The CXP811P24 is a CMOS 8-bit microcomputer
which consists of A/D converter, serial interface,
timer/counter, time base timer, PWM output, as well
as basic configurations like 8-bit CPU, PROM, RAM
and I/O port. They are integrated into a single chip.
Also the CXP811P24 provides power-on reset
function, sleep/stop function which enables to lower
power consumption .
The CXP811P24 is the PROM-incorporated version
of the CXP81120/81124 with built-in mask ROM.
This provides the additional feature of being able to
write directly into the program. Thus, it is most suitable
for evaluation use during system development and
for small-quantity production.
Features
• A wide instruction set (213 instructions) which covers various types of data
— 16-bit operation/multiplication and division/Boolean bit operation instructions
• Minimum instruction cycle250ns at 16MHz (4.5 to 5.5V)
333ns at 12MHz (3.0 to 5.5V)
• Incorporated PROM capacity24K bytes
• Incorporated RAM capacity832 bytes
• Peripheral functions
— A/D converter8-bit, 8-channel, successive approximation system
(Conversion time: 20µs at 16MHz)
— Serial interfaceIncorporated buffer RAM (1 to 32 bytes auto transfer), 1 channel
Incorporated 8-bit and 8-stage FIFO
(1 to 8 bytes auto transfer), 1 channel
— Timer8-bit timer, 8-bit timer/counter, 19-bit time base timer
— PWM output12 bits, 2 channels
• Interruption10 factors, 10 vectors, multi-interruption possible
• Standby modeSleep/stop
• Package64-pin plastic QFP/LQFP
64 pin LQFP (Plastic)64 pin QFP (Plastic)
Structure
Silicon gate CMOS IC
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
(Port F)
8-bit port. Lower 4 bits are for input; upper
4 bits are for output.
Lower 4 bits also serve as standby release
Analog input to A/D
converter. (8 pins)
input.
(8 pins)
Serial clock (CH0) I/O.
Serial data (CH0) output.
Serial data (CH0) input.
Serial intreface (CH0) chip select input.
Timer/counter rectangular wave output.
(Port G)
5-bit port. Lower 2 bits
are for output; upper
3 bits are for I/O.
I/O port can be set in a
unit of single bits.
(5 pins)
Serial clock (CH1) I/O.
Serial data (CH1) output.
Serial data (CH1)
input.
Input to request external
interruption. Active at the
falling edge.
Connects a crystal oscillator for system clock. When supplying the
external clock, input the external clock to EXTAL pin and input opposite
phase clock to XTAL pin.
System reset; active at Low level. RST pin is I/O pin, which outputs Low level
by incorporated power-on reset function when power turns on.
– 5 –
Page 6
CXP811P24
Symbol
Vpp
MP
AVDD
AVREF
AVSS
VDD
VSS
I/ODescription
Power supply for built-in PROM writing.
Connect to VDD for normal operation.
Input
Test mode pin.
Always connect to GND.
Positive power supply of A/D converter.
Input
Reference voltage input of A/D converter.
GND of A/D converter.
Positive power supply.
GND. Connect both VSS pins to GND.
– 6 –
Page 7
Input/Output Circuit Formats for Pins
CXP811P24
Pin
PA0 to PA7
PB0 to PB7
16 pins
PC0 to PC7
Port A
Port B
Data bus
Port C
Data bus
Ports A, B
RD (Ports A, B)
Port C data
Port C direction
“0” when reset
Circuit formatWhen reset
Hi-Z
Output becomes active from high impedance
by data writing to port register.
Input protection
circuit
IP
Hi-Z
8 pins
PD0 to PD7
8 pins
PE0/INT0
1 pin
Port D
Port E
Port E
RD (Port C)
Port D data
Port D direction
“0” when reset
Data bus
RD (Port D)
Standby release
Edge detection
Schmitt input
IP
Schmitt input
IP
Hi-Z
INT0
Hi-Z
Data bus
RD (Port E)
PE1/EC/INT2
1 pin
IP
EC/INT2
Hi-Z
Data bus
RD (Port E)
– 7 –
Page 8
CXP811P24
A
A
AAA
Pin
PE2/PWM0
PE3/PWM1
2 pins
PF0/AN0
to
PF3/AN3
4 pins
Port E
PWM
Hi-Z control
Port E data
Port E function selection
“0” when reset
Data bus
RD (Port E)
Port F
Circuit formatWhen reset
MPX
AA
Input multiplexer
IP
RD (Port F)
Edge detection
A/D converter
Data bus
Standby release
Hi-Z
Hi-Z
PF4/AN4
to
PF7/AN7
4 pins
PG3/TO
1 pin
Port F
Data bus
Port G
Port F data
RD (Port F)
Port G function
selection
“0” when reset
From timer counter
Port G data
“1” when reset
Port F function
selection
“0” when reset
MPX
IP
Input multiplexer
Hi-Z
A/D converter
High level
– 8 –
Page 9
CXP811P24
A
Pin
PG4
1 pin
PG5/SCK1
PG6/SO1
2 pins
Port G
Port G
Data bus
Port G data
“1” when reset
Port G funciton
selection
“0” when reset
SCK1 out, SO1
Serial clock 1/data 1
output enable
Port G data
Port G direction
“0” when reset
RD (Port G)
Circuit formatWhen reset
MPX
A
SCK1 in
MPX
∗
1
PG6 is not schmitt input
IP
∗
1
High level
Hi-Z
PG7/SI1/INT1
1 pin
CS0
SI0
2 pins
SO0
1 pin
Port G
Data bus
SO0
Serial data 0
output enable
Port G data
Port G direction
“0” when reset
RD (Port G)
INT1
SI1
Schmitt input
IP
Schmitt input
CS0
SI0
Hi-Z
IP
Hi-Z
Hi-Z
– 9 –
Page 10
CXP811P24
Pin
SCK0
1 pin
EXTAL
XTAL
2 pins
RST
EXTAL
XTAL
SCK0 out
Serial clock 0
output enable
Circuit formatWhen reset
IP
SCK0 in
Schmitt input
• Diagram shows the
circuit composition
IP
Pull-up resistor
Schmitt input
IP
From power-on reset circuit
during oscillation.
• Feedback resistor is
removed during stop.
XTAL becomes High
level.
Hi-Z
Oscillation
Low level
1 pin
MP
1 pin
IP
Test mode
Hi-Z
– 10 –
Page 11
CXP811P24
Absolute Maximum Ratings(Vss = 0V reference)
ItemSymbolRatingUnitRemarks
VDD
Vpp
Supply voltage
AVDD
AVSS
AVREF
Input voltage
Output voltage
High level output current
High level total output current
Low level output current
Low level total output current
Operating temperature
Storage temperature
Allowable power dissipation
∗1
VIN and VOUT should not exceed VDD + 0.3V. (CS0 and SI0 excluded.)
VIN
VOUT
IOH
∑IOH
IOL
∑IOL
Topr
Tstg
PD
–0.3 to +7.0
–0.3 to +13.0
AVSS to +7.0
–0.3 to +0.3
AVSS to +7.0
–0.3 to +7.0
–0.3 to +7.0
–5
–50
15
130
–10 to +75
–55 to +150
600
380
∗1
∗1
V
V
V
V
V
V
V
mA
mA
mA
mA
°C
°C
mW
mW
Incorporated PROM
Total of output pins
Total of output pins
QFP-64P-L01
LQFP-64P-L01
Note) Usage exceeding absolute maximum ratings may permanently impair the LSI. Normal operation should
be conducted under the recommended operating conditions. Exceeding those conditions may adversely
affect the reliability of the LSI.
Note 2) CS, SCK, SI and SO represents CS0, SCK0, SI0, and SO0, respectively.
Note 3) The load of SCK output mode and SO output delay time is 50pF + 1TTL.
– 16 –
Page 17
CXP811P24
Serial transfer (CH0)(Ta = –10 to +75°C, VDD = 3.0 to 3.6V, Vss = 0V reference)
Note 2) The load of SCK1 output mode and SO1 output delay time is 50pF.
– 19 –
Page 20
Fig. 5. Serial transfer CH1 timing (SIO mode)
tKLtKH
KCY
t
CXP811P24
SCK1
SI1
SO1
tKSO
tSIKtKSI
Input data
0.8VDD
0.2VDD
Output data
0.8VDD
DD
0.2V
0.8VDD
0.2VDD
– 20 –
Page 21
Serial transfer (CH1) (Special mode) (Ta = –10 to +75°C, VDD = 4.5 to 5.5V, Vss = 0V reference)
ItemSymbolPinConditionMin.Typ.Max.Unit
CXP811P24
SO1 cycle time
SI1 data setup time
SI1 data hold time
∗1
tLCY is specified only when serial mode register (CH1) (SIOM1: 01FAH) lower 2 bits (SO1 clock selection) is
tLCY
tLSU
tLHD
SO1
SI1
SI1
SI1
∗1
104µs
2
2
µs
µs
set at 104µs according to the system clock frequency.
Note) The load of SO1 pin is 50pF + 1TTL.
Serial transfer (CH1) (Special mode) (Ta = –10 to +75°C, VDD = 3.0 to 3.6V, Vss = 0V reference)
ItemSymbolPinConditionMin.Typ.Max.Unit
SO1 cycle time
SI1 data setup time
SI1 data hold time
∗1
tLCY is specified only when serial mode register (CH1) (SIOM1: 01FAH) lower 2 bits (SO1 clock selection) is
tLCY
tLSU
tLHD
SO1
SI1
SI1
SI1
∗1
104µs
2
2
µs
µs
set at 104µs according to the system clock frequency.
Note) The load of SO1 pin is 50pF.
Fig. 6. Serial transfer CH1 timing (Special mode)
tLCY
SO1
SI1
Start bit
tLCY
Output data bit
tLCY/2
tLSUtLHD
Input
data bit
0.5VDD
0.8VDD
0.2VDD
– 21 –
Page 22
CXP811P24
(3) A/D converter characteristics
ItemSymbolPinConditionMin.Typ.Max.
Resolution
Linearity error
Absolute error
Conversion time
Sampling time
Reference input voltage
Analog input voltage
AVREF current
A/D converter characteristics
tCONV
tSAMP
VREF
VIAN
IREF
(Ta = –10 to +75°C, VDD = AVDD = 3.0 to 3.6V, AVREF = 2.7 to AVDD, Vss = AVSS = 0V reference)
ItemSymbolPinConditionMin.Typ.Max.
(Ta = –10 to +75°C, VDD = AVDD = 4.5 to 5.5V, AVREF = 4.0 to AVDD, Vss = AVSS = 0V reference)
Unit
Only for A/D converter
operation
8
±1
Bits
LSB
Ta = 25°C
AVREF
AN0 to AN7
VDD = AVDD = AVREF = 5.0V
VSS = AVSS = 0V
VDD = AVDD = 4.5 to 5.5V
Operating mode
AVREF = 4.0 to 5.5V
160/fADC
12/fADC
∗1
∗1
AVDD – 0.5
0
0.6
±2
AVDD
AVREF
1.0
LSB
µs
µs
V
V
mA
AVREF
Sleep mode
Stop mode
10
µA
Unit
Resolution
Linearity error
Absolute error
Conversion time
Sampling time
Reference input voltage
Analog input voltage
AVREF current
tCONV
tSAMP
VREF
VIAN
IREF
AVREF
AN0 to AN7
AVREF
Fig. 7. Definitions of A/D converter terms
FFH
FEH
Only for A/D converter
operation
Ta = 25°C
VDD = AVDD = AVREF = 3.3V
VSS = AVSS = 0V
VDD = AVDD = 3.0 to 3.6V
Operating mode
AVREF = 2.7 to 3.6V
Sleep mode
Stop mode
160/fADC
12/fADC
∗1
∗1
AVDD – 0.3
0
0.4
8
±1
±2
AVDD
AVREF
0.7
10
Bits
LSB
LSB
µs
µs
V
V
mA
µA
Digital conversion value
01H
00H
Analog input
Linearity error
∗
1
The value of fADC is as follows by interruption selection/
ADC operation clock selection register (MSC: 01FFH)
bit 0 (ADCCK).
When PS2 is selected, fADC = fc/2
When PS1 is selected, fADC = fc
V
FTVZT
– 22 –
Page 23
(4) Interruption, reset input(Ta = –10 to +75°C, VDD = 3.0 to 5.5V, Vss = 0V reference)
ItemSymbolPinConditionMin.Max.Unit
INT0
External interruption
high and low level widths