLEEP VREF 1.4V
VBST
BST FLT
5V
16
+
+
+
INDUCTANCE MODE
PWM MODE LINEAR
+
TIMER
FILTER
VFLT INP
34k
SLEEP U
V
W
ICOMP
4038,39
VFLT OUT
SPWMTCVCC5
Icomp
4166
470pF
5
ONE
SHOT
SOFT
+
0.9V
0.75VCC5
VTRI-
LEVEL
0.25VCC5
VISENS POR
VCM INP
VCCA12
VBST
LOGIC
DECODER
DISABLE
ISENSE AMP
ISENSE
SLEEP
DISABLE
VCCV12/2
VREF 1.4V
POWER
MONITOR
POR 5V ADJ
Rx
SPN DRIVER
+
+
CONTROL AMP
TSD
SLEEP
POR
VBST
VCM ENABLE
5/32 VCCV125/16 VCC5
12V ADJ
12V
0.47µF
VCCS12
827
TAB
U
V
W
THERMAL
SHUT
DOWN
RETRACT
DRIVER
VCM
DRIVER
POR
DETECTOR
4553466867 42
CPOR
5V
56,57,58
5V
POR
11,14,21,29,
48,50,70,71
SDRVN
78
SDRVU
80
SDRVV
1
72
75,76
SISENH
74 10
SISENL SCOMP
79
2
TEMP
SHPWR
54
RETADJ
61
VCCV12
55
VCMN
63
VCMP
47
VISENL VISENH
60
VCMREF
52
43 PORN
SDRVW
SISINK
Rnf
Rs
Rf Cf
SBD1
C133
3
Page 4
HA13571FR
Truth Table
Table 1 Input to Output Drivers
SCNTL1 SCNTL2 SCNTL3 SDRVU SDRVV SDRVW
HHLLZH HLLZLH HLHHL Z LLHHZL LHHZHL LHLLHZ LLLZZZ HHHLL L
Note: Z = High impedance
Table 2 Spindle Driver Mode Control
SMODE SIPWM Spindle Driver Mode
H Duty 50% Linear Mode (High slew rate) * H Duty 40% Linear Mode (Low slew rate) * M X Inductive Sense Mode L X B-EMF Sense in PWM Drive Mode
Note: 1. X = Don’t care
2. Slew rate mode is commutated at synchronized with the up edge of SLOPEC.
2
2
Table 3 VCM Control
WDTIN VPCNTL VCM Mode
H or L X Park M H Enable M M Disable M L Park
Table 4 Temp Output
TEMP Status
H Warning or TSD L Normal
4
Page 5
Table 5 Output Status
HA13571FR
PORN TSD SLEEP *
Driver L H Inactive Active L H L H
SPN Output Brake for
Retract
VCM Output Retract
(Power off)
Notes: 1. X = Don’t care
2. Z = High impedance
3. SLEEP SCNTL1 = SCNTL2 = SCNTL3 = Low WDTIN = VPCNTL = Middle
Enable X Z X Z X
Enable X Z X Z X
3
TEMP
5
Page 6
HA13571FR
Table 6 SCNTL, WDTIN and VPCNTL Mode
SCNTL WDTIN VPCNTL Modes of Operation Input States Input State Input State at Power Good (PORN = H)
SCNTL1 SCNTL2 SCNTL3 Spindle Driver
See Table 1 See Table 1 See Table 1 X X Enable L L L X X Disable H H H X X Brake
SCNTL WDTIN VPCNTL Modes of Operation Input States Input State Input State at Power Good (PORN = H)
SCNTL1 SCNTL2 SCNTL3 VCM Driver
X X X L or H X Park X X X Middle H Enable X X X Middle Z Disable X X X Middle L Park
SCNTL WDTIN VPCNTL Modes of Operation Input States Input State Input State at Power Good (PORN = H)
SCNTL1 SCNTL2 SCNTL3 Spindle & VCM Driver
L L L Middle Z Sleep Mode * Note: Sleep signal is generated by SCNTL and VPCNTL.
TEMP output is depend on internal TSD and internal TEMP. (see figure 1)
TEMP (Internal)
TEMP (Output)
6
Tsoff
ThysTSD (Internal)
Twar
TEMP output logic (1) TEMP output logic (2)
TSD
TEMP
Figure 1 TEMP Output Logic
TEMP
Page 7
Table 7 Function Powered on Vs Mode Operation
HA13571FR
Function
UPPER BOOSTER
UPPER DRIVERS
LOWER DRIVERS COMP
CONTROL AMP
Spindle enable ON ON ON ON ON Spindle disable ON OFF OFF ON OFF PORN low OFF OFF ON OFF OFF
1
Park *
2
Sleep *
Function
ON ON/OFF ON/OFF ON ON/OFF OFF OFF OFF OFF OFF
ONE SHOT
ICOMP (Current comparator)
PWM DECODER FILTER
SMODE COMP
ISENSE AMP
LOGIC DECODER
Spindle enable ON ON ON ON ON ON Spindle disable ON ON ON ON ON ON PORN low OFF OFF OFF OFF OFF ON
1
Park *
2
Sleep *
Function
ON ON ON ON ON ON OFF OFF OFF OFF OFF ON
PWM DECODER
12V and 5V COMP
FILTER AMP
PORN DETECTOR
RETRACT CIRCUIT TSD
VCM enable ON ON ON ON OFF ON VCM disable ON ON ON ON OFF ON
1
Park * Sleep *
2
ON ON ON ON ON ON OFF ON OFF ON OFF ON
PORN low OFF ON OFF ON ON ON
Function VPCNTL
VREFOUT BUF VREFOUT SENSE1
VCM DRIVER
SLEEP FUNCTION
VCM enable ON ON ON ON ON OFF VCM disable ON ON ON ON OFF OFF
1
Park * Sleep *
2
ON ON ON ON OFF OFF ON OFF OFF OFF OFF ON
PORN low ON OFF OFF OFF OFF ON Note: 1. Park signal is generated by VPCNTL.
2. Sleep signal is generated by SCNTL and VPCNTL.
7
Page 8
HA13571FR
Timing Chart
1. SPN Input to Output Drivers
Control Lines SCNTL1
SCNTL2
SCNTL3
Output Drivers
PWM Mode
SDRVU
PWM PWM
Z
Z
ZZZ
SDRVV
SDRVW
Output Drivers
Linear Mode
SDRVU
SDRVV
SDRVW
Comparators SENU
SENV
SENW
PWM
Z
PWM PWM PWM
Z Z Z
Z
Z Z Z
Z Z
Z
Z Z
PWM
Z
Z
Z Z
Z
Z Z
PWM
Z
Z
ZZZ
Note: "Z" = High impedance
8
Page 9
2. Soft Switching
B-EMF 0
Control Lines SCNTL1
SCNTL2
SCNTL3
Output Voltage SDRVU
SDRVV
HA13571FR
UVW
0
0
SDRVW
Output Current SDRVU
SDRVV
SDRVW
Comparators SENU
SENV
SENW
0
0
0
0
9
Page 10
HA13571FR
Application
ASIC
µPC
ADC
R108
C117
0.47µ
C101
4.7µ
C102 470p
0.047µ
1000p
R102
R103
R106
C113
C103
C119
C104
R101 34k
VCC5 VCCS12VCCA12
SPWMTC
SLOPER SLOPEC
SENU SENV SENWIS SCNTL1 SCNTL2 SCNTL3 SMODE SIPWM VIPWML VIPWMH SPWMFLT
WDTIN TEMP PORN VPCNTL VFLTINP VREFOUT VFLTOUT VCMINP VISENS
R107 C116
5V
Ry 15
C114
1.0µ
SDRVN SDRVU
SDRVV
SDRVW
SISINK
SISENH
SISENL
SCOMP
GND (CTLAMP)
OSCTC BSTCP1 BSTCP2
BSTFLT
HA13571FR
SHPWR VCCV12 RETADJ
VISENL
VISENH
VCMREF
POR12VADJ
POR5VADJ
TAB
C133
4.7µ
VCMN
VCMP
CPOR
C105
0.22µ
Rx 15
C118
0.02µ
R2
C112
0.47µ
Rnf
0.33
C109
0.1µ
C108
2.2µ
C107
2.2µ R1
C111
0.47µ
C110 390p
Rs
0.33
C120
0.01µ C131
220p C132
220p
SBD1
Unit R :
D1 D2 D3
C115
0.47µ
12V
C121
4.4µ
Rf
Cf
C : F
10
Page 11
HA13571FR
External Components
Reccomended
Parts No.
R1, R2 Setting of Retract voltage R101 34 k PWM time off for Spindle driver R102, R103 Setting of VCM driver gain R106 100 k Time constant for Soft switching R107 Phase compensation for VCM driver R108 TBD for Watch dog timer Rnf 0.33 Current sensing for Spindle driver Rs 0.33 Current sensing for VCM driver Rx, Ry 15 for Filter VCCA12 and VCC5 Rf Snubber for VCM driver C101 4.7 µF 5V power supply by passing C102 470 pF PWM time off for Spindle driver C103 0.047 µF PWM filter for Spindle driver C104 1000 pF PWM filter for VCM driver C105 0.22 µF Delay for POR C107 2.2 µF Capacitor for Retract voltage supply C108 2.2 µF for Booster C109 0.1 µF for Booster C110 390 pF Time constant for Oscillation C111 0.47 µF Phase compensation for Spindle driver C112 0.47 µF 12V power supply by passing C113 0.003 µF Time constant for Soft switching C114 1.0 µF 12V power supply by passing C115 0.47 µF 12V power supply by passing C116 Phase compensation for VCM driver C117 0.47 µF Reference output by passing C118 0.02 µF Prevent from oscillation during PWM drive C119 TBD for Watch dog timer C120 0.01 µF Reduction of noise from 12V power supply for VCM driver C121 4.4 µF Reduction of noise from 12V power supply for VCM driver C131 220 pF (Option) Filter for POR12VADJ C132 220 pF (Option) Filter for POR5VADJ C133 * 4.7 µF Reduction of noise from 12V power supply for VCM driver
Value Purpose
11
Page 12
HA13571FR
External Components (cont)
Reccomended
Parts No.
Cf Snubber for VCM Driver D1 to D3 TBD Power rectification for Retract driver SBD1 * HRU0302A Prevent of malfunction for Retract driver
Note: Retract circuit sometime will be malfunctioning by means of negative voltage on the terminal
VCMREF (pin 52) in the following sequence. If you want to countermeasure this, you need to avoid the following sequence or to attach the
Schottky Barrier Diode (SBD1) between terminal VCMREF and GND. (see figure 2)
1. Spindle motor driver is active and VCM driver is disable by (VPCNTL = Middle).
2. Power supply goes to low level after above condition 1 and retract circuit becomes active by (POR = L).
Value Purpose
C117
0.47µF
37 VREFOUT
C133
4.7µF
Figure 2
52VCMREF
C120
0.01µF
SBD1 HRU0302A
12
Page 13
HA13571FR
Absolute Maximum Ratings (Ta = 25°C)
Item Symbol Rating Unit Notes
Supply voltage +12V Vcc12 –0.3 to 13.5 V 1 Supply voltage +5V Vcc5 –0.3 to 6 V 1 Output voltage +12V (DC) Vsdrv (DC) –0.3 to 15 V 5 Output voltage +12V (PEAK) Vsdrv (PEAK) –2.0 to 17 V 5, 6 Output voltage +5V Vout –0.3 to 6 V 7 Output current spindle driver Iospn (DC) 2.2 A 2 Output current VCM driver Iovcm (DC) 1.5 A 2 Input voltage Vi –0.3 to Vcc5 V 3 Power dissipation P Junction temperature Tj 160 °C1 Storage temperature Tstg –55 to +125 °C
Notes: 1. Operating range are as follows.
Vcc12 = 10.8 to 13.2 V VccA12 = 10.4 to 13.2 V Vcc5 = 4.3 to 5.5 V Tjopr = 0 to 130°C
2. Refer to ASO shown below. Operating locus must be within the ASO.
3. Applied to pin SCNTL1, SCNTL2, SCNTL3, SMODE, SIPWM, VPCNTL, VIPWML and VIPWMH.
4. Thermal resistance θj-a 25°C/W with 4 layer multi glass-epoxy board.
5. Applied to pin SDRVN, SDRVU, SDRVV, SDRVW, VCMN and VCMP.
6. PEAK time must be shorter than 1 ms.
7. Applied to pin PORN and TEMP.
T
5W4
2.2
2.0
1.0
0.5
0.2
Corrector Current Ic (A)
0.1
The voltage between Corrector and Emitter Vce (V) The voltage between Corrector and Emitter Vce (V)
Spindle Driver VCM Driver
2.0
t = 1ms
t = 10ms
t = 100ms
210152015
1.0
0.5
0.2
Corrector Current Ic (A)
0.1
t = 1ms
t = 10ms
t = 100ms
210152015
Figure 3 ASO
13
Page 14
HA13571FR
Electrical Characteristics (Ta = 25°C, Vcc5 = 5.0 V, Vcc12 = 12 V)
Applica-
Item Symbol Min Typ Max Unit Test Conditions
+5V supply current Icc5s 9.0 11.5 mA Sleep mode VCC5
Icc5 15 18.5 mA
+12V supply current Icc12s 3.0 4.5 mA Sleep mode VCCS12
Icc12 40 50 mA SMODE = High IccA12 12.5 16 mA SMODE = High VCCA12 1
Total power dissipation Pdiss 81 110 mW Sleep mode
Vcc5 = 5.0V, Vcc12 = 12.0V
Logic inputs1
Logic inputs2
Logic inputs3
Logic inputs4
Input current Iin ±10 µA Vin = 0 to Vcc5 SCNTL1
High level voltage Vih 3.5 V Low level voltage Vil 1.5 V High level voltage Vih 3.9 V SMODE
Middle level voltage Vim 1.4 3.6 V Low level voltage Vil 1.1 V High level current Iih 80 100 133 µA VIN = 5V Low level current Iil –80 –100 –133 µA VIN = 0V High level voltage Vih 3.9 V VPCNTL
Middle level voltage Vim 1.4 3.6 V Low level voltage Vil 1.1 V High level current Iih 80 100 133 µA VIN = 5V WDTIN =
Middle Low level current Iil –80 –100 –133 µA VIN = 0V High level current Iih 480 600 800 µA VIN = 5V WDTIN =
High or Low Low level current Iil –80 –100 –133 µA VIN = 0V High level voltage Vih 3.8 V WDTIN
Middle level voltage Vim 1.3 3.5 V Low level voltage Vil 1.0 V Input current Iin ±20 µA Vin = 0 to Vcc5
ble pins Note
VCCV12 VCCA12
VCC5 VCCS12 VCCV12 VCCA12
SCNTL2 SCNTL3
14
Page 15
Electrical Characteristics (cont)
Item Symbol Min Typ Max Unit Test Conditions
SPN output drivers
SPN PWM DAC & filter
PWM one shot
Total output saturation voltage
Leakage current Icex1 0.1 mA VIN = 14V SDRVU
Recirculating diode forward voltage
Overvoltage protection clamp
Input current Iin ±300 µA Vin = –0.3 to Vcc5 SIPWM
High level voltage Vh 3.5 V Low level voltage Vts 1.5 V PWM pulse width Tpwm 23 ns Output resistance
at Spwmflt Output voltage Vflt100 1.79 ±10% V Duty = 100%
Sink current Isk 410 580 750 µA Spwmtg = 3.0V SPWMTC
Low clamp voltage Vclmp 1.33 1.53 1.73 V for discharging Threshold voltage Vthst 3.0 3.3 3.6 V for discharging
Vsatspn 1.1 1.4 V Iout = 1.2A, Tj = 25°C SDRVU
2.0 2.6 V Iout = 2.2A Tj = 25°C — 2.6 3.74 V Tj = 125°C1
Icex2 0.6 1.2 mA Test source current
from middle phase RL = 11/phase
Ifrdu 20 mA Vfrdu = 2.0V,
Vcc12 = 0V
Vfrdl1 1.25 1.4 V If = –1.0A 1
Vfrdl2 1.75 2.2 V If = –2.2A Vclp 14.4 15.4 17 V Iclp = 100mA
Rsout 34 ±20% k SPWMFLT
Vflt50 0.93 ±10% V Duty = 50% Vflt0 50 100 mV Duty = 0%
Vthend 1.47 1.67 1.87 V for charging
HA13571FR
Applica­ble pins Note
SDRVV SDRVW
SDRVV SDRVW
15
Page 16
HA13571FR
Electrical Characteristics (cont)
Item Symbol Min Typ Max Unit Test Conditions
PWM one shot
B-EMF compa­rators
Control amp & sense amp
One-shot off time Toff 9 11 13 µs Ext. R = 34k,
C = 470pF
One-shot minimum on time
Common mode input voltage
Common mode clamp resistor
Offset voltage Vcos ±5 mV Sdrvn = 1.0V to Vcc12-2V
Output low voltage Vsink 0.5 V Isink = 1.0mA SENU
Output high voltage Vsource 2.7 V Isource = 0.04mA Center tap voltage VCT 1.0 VCC12
Isense input current Isen –10 24 µA SISENH = 0 to 0.4V SISENH
Isense amp voltage gain
SISENH voltage V100 348 ±18 mV Rnf = 0.33 D = 100%
Current loop bandwidth
ICOMP threshold voltage
Ton 2.1 2.8 3.5 µs
Vcm –0.4 VCC12
–2.0
Rclp 7 10 13 k Sdrvn = 6V
Vosc ±7 mV Variation in U, V, W
–2.0
Ksp 4.9 ±4.6% V/V Ksp = Spwmflt/Sisenh
348 ±18 mV D = 100% V50 170 ±18 mV D = 50% V5 7 17 mV D = 5% V0 0.0 0.0 5 mV D = 0% Bwd 1.8 3.0 kHz Rnf = 0.33W, Rm = 12
Vth 180 ±15 mV No Load
—80±11 mV Smode = 2.5V,
V SDRVU
V SCNTL1, 2, 3 = “L”
RL = 2/phase VPCNTL = “H” or “M”
Rs = 0.33
Lm = 1.0mH, C111 = 0.47µF
No Rnf
Sisenh = 0 to 5V
Tj = 125°C
Spwmflt =
1.0V Spwmflt =
0.5V
Applica­ble pins Note
SPWMTC 1
SDRVV SDRVW SDRVN
SENV SENWIS
SDRVN
SISENL
SISENH SPWMFLT
SISINK 1
1
SENWIS
16
Page 17
Electrical Characteristics (cont)
Item Symbol Min Typ Max Unit Test Conditions
Soft Switch
VCM PWM DAC
Filter Output
SLOPER Output voltage
SLOPEC Source current
SLOPEC Sink current
SLOPEC High voltage
SLOPEC Low voltage
Input current Iin ±200 µA Vin = 0V to 5V VIPWML
Input high voltage Vhi 3.5 V Input low voltage Vli 1.5 V Input PWM
frequency PWM pulse width Tpwm 23 ns PWM DAC
resolution Positive full scale
voltage Negative full scale
voltage Current ratio –0.5 32 +1.0 A/A MSB/LSB Output
impedance
impedance Phase shift 1.2 deg. f = 500Hz,
Cutoff frequency Fc 33 50 75 kHz Gv = –3dB 1 Attenuation 24 ±10 dB f = 200kHz
Vsoftr 1.45 1.90 2.35 V R106 = 100k SLOPER
Isource 7 9 12 µA R106 = 100k SLOPEC
Isink 7 9 12 µA R106 = 100k
Vhsoft 3.5 4.4 5.5 V High SR
2.0 2.4 2.8 V Low SR
Vlsoft 0.9 1.1 1.3 V
Fpwm 625 kHz 1
14 bits 1
Vflp Vrefout
+1.0
Vfln Vrefout
–1.0
Rout 3.75 ±17% k
Rout 40 Ω∆Vout = 10mV VFLTOUT
V VFLTINP 1
—V 1
Vfltinp to Vfltout
HA13571FR
Applica­ble pins Note
VIPWMH
1
17
Page 18
HA13571FR
Electrical Characteristics (cont)
Item Symbol Min Typ Max Unit Test Conditions
Filter Output voltage Vflt0 Vrefout
–2.03
Vflt50 Vrefout ±0.05 V Vipwml & Vipwmh
Vflt100 Vrefout
+2.03
Current sense amp
VCM output driver
Output voltage symmetry
Input current Iin –200 400 µA VISENS
Output offset voltage
Output resistance Rout 25 Sink and Source Visenl, Visenh
operating range Unity gain
bandwidth Gain G10 3.8 4.0 4.2 V/V VISENH/L = 0V
Power supply rejection ratio
Total output saturation voltage
Output leakage Ilk 0.5 mA Tj = 25°C
Output quiescent voltage
Recircurate diode voltage
Vfltsym ±140 mV | Vflt100 – Vrefout |
Vos 10 ±20 mV Visenh – Visenl = 0V
Vr1 0 12 V Gain and Offset
BW1 2.0 3.0 4.0 MHz 1
G16 3.8 4.0 4.2 V/V VISENH/L = 6V G112 3.8 4.0 4.2 V/V VISENH/L = 12V G1 0 ±2% V/V (G112 – G16)/G16
PSRR 40 52 dB F 20kHz 1
Vsatvcm — 1.5 1.875 V Iout = 1.5A Tj = 25°C VCMN
1.95 2.85 V Tj = 125°C1
Vq Vcc12/2 ±5% V
VRD 2.0 2.5 V Io = –1.5A 1
±0.1 V Vipwml & Vipwmh
Duty = 0%
Duty = 50%
±0.1 V Vipwml & Vipwmh
Duty = 100%
| Vfit0 – Vrefout |
at 1/2 Vcc
Valid
(G10 – G16)/G16
BSTFLT = VCCV12 = 14V
Applica­ble pins Note
VFLTOUT
VISENH VISENL
VCMP
18
Page 19
HA13571FR
Electrical Characteristics (cont)
Applica-
Item Symbol Min Typ Max Unit Test Conditions
VCM output driver
Retract (Power on)
Retract (Power off)
Brake Brake voltage Vbrks 0.5 0.8 V Ibrk = 1.2A
Vrefout Output voltage Vref 4.0 ±0.2 V Io = 10.0mA, Cl = 10nF VREFOUT Booster Output voltage Vbst Vcc12
Output offset current
Transconductance Gm 0.5 ±5% A/V Vin = FLTOUT –3dB bandwidth BW 300 ±30% kHz Vout = VCMN, Rl = 15 Total harmonic
distortion Time of crossover
distortion
Symmetry Vcm drivers VCMN VCMP
Linearity Vcm drivers VCMN VCMP
Overvoltage protection clamp
Reference volatge Vvcmref — Vcc12/2 ±5% V 20k/20k VCMREF Output voltage Vretout 0.65 0.9 1.3 V Rs = 0.33, RL = 15
Saturation voltage (Lower)
Min. retract current Iret 15 mA VIN = VSHPWR + VF(IM10)
Max. retract voltage (VCMN–VCMP)
Ios ±28 mA Rs = 0.33, Rl = 10,
R102 = 10k, R103 = 6.6k C106, R107 = OPEN
THD 1.0 2.5 % f = 1kHz, Vout = 1Vrms
Tcro 2 5 µs Ramp input
VCMINP 20µs R102 = 10k, R103 = 6.6k C106, R107 = OPEN
RATIO = I2/I1
L =
| I2–I0 |/ | I1–I0 |
Vclp2 14.6 15.8 17.0 V Iclp2 = 100mA
VsatL 0.12 0.25 V VCMP
Vret 1.3 V VIN = 8V, Rm 4,
0.95 1.02 1.09 Ratio I2 = Irvcm at D = 10% I1 = Irvcm at D = 90% I0 = Irvcm at D = 50% Rs = 0.33, RL = 10 R103/R102 = 10k/6.6k
0.99 1.02 1.05 Ratio
R1 = 33k, R2 = 10k VPCNTL = “L”
VIN = 2.0–VFSub(@20mA)
R1 = 33k, R2 = 10k
SCNTL1 to 3 = High
+0.8 Vcc12
+0.8 Vcc12
+0.8
Vcc12
Vcc12
Vcc12
V Ispn = 0A, Ivcm = 0A BSTFLT
+3.7
V Ispn = 2.2A, Ivcm = 0A
+3.7
V Ispn = 0.5A, Ivcm = 1.5A
+3.7
ble pins Note
VISENH
VCMN VCMP
VCMN
VCMN VCMP
SDRVU SDRVV SDRVW
1
19
Page 20
HA13571FR
Electrical Characteristics (cont)
Applica-
Item Symbol Min Typ Max Unit Test Conditions
Power Monitor
POR detector
Thermal shut­down
OSC Frequency range fosc 200 250 300 kHz OSCTC TEMP Output low voltage Vol2 1.0 V Iol = 0.1mA TEMP
+12V Threshold voltage
+5V Threshold voltage
Hysteresis on Vcc12 Hv12 200 ±60 mV VCC12 Hysteresis on Vcc5 Hv5 50 ±15 mV VCC5 POR12VADJ voltage V12adj 1.86 ±2% V 19.2k/3.52k POR12V
POR5VADJ voltage V5adj 1.54 ±2% V 9.6k/4.27k POR5V
Output low level voltage
Output high level voltage
PORN pull-up resistance
Charge current for CPOR
CPOR threshold voltage
POR delay Tdpor 40 ms Cpor = 0.22µF PORN Power supply Max.
pulse duration Warning temperature Twar 130 145 160 °C2
Shut-down temperature
Difference temperature
Thermal hysteresis Thys 30 ±10 °C1
Pull-up resistnace Rpu2 50 ±20% k Leakage current Ilk2 ±10 µA Vcc5 = 6V, Vo = 6V
Vt12 9.0 ±0.3 V Vcc5 = 5V VCC12
Vt5 4.5 ±0.1 V Vcc12 = 12V VCC5
Vol 0.5 V Iol = 2mA, Vcc5 = 4.35V
Vcc12 = 8.7V
Voh Vcc5
–0.15
Rpu 15 ±20% k
Icpor 5 8 12 µA CPOR
Vcpor 1.4 V
Trpulse 5.0 µs
Tsoff 145 160 175 °C2
T101520°C Tsoff – Twar 2
V Vcc5 = 4.7V, Vcc12 = 9.5V
Note: 1. Guaranteed by design.
2. Function test only.
ble pins Note
ADJ
ADJ PORN
20
Page 21
Package Dimensions
16.4 ± 0.2
16.0 ± 0.2
14.0
HA13571FR
Unit: mm
( ) : reference value
(12.2)
4160
61
16.4 ± 0.2
16.0 ± 0.2 80
0.22 ± 0.05
*
0.20 ± 0.04
0.08
2.25
0.60
0.08
*Dimension including the plating thickness
Base material dimension
40
0.5 (12.2)
21
201
M
1.40
+0.03
0.07
1.70 Max
0.50 ± 0.2
1.0 0° 8°
0.17± 0.05
0.15 ± 0.04
*
0.07
Hitachi Code JEDEC EIAJ Weight
(reference value)
FP-80TA
 
1.3 g
21
Page 22
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail­safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL NorthAmerica : http:semiconductor.hitachi.com/
For further information write to:
Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223
Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm
Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322
Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533
Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180
Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.
Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX
Loading...