Datasheet CXP811P24 Datasheet (Sony)

Page 1
CXP811P24
CMOS 8-bit Single Chip Microcomputer
Description
The CXP811P24 is a CMOS 8-bit microcomputer which consists of A/D converter, serial interface, timer/counter, time base timer, PWM output, as well as basic configurations like 8-bit CPU, PROM, RAM and I/O port. They are integrated into a single chip.
Also the CXP811P24 provides power-on reset function, sleep/stop function which enables to lower power consumption .
Features
A wide instruction set (213 instructions) which covers various types of data
— 16-bit operation/multiplication and division/Boolean bit operation instructions
Minimum instruction cycle 250ns at 16MHz (4.5 to 5.5V)
333ns at 12MHz (3.0 to 5.5V)
Incorporated PROM capacity 24K bytes
Incorporated RAM capacity 832 bytes
Peripheral functions
— A/D converter 8-bit, 8-channel, successive approximation system
(Conversion time: 20µs at 16MHz)
— Serial interface Incorporated buffer RAM (1 to 32 bytes auto transfer), 1 channel
Incorporated 8-bit and 8-stage FIFO
(1 to 8 bytes auto transfer), 1 channel — Timer 8-bit timer, 8-bit timer/counter, 19-bit time base timer — PWM output 12 bits, 2 channels
Interruption 10 factors, 10 vectors, multi-interruption possible
Standby mode Sleep/stop
Package 64-pin plastic QFP/LQFP
64 pin LQFP (Plastic)64 pin QFP (Plastic)
Structure
Silicon gate CMOS IC
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
– 1 –
E94X40A69-PS
Page 2
CXP811P24
Vss V
DD
MP
RST
XTAL
EXTAL
PA0 to PA7 8
PB0 to PB7 8
PORT A
CLOCK
GENERATOR/
SYSTEM CONTROL
SPC700
CPU CORE
PORT B
PC0 to PC7 8
PORT C
RAM
832 BYTES
PROM
24K BYTES
PD0 to PD7
PE0 to PE1 2
8
PORT D
PE2 to PE3
PF0 to PF3
4
2
PORT E
PF4 to PF7
PG3 to PG4
PG5 to PG7
2
4
PORT F
PRESCALER/
3
PORT G
TIME BASE TIMER
REF
DD
INT2 INT1
INT0
AVss
AV
AV
RAM
BUFFER
A/D CONVERTER
8
AN0 to AN7
(CH0)
SERIAL
INTERFACE UNIT
SI0
CS0
SO0
FIFO
SERIAL
INTERFACE UNIT
SI1
SO1
SCK0
INTERRUPT CONTROLLER
2
(CH1)
SCK1
8BIT TIMER 1
8BIT TIMER/COUNTER 0
EC
TO
12BIT PWM GENERATOR CH1
12BIT PWM GENERATOR CH0
PWM1
PWM0
Block Diagram
– 2 –
Page 3
Pin Configuration (Top View) 64-pin QFP
PA0
PA1
PA2
PA3
SS
V
DD
V
Vpp
PA4
PA5
PA6
PA7
PG3/TO
PG4
CXP811P24
PB7 PB6 PB5 PB4 PB3 PB2
PB1 PB0 PC7 PC6 PC5
PC4 PC3 PC2 PC1
PC0 PD7 PD6 PD5
10 11 12 13 14 15 16 17
18
19
62
61
60
63
64
1
2 3 4
5 6 7 8 9
59
58
57
56
55
54
53
52
51
50 49 48 47 46 45 44 43
42 41
40
39
38
37
36 35 34 33
PG5/SCK1 PG6/SO1 PG7/SI1/INT1
PE0/INT0 PE1/EC/INT2 PE2/PWM0 PE3/PWM1 PF0/AN0 PF1/AN1 PF2/AN2 PF3/AN3 PF4/AN4 PF5/AN5 PF6/AN6 PF7/AN7 AV
DD
AVREF AV
SS
SCK0
20
PD4
21
PD3
22
PD2
23
24
PD1
PD0
25
MP
26
XTAL
27
EXTAL
28
SS
V
29
30
RST
CS0
SI0
SO0
32
31
Note) 1. Vpp (Pin 58) is always connected to VDD.
2. Vss (Pins 28 and 60) are both connected to GND.
3. MP (Pin 25) is always connected to GND.
– 3 –
Page 4
Pin Configuration (Top View) 64-pin LQFP
PB7
PB6
PA0
PA1
PA2
PA3
SS
V
DD
V
Vpp
PA4
PA5
PA6
PA7
PG3/TO
PG4
CXP811P24
PG5/SCK1
PB5 PB4 PB3 PB2 PB1 PB0
PC7 PC6 PC5 PC4 PC3
PC2 PC1
PC0 PD7
PD6
10 11 12 13 14 15 16
62
19
61
20
PD3
60
21
PD2
PD1
63
64
1
2 3 4
5 6 7 8 9
18
17
PD4
PD5
59
22
PD0
58
23
MP
57
24
56
25
XTAL
EXTAL
55
26
SS
V
54
27
53
28
RST
52
29
CS0
SI0
51
30
50
31
SO0
49
32
SCK0
SS
AV
48 47 46 45
44 43 42 41
40 39 38
37 36 35 34 33
PG6/SO1 PG7/SI1/INT1 PE0/INT0 PE1/EC/INT2 PE2/PWM0 PE3/PWM1 PF0/AN0
PF1/AN1 PF2/AN2
PF3/AN3 PF4/AN4 PF5/AN5
PF6/AN6 PF7/AN7 AV
DD
AVREF
Note) 1. Vpp (Pin 56) is always connected to VDD.
2. Vss (Pins 26 and 58) are both connected to GND.
3. MP (Pin 23) is always connected to GND.
– 4 –
Page 5
Pin Description
CXP811P24
Symbol
PA0 to PA7
PB0 to PB7
PC0 to PC7
PD0 to PD7
PE0/INT0
PE1/EC/ INT2
PE2/PWM0 PE3/PWM1
I/O Description
(Port A)
Output
8-bit output port. (8 pins)
(Port B)
Output
8-bit output port. (8 pins)
(Port C)
I/O
8-bit I/O port. I/O can be set in a unit of single bits. (8 pins)
(Port D)
I/O
8-bit I/O port. I/O and function as standby release input can be set in a unit of single bits. (8 pins)
Input/Input
Input/Input/ Input
Output/Output
(Port E) 4-bit port. Lower 2 bits are for input; upper 2 bits are for output. (4 pins)
Input to request external interruption. Active at the falling edge. (2 pins)
External event input for timer/counter.
12-bit PWM output. (2 pins)
Output/Output
PF0/AN0
to
PF3/AN3 PF4/AN4
to
PF7/AN7 SCK0 SO0 SI0 CS0 PG3/TO PG4 PG5/SCK1 PG6/SO1
PG7/SI1/ INT1
EXTAL XTAL
RST
Input/Input
Output/Input
I/O Output Input Input Output/Output Output I/O/I/O I/O/Output
I/O/Input/ Input
Input Output
I/O
(Port F) 8-bit port. Lower 4 bits are for input; upper 4 bits are for output. Lower 4 bits also serve as standby release
Analog input to A/D
converter. (8 pins) input. (8 pins)
Serial clock (CH0) I/O. Serial data (CH0) output. Serial data (CH0) input. Serial intreface (CH0) chip select input.
Timer/counter rectangular wave output. (Port G) 5-bit port. Lower 2 bits are for output; upper 3 bits are for I/O. I/O port can be set in a unit of single bits. (5 pins)
Serial clock (CH1) I/O.
Serial data (CH1) output.
Serial data (CH1) input.
Input to request external interruption. Active at the falling edge.
Connects a crystal oscillator for system clock. When supplying the external clock, input the external clock to EXTAL pin and input opposite phase clock to XTAL pin.
System reset; active at Low level. RST pin is I/O pin, which outputs Low level by incorporated power-on reset function when power turns on.
– 5 –
Page 6
CXP811P24
Symbol
Vpp
MP AVDD
AVREF AVSS VDD VSS
I/O Description
Power supply for built-in PROM writing. Connect to VDD for normal operation.
Input
Test mode pin. Always connect to GND.
Positive power supply of A/D converter.
Input
Reference voltage input of A/D converter. GND of A/D converter. Positive power supply. GND. Connect both VSS pins to GND.
– 6 –
Page 7
Input/Output Circuit Formats for Pins
CXP811P24
Pin
PA0 to PA7 PB0 to PB7
16 pins
PC0 to PC7
Port A Port B
Data bus
Port C
Data bus
Ports A, B
RD (Ports A, B)
Port C data
Port C direction
“0” when reset
Circuit format When reset
Hi-Z
Output becomes active from high impedance by data writing to port register.
Input protection circuit
IP
Hi-Z
8 pins
PD0 to PD7
8 pins
PE0/INT0
1 pin
Port D
Port E
Port E
RD (Port C)
Port D data
Port D direction
“0” when reset
Data bus
RD (Port D)
Standby release
Edge detection
Schmitt input
IP
Schmitt input
IP
Hi-Z
INT0
Hi-Z
Data bus
RD (Port E)
PE1/EC/INT2
1 pin
IP
EC/INT2
Hi-Z
Data bus
RD (Port E)
– 7 –
Page 8
CXP811P24
A
A
AAA
Pin
PE2/PWM0 PE3/PWM1
2 pins
PF0/AN0
to
PF3/AN3
4 pins
Port E
PWM
Hi-Z control
Port E data
Port E function selection
“0” when reset
Data bus
RD (Port E)
Port F
Circuit format When reset
MPX
A A
Input multiplexer
IP
RD (Port F)
Edge detection
A/D converter
Data bus
Standby release
Hi-Z
Hi-Z
PF4/AN4
to
PF7/AN7
4 pins
PG3/TO
1 pin
Port F
Data bus
Port G
Port F data
RD (Port F)
Port G function selection
“0” when reset
From timer counter
Port G data
“1” when reset
Port F function selection
“0” when reset
MPX
IP
Input multiplexer
Hi-Z
A/D converter
High level
– 8 –
Page 9
CXP811P24
A
Pin
PG4
1 pin
PG5/SCK1 PG6/SO1
2 pins
Port G
Port G
Data bus
Port G data
“1” when reset
Port G funciton selection
“0” when reset
SCK1 out, SO1
Serial clock 1/data 1 output enable
Port G data
Port G direction
“0” when reset
RD (Port G)
Circuit format When reset
MPX
A
SCK1 in
MPX
1
PG6 is not schmitt input
IP
1
High level
Hi-Z
PG7/SI1/INT1
1 pin
CS0 SI0
2 pins
SO0
1 pin
Port G
Data bus
SO0
Serial data 0 output enable
Port G data
Port G direction
“0” when reset
RD (Port G)
INT1
SI1
Schmitt input
IP
Schmitt input
CS0 SI0
Hi-Z
IP
Hi-Z
Hi-Z
– 9 –
Page 10
CXP811P24
Pin
SCK0
1 pin
EXTAL XTAL
2 pins
RST
EXTAL
XTAL
SCK0 out
Serial clock 0 output enable
Circuit format When reset
IP
SCK0 in
Schmitt input
Diagram shows the circuit composition
IP
Pull-up resistor
Schmitt input
IP
From power-on reset circuit
during oscillation.
Feedback resistor is removed during stop. XTAL becomes High level.
Hi-Z
Oscillation
Low level
1 pin
MP
1 pin
IP
Test mode
Hi-Z
– 10 –
Page 11
CXP811P24
Absolute Maximum Ratings (Vss = 0V reference)
Item Symbol Rating Unit Remarks
VDD Vpp
Supply voltage
AVDD AVSS
AVREF Input voltage Output voltage High level output current High level total output current Low level output current Low level total output current Operating temperature Storage temperature
Allowable power dissipation
1
VIN and VOUT should not exceed VDD + 0.3V. (CS0 and SI0 excluded.)
VIN
VOUT
IOH
IOH
IOL
IOL
Topr
Tstg
PD
–0.3 to +7.0
–0.3 to +13.0
AVSS to +7.0
–0.3 to +0.3
AVSS to +7.0
–0.3 to +7.0 –0.3 to +7.0
–5
–50
15
130
–10 to +75
–55 to +150
600 380
11
V V V V V
V
V mA mA mA mA
°C
°C mW mW
Incorporated PROM
Total of output pins
Total of output pins
QFP-64P-L01 LQFP-64P-L01
Note) Usage exceeding absolute maximum ratings may permanently impair the LSI. Normal operation should
be conducted under the recommended operating conditions. Exceeding those conditions may adversely affect the reliability of the LSI.
– 11 –
Page 12
CXP811P24
Recommended Operating Conditions (Vss = 0V reference)
Item Symbol Min. Max. Unit Remarks
VDD
3.0
2.7
5.5
5.5
Supply voltage
Analog voltage
High level input voltage
Vpp AVDD VIH
VIHS
VIHEX
2.5 Vpp = VDD
3.0
0.7VDD
0.8VDD
VDD – 0.4
5.5
5.5 VDD VDD
5.5
VDD + 0.3
0.3VDD
VIL Low level input voltage
VILS
VILEX Operating temperature
1
AVDD should be the same voltage as VDD.
2
Normal input port (PC, PD, PF0 to PF3, and PG6 pins), MP pin.
3
SCK0, RST, INT0, EC/INT2, SCK1 and SI1/INT1 pins
4
CS0 and SI0 pins
5
Specified only when the external clock is input.
6
In case of 3.0 to 3.6V supply voltage (VDD).
7
In case of 4.5 to 5.5V supply voltage (VDD).
8
Vpp and VDD should be set to the same voltage.
Topr
0
0
–0.3
–10
0.2VDD
0.2VDD
0.4
+75
Guaranteed operation range for 1/2 and
V
1/4 frequency dividing mode Guaranteed operation range for 1/16
V
frequency dividing mode Guaranteed data hold range during stop
V
mode
8
V
1
V
2
V
CMOS Schmitt input
V
CMOS Schmitt input
V
EXTAL pin
V
2, 7
V
2, 6
V
CMOS Schmitt input
V
EXTAL pin
V
5
5
34
3, 4
°C
– 12 –
Page 13
CXP811P24
DC Characteristics
Supply voltage (VDD = 4.5 to 5.5V) (Ta = –10 to +75°C, Vss = 0V reference)
Item Symbol Pin Condition Min.
High level output voltage
Low level output voltage
Input current
VOH
VOL
IIHE IILE IILR
PA to PE, PF4 to PF7, SO, SCK, RST (VOL only) PG3 to PG7
EXTAL
RST
VDD = 4.5V, IOH = –0.5mA VDD = 4.5V, IOH = –1.2mA VDD = 4.5V, IOL = 1.8mA VDD = 4.5V, IOL = 3.6mA VDD = 5.5V, VIH = 5.5V VDD = 5.5V, VIL = 0.4V VDD = 5.5V, VIL = 0.4V
PA to PG, I/O leakage current
IIZ
MP,
CS, SI, SO,
VDD = 5.5V, VI = 0, 5.5V
SCK, RST
1/2 frequency dividing mode
IDD1
VDD = 5 ± 0.5V, 16MHz crystal oscillation (C1 = C2 = 15pF)
Sleep mode
Supply current
1
IDDS1
VDD
VDD = 5 ± 0.5V, 16MHz crystal oscillation (C1 = C2 = 15pF)
4.0
3.5
0.5 –0.5 –1.5
Typ.
Max. Unit
0.4
0.6 40
–40
–400
±10
20 40
15
V V V
V µA µA µA
µA
mA
mA
IDDS3
Input capacity
1
When all output pins are open.
CIN
PC, PD, PE0, PE1, PF, PG5 to PG7, RST, CS0, SI0, SCK0, EXTAL
Stop mode
VDD = 5.5V, termination of 16MHz oscillation
Clock 1MHz 0V other than the measured pins
30 µA
10 20 pF
– 13 –
Page 14
DC Characteristics
CXP811P24
Supply voltage (VDD = 3.0 to 3.6V)
Item Symbol Pin Condition Min.
High level output voltage
Low level output voltage
Input current
VOH
VOL
IIHE IILE IILR
PA to PE, PF4 to PF7, SO, SCK, RST (VOL only) PG3 to PG7
EXTAL
RST
VDD = 3.0V, IOH = –0.15mA VDD = 3.0V, IOH = –0.5mA VDD = 3.0V, IOL = 1.2mA VDD = 3.0V, IOL = 1.6mA VDD = 3.6V, VIH = 3.6V VDD = 3.6V, VIL = 0.3V VDD = 3.6V, VIL = 0.3V
PA to PG, I/O leakage current
IIZ
MP,
CS, SI, SO,
VDD = 3.6V, VI = 0, 3.6V
SCK, RST
1/2 frequency dividing mode
IDD2
VDD = 3.3 ± 0.3V, 12MHz crystal oscillation (C1 = C2 = 15pF)
Sleep mode
Supply current
1
IDDS2
VDD
VDD = 3.3 ± 0.3V, 12MHz crystal oscillation (C1 = C2 = 15pF)
(Ta = –10 to +75°C, Vss = 0V reference)
Typ.
2.7
2.3
0.3 –0.3 –0.9
10 20
0.5 2.5
Max. Unit
V V
0.3
0.5 20
–20
–200
±10
V
V µA µA µA
µA
mA
mA
IDDS3
Input capacity
1
When all output pins are open.
CIN
PC, PD, PE0, PE1, PF, PG5 to PG7, RST, CS0, SI0, SCK0, EXTAL
Stop mode
VDD = 5.5V, termination of 12MHz oscillation
Clock 1MHz 0V other than the measured pins
30 µA
10 20 pF
– 14 –
Page 15
A
A
AC Characteristics
CXP811P24
(1) Clock timing
Item Symbol Pin Condition Unit
System clock frequency
System clock input pulse width
System clock input rise and fall times
Event count input clock pulse width
Event count input clock rise and fall times
1
tsys indicates three values according to the contents of the clock control register (CLC; 00FEH) upper 2 bits
(CPU clock selection).
fC
tXL, tXH
tCR, tCF
tEL, tEH
tER, tEF
XTAL EXTAL
XTAL EXTAL
EXTAL
EC
EC
(Ta = –10 to +75°C, VDD = 3.0 to 5.5V, Vss = 0V reference)
Fig. 1, Fig. 2
Fig. 1, Fig. 2 (External clock drive)
Fig. 1, Fig. 2 (External clock drive)
Fig. 3
Fig. 3
VDD = 4.5 to 5.5V
VDD = 4.5 to 5.5V
Min.
1 1
28
37.5
4tsys
Max.
16 12
200
1
20
tsys [ns] = 2000/fc (Upper 2 bits = “00”), 4000/fc (Upper 2 bits = “01”), 16000/fc (Upper 2 bits = “11”)
Fig. 1. Clock timing
1/fc
MHz
ns
ns
ns
ms
EXTAL
Fig. 2. Clock applied condition
Crystal oscillation Ceramic oscillation
EXTAL
C
1 C2
Fig. 3. Event count clock timing
EC
t
XH tXLtCF tCR
AA
XTAL
External clock
EXTAL
AA
74HC04
V
DD – 0.4V (VDD = 4.5 to 5.5V)
VDD – 0.3V
0.4V (VDD = 4.5 to 5.5V)
0.3V
XTAL
0.8VDD
0.2VDD
EH tELtEF tER
t
– 15 –
Page 16
CXP811P24
(2) Serial transfer (CH0) (Ta = –10 to +75°C, VDD = 4.5 to 5.5V, Vss = 0V reference)
Item
CS ↓→SCK delay time
CS ↑→SCK floating delay time
CS ↓→SO delay time
CS ↓→SO floating delay time
CS high level width
SCK cycle time
SCK high and low level widths
SI input setup time (for SCK )
SI input hold time (for SCK )
SCK ↓→SO delay time
Symbol Pin Min.
tDCSK
tDCSKF
tDCSO
tDCSOF
tWHCS
tKCY
tKH tKL
tSIK
tKSI
tKSO
SCK0
SCK0
SO0
SO0
CS0
SCK0
SCK0
SI0
SI0
SO0
Chip select transfer mode (SCK = output mode)
Chip select transfer mode (SCK = output mode)
Chip select transfer mode
Chip select transfer mode
Chip select transfer mode Input mode
Output mode Input mode Output mode SCK input mode SCK output mode SCK input mode SCK output mode SCK input mode SCK output mode
tsys + 200
2tsys + 200
8000/fc
tsys + 100
8000/fc – 100
tsys + 100
200
2tsys + 100
100
Max. UnitCondition
tsys + 200
tsys + 200
tsys + 200
tsys + 200
2tsys + 200
100
ns
ns
ns
ns
ns ns
ns ns ns ns ns ns ns ns ns
Note 1) tsys indicates three values according to the contents of the clock control register (CLC; 00FEH) upper
2 bits (CPU clock selection).
tsys [ns] = 2000/fc (Upper 2 bits = “00”), 4000/fc (Upper 2 bits = “01”), 16000/fc (Upper 2 bits = “11”)
Note 2) CS, SCK, SI and SO represents CS0, SCK0, SI0, and SO0, respectively. Note 3) The load of SCK output mode and SO output delay time is 50pF + 1TTL.
– 16 –
Page 17
CXP811P24
Serial transfer (CH0) (Ta = –10 to +75°C, VDD = 3.0 to 3.6V, Vss = 0V reference)
Item
CS ↓→SCK delay time
CS ↑→SCK floating delay time
CS ↓→SO delay time
CS ↓→SO floating delay time
CS high level width
SCK cycle time
SCK high and low level widths
SI input setup time (for SCK )
SI input hold time (for SCK )
SCK ↓→SO delay time
Symbol Pin Min.
tDCSK
tDCSKF
tDCSO
tDCSOF
tWHCS
tKCY
tKH tKL
tSIK
tKSI
tKSO
SCK0
SCK0
SO0
SO0
CS0
SCK0
SCK0
SI0
SI0
SO0
Chip select transfer mode (SCK = output mode)
Chip select transfer mode (SCK = output mode)
Chip select transfer mode
Chip select transfer mode
Chip select transfer mode Input mode
Output mode Input mode Output mode SCK input mode SCK output mode SCK input mode SCK output mode SCK input mode SCK output mode
tsys + 200
2tsys + 200
8000/fc
tsys + 100
8000/fc – 150
tsys + 100
200
2tsys + 100
100
Max. UnitCondition
tsys + 250
tsys + 200
tsys + 250
tsys + 200
2tsys + 250
125
ns
ns
ns
ns
ns ns
ns ns ns ns ns ns ns ns ns
Note 1) tsys indicates three values according to the contents of the clock control register (CLC; 00FEH) upper
2 bits (CPU clock selection).
tsys [ns] = 2000/fc (Upper 2 bits = “00”), 4000/fc (Upper 2 bits = “01”), 16000/fc (Upper 2 bits = “11”)
Note 2) CS, SCK, SI and SO represents CS0, SCK0, SI0, and SO0, respectively. Note 3) The load of SCK output mode and SO output delay time is 50pF.
– 17 –
Page 18
Fig. 4. Serial transfer timing (CH0)
CXP811P24
tWHCS
CSO
SCK0
DD
0.2V
tKCY
tDCSK tDCSKF
tKL tKH
0.8VDD
0.2VDD
tSIK
tKSI
0.8VDD
0.8VDD
SI0
SO0
t
DCSO tKSO
Input data
Output data
0.8VDD
0.2VDD
tDCSOF
0.8V
DD
0.2VDD
– 18 –
Page 19
CXP811P24
Serial transfer (CH1) (SIO mode) (Ta = –10 to +75°C, VDD = 4.5 to 5.5V, Vss = 0V reference)
Item Symbol Pin Min. Max. UnitCondition
SCK1 cycle time
SCK1 high and low level widths
SI1 input setup time (for SCK1 )
SI1 input hold time (for SCK1 )
SCK1 ↓→SO1 delay time
Note 1) tsys indicates three values according to the contents of the clock control register (CLC; 00FEH) upper
2 bits (CPU clock selection).
tKCY
tKH tKL
tSIK
tKSI
tKSO
SCK1
SCK1
SI1
SI1
SO1
Input mode Output mode Input mode Output mode SCK1 input mode SCK1 output mode SCK1 input mode SCK1 output mode SCK1 input mode SCK1 output mode
2tsys + 200
16000/fc
tsys + 100
8000/fc – 50
100 200
tsys + 200
100
tsys + 200
100
ns ns ns ns ns ns ns ns ns ns
tsys [ns] = 2000/fc (Upper 2 bits = “00”), 4000/fc (Upper 2 bits = “01”), 16000/fc (Upper 2 bits = “11”)
Note 2) The load of SCK1 output mode and SO1 output delay time is 50pF + 1TTL.
Serial transfer (CH1) (SIO mode) (Ta = –10 to +75°C, VDD = 3.0 to 3.6V, Vss = 0V reference)
Item Symbol Pin Min. Max. UnitCondition
SCK1 cycle time
SCK1 high and low level widths
SI1 input setup time (for SCK1 )
SI1 input hold time (for SCK1 )
SCK1 ↓→SO1 delay time
Note 1) tsys indicates three values according to the contents of the clock control register (CLC; 00FEH) upper
2 bits (CPU clock selection).
tKCY
tKH tKL
tSIK
tKSI
tKSO
SCK1
SCK1
SI1
SI1
SO1
Input mode Output mode Input mode Output mode SCK1 input mode SCK1 output mode SCK1 input mode SCK1 output mode SCK1 input mode SCK1 output mode
2tsys + 200
16000/fc
tsys + 100
8000/fc – 150
100 200
tsys + 200
100
tsys + 250
125
ns ns ns ns ns ns ns ns ns ns
tsys [ns] = 2000/fc (Upper 2 bits = “00”), 4000/fc (Upper 2 bits = “01”), 16000/fc (Upper 2 bits = “11”)
Note 2) The load of SCK1 output mode and SO1 output delay time is 50pF.
– 19 –
Page 20
Fig. 5. Serial transfer CH1 timing (SIO mode)
tKL tKH
KCY
t
CXP811P24
SCK1
SI1
SO1
tKSO
tSIK tKSI
Input data
0.8VDD
0.2VDD
Output data
0.8VDD
DD
0.2V
0.8VDD
0.2VDD
– 20 –
Page 21
Serial transfer (CH1) (Special mode) (Ta = –10 to +75°C, VDD = 4.5 to 5.5V, Vss = 0V reference)
Item Symbol Pin Condition Min. Typ. Max. Unit
CXP811P24
SO1 cycle time SI1 data setup time
SI1 data hold time
1
tLCY is specified only when serial mode register (CH1) (SIOM1: 01FAH) lower 2 bits (SO1 clock selection) is
tLCY tLSU
tLHD
SO1 SI1
SI1 SI1
1
104 µs
2 2
µs µs
set at 104µs according to the system clock frequency.
Note) The load of SO1 pin is 50pF + 1TTL.
Serial transfer (CH1) (Special mode) (Ta = –10 to +75°C, VDD = 3.0 to 3.6V, Vss = 0V reference)
Item Symbol Pin Condition Min. Typ. Max. Unit SO1 cycle time SI1 data setup time
SI1 data hold time
1
tLCY is specified only when serial mode register (CH1) (SIOM1: 01FAH) lower 2 bits (SO1 clock selection) is
tLCY tLSU
tLHD
SO1 SI1
SI1 SI1
1
104 µs
2 2
µs µs
set at 104µs according to the system clock frequency.
Note) The load of SO1 pin is 50pF.
Fig. 6. Serial transfer CH1 timing (Special mode)
tLCY
SO1
SI1
Start bit
tLCY
Output data bit
tLCY/2
tLSU tLHD
Input
data bit
0.5VDD
0.8VDD
0.2VDD
– 21 –
Page 22
CXP811P24
(3) A/D converter characteristics
Item Symbol Pin Condition Min. Typ. Max.
Resolution Linearity error
Absolute error Conversion time
Sampling time Reference input voltage Analog input voltage
AVREF current
A/D converter characteristics
tCONV tSAMP
VREF VIAN
IREF
(Ta = –10 to +75°C, VDD = AVDD = 3.0 to 3.6V, AVREF = 2.7 to AVDD, Vss = AVSS = 0V reference)
Item Symbol Pin Condition Min. Typ. Max.
(Ta = –10 to +75°C, VDD = AVDD = 4.5 to 5.5V, AVREF = 4.0 to AVDD, Vss = AVSS = 0V reference)
Unit
Only for A/D converter operation
8
±1
Bits
LSB
Ta = 25°C
AVREF AN0 to AN7
VDD = AVDD = AVREF = 5.0V VSS = AVSS = 0V
VDD = AVDD = 4.5 to 5.5V
Operating mode AVREF = 4.0 to 5.5V
160/fADC
12/fADC
1
1
AVDD – 0.5
0
0.6
±2
AVDD
AVREF
1.0
LSB
µs µs
V V
mA
AVREF
Sleep mode Stop mode
10
µA
Unit
Resolution Linearity error
Absolute error Conversion time
Sampling time Reference input voltage Analog input voltage
AVREF current
tCONV tSAMP
VREF VIAN
IREF
AVREF AN0 to AN7
AVREF
Fig. 7. Definitions of A/D converter terms
FFH FEH
Only for A/D converter operation Ta = 25°C VDD = AVDD = AVREF = 3.3V VSS = AVSS = 0V
VDD = AVDD = 3.0 to 3.6V
Operating mode AVREF = 2.7 to 3.6V
Sleep mode Stop mode
160/fADC
12/fADC
1
1
AVDD – 0.3
0
0.4
8
±1
±2
AVDD
AVREF
0.7
10
Bits
LSB
LSB
µs µs
V V
mA
µA
Digital conversion value
01H 00H
Analog input
Linearity error
1
The value of fADC is as follows by interruption selection/ ADC operation clock selection register (MSC: 01FFH) bit 0 (ADCCK). When PS2 is selected, fADC = fc/2 When PS1 is selected, fADC = fc
V
FTVZT
– 22 –
Page 23
(4) Interruption, reset input (Ta = –10 to +75°C, VDD = 3.0 to 5.5V, Vss = 0V reference)
Item Symbol Pin Condition Min. Max. Unit
INT0 External interruption high and low level widths
tIH tIL
INT1
INT2
1
µs
PJ0 to PJ7
CXP811P24
Reset input low level width
Fig. 8. Interruption input timing
INT0 INT1 INT2 PD0 to PD7 (During standby release input) (Falling edge)
Fig. 9. Reset input timing
RST
tRSL
RST
tIH tIL
0.8VDD
tRSL
0.2VDD
32/fc
µs
0.2VDD
(5) Power-on reset
Item Symbol Pin Condition Min. Max. Unit Power supply rising time Power supply cut-off time
Fig. 10. Power-on reset
DD
V
The power supply should be turned on smoothly.
(Ta = –10 to +75°C, VDD = 3.0 to 5.5V, Vss = 0V reference)
tR
Power-on reset
VDD
tOFF
3.0V
0.2V
tR tOFF
Repetitive power-on reset
0.05 1
30 ms
ms
0.2V
– 23 –
Page 24
Appendix
A
Fig. 11. SPC700 Series recommended oscillation circuit
Main clock
CXP811P24
EXTAL
AA
C
1 C2
Manufacturer Model fc (MHz) C1 (pF) C2 (pF) Rd()
RIVER ELETEC CO., LTD.
KINSEKI LTD.
Mask Option Table
XTAL
Rd
HC-49/U03
HC-49/U (-S)
8.00
10.00
12.00
16.00
8.00
10.00
12.00
16.00
10
5
22 (15)
15 12
10
5
22 (15)
15 12
0
0
Circuit
example
(i)
(i)
Item Content CXP811P24R-1- CXP811P24Q-1­Reset pin pull-up resistor Power-on reset circuit
Writing to EPROM
See the “How to write the program into OTP, FLASH, EPROM” for reference.
Non-existent/existent Non-existent/existent
Existent Existent
Existent Existent
– 24 –
Page 25
Characteristics Curve
CXP811P24
(fc = 16MHz, Ta = 25°C, Typical)
10
1.0
– Supply current [mA]
DD
I
0.1
234567
IDD vs. VDD
VDD – Supply voltage [V]
1/2 dividing mode
1/4 dividing mode
1/16 dividing mode
Sleep mode
(VDD = 5.0V, Ta = 25°C, Typical)
20
15
10
– Supply current [mA]
DD
I
5
1 5 10 15
IDD vs. fc
1/2 dividing mode
1/4 dividing mode
1/16 dividing mode
Sleep mode
fc – System clock [MHz]
(fc = 12MHz, Ta = 25°C, Typical)
10
1.0
– Supply current [mA]
DD
I
0.1
234567
IDD vs. VDD
VDD – Supply voltage [V]
1/2 dividing mode 1/4 dividing mode
1/16 dividing mode
Sleep mode
(VDD = 3.3V, Ta = 25°C, Typical)
20
15
10
– Supply current [mA]
DD
I
5
1 5 10 15
IDD vs. fc
1/2 dividing mode
1/4 dividing mode
1/16 dividing mode Sleep mode
fc – System clock [MHz]
– 25 –
Page 26
Package Outline Unit: mm
CXP811P24
64PIN QFP(PLASTIC)
23.9 ± 0.4 + 0.4
20.0 – 0.1
51
52
64
1
1.0
0.4 – 0.1
+ 0.15
33
32
+ 0.4
14.0 – 0.1
17.9 ± 0.4
20
19
± 0.12
+ 0.35
2.75 – 0.15
M
+ 0.1
0.15 – 0.05
+ 0.2
0.1 – 0.05
0.15
16.3
0.8 ± 0.2
SONY CODE EIAJ CODE JEDEC CODE
QFP–64P–L01
QFP064–P–1420
PACKAGE STRUCTURE
PACKAGE MATERIAL
LEAD TREATMENT LEAD MATERIAL PACKAGE MASS
EPOXY RESIN SOLDER/PALLADIUM
42/COPPER ALLOY
1.5g
PLATING
– 26 –
Page 27
12.0 ± 0.2
10.0 ± 0.1
CXP811P24
64PIN LQFP (PLASTIC)
49
64
0.5 ± 0.08
SONY CODE EIAJ CODE JEDEC CODE
48
1
0° to 10°
0.18 – 0.03
0.1 ± 0.1
DETAIL A
LQFP-64P-L01 LQFP064-P-1010
+ 0.08
33
0.5 ± 0.2
32
(11.0)
A
17
(0.22)
16
+ 0.2
1.5 – 0.1
0.127 – 0.02
0.5 ± 0.2
+ 0.05
0.1
NOTE: Dimension “” does not include mold protrusion.
PACKAGE STRUCTURE
PACKAGE MATERIAL
LEAD TREATMENT LEAD MATERIAL PACKAGE MASS
EPOXY RESIN SOLDER/PALLADIUM
42/COPPER ALLOY
0.3g
PLATING
– 27 –
Loading...