Multipoint-Low Voltage
Differential Signaling
(M-LVDS) Evaluation Module
User’s G uide
April 2004
High Performance Analog
SLLU039B
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
ProductsApplications
Amplifiersamplifier.ti.comAudiowww.ti.com/audio
Data Convertersdataconverter.ti.comAutomotivewww.ti.com/automotive
DSPdsp.ti.comBroadbandwww.ti.com/broadband
Interfaceinterface.ti.comDigital Controlwww.ti.com/digitalcontrol
Logiclogic.ti.comMilitarywww.ti.com/military
Power Mgmtpower.ti.comOptical Networkingwww.ti.com/opticalnetwork
Microcontrollersmicrocontroller.ti.comSecuritywww.ti.com/security
Telephonywww.ti.com/telephony
Video & Imagingwww.ti.com/video
Wirelesswww.ti.com/wireless
Mailing Address:Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright 2004, Texas Instruments Incorporated
EVM IMPORTANT NOTICE
Texas Instruments (TI) provides the enclosed product(s) under the following conditions:
This evaluation kit being sold by TI is intended for use for ENGINEERING DEVELOPMENT OR EV ALUATION
PURPOSES ONLY and is not considered by TI to be fit for commercial use. As such, the goods being provided
may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective
considerations, including product safety measures typically found in the end product incorporating the goods.
As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic
compatibility and therefore may not meet the technical requirements of the directive.
Should this evaluation kit not meet the specifications indicated in the EVM User’s Guide, the kit may be returned
within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE
WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER W ARRANTIES, EXPRESSED,
IMPLIED, OR S TATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE.
The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user
indemnifies TI from all claims arising from the handling or use of the goods. Please be aware that the products
received may not be regulatory compliant or agency certified (FCC, UL, CE, etc.). Due to the open construction
of the product, it is the user’s responsibility to take any and all appropriate precautions with regard to electrostatic
discharge.
EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE
TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.
TI currently deals with a variety of customers for products, and therefore our arrangement with the user is notexclusive.
TI assumes no liability for applications assistance, customer product design, software performance, orinfringement of patents or services described herein.
Please read the EVM User’s Guide and, specifically, the EVM Warnings and Restrictions notice in the EVM
User’s Guide prior to handling the product. This notice contains important safety information about temperatures
and voltages. For further safety concerns, please contact the TI application engineer.
Persons handling the product must have electronics training and observe good laboratory practice standards.
No license is granted under any patent right or other intellectual property right of TI covering or relating to any
machine, process, or combination in which such TI products or services might be or are used.
Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265
Copyright 2004, Texas Instruments Incorporated
EVM WARNINGS AND RESTRICTIONS
It is important to operate this EVM within the supply voltage range of 3 V to 3.6 V.
Exceeding the specified supply range may cause unexpected operation and/or irreversible
damage to the EVM. If there are questions concerning the supply range, please contact a TI
field representative prior to connecting the input power.
Applying loads outside of the specified output range may result in unintended operation and/or
possible permanent damage to the EVM. Please consult the EVM User ’s Guide prior to
connecting any load to the EVM output. If there is uncertainty as to the load specification,
please contact a TI field representative.
During normal operation, some circuit components may have case temperatures greater than
125°C. The EVM is designed to operate properly with certain components above 125°C as
long as the input and output ranges are maintained. These components include but are not
limited to linear regulators, switching transistors, pass transistors, and current sense
resistors. These types of devices can be identified using the EVM schematic located in the
EVM User’s Guide. When placing measurement probes near these devices during operation,
please be aware that these devices may be very warm to the touch.
Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265
Copyright 2004, Texas Instruments Incorporated
How to Use This Manual
This document contains the following chapters:
- Chapter 1—The M-LVDS Evaluation Module
- Chapter 2—Test Setup
- Chapter 3—Bill of Materials, Board Layout, and PCB Construction
- Appendix A—Schematic
Related Documentation From Texas Instruments and Others
- Introduction to M-LVDS (SLLA108)
- LVDS Designer’s Notes (SLLA014A).
- Reducing EMI With Low Voltage Differential Signaling (SLLA030B).
Preface
FCC Warning
- Interface Circuits for TIA/EIA−644 (LVDS) (SLLA038B).
- T ransmission at 200 Mpbs in VME Card Cage Using LVDM (SLLA088).
- LVDS Multidrop Connections (literature number SLLA054).
- SN65MLVD20x data sheets, Multipoint-LVDS Line Drivers and Receivers,
(SLLS573 and SLLS558)
- Electromagnetic Compatibility Printed Circuit Board and Electronic
This equipment is intended for use in a laboratory test environment only. It
generates, uses, and can radiate radio frequency energy and has not been
tested for compliance with the limits of computing devices pursuant to subpart
J of part 15 of FCC rules, which are designed to provide reasonable protection
against radio frequency interference. Operation of this equipment in other
environments may cause interference with radio communications. In which
case the user , at his own expense, is required to take the necessary measures
to correct this interference.
This document describes the multipoint low-voltage differential-signaling
(M-LVDS) evaluation module (EVM) used to aid designers in development and
analysis of this new signaling technology. The Texas Instruments
SN65MLVD200A, SN65MLVD201, SN65MLVD202A, SN65MLVD203,
SN65MLVD204A, SN65MLVD205A, SN65MLVD206, SN65MLVD207 series
are low-voltage differential line drivers and receivers complying with the
M-LVDS standard (TIA/EIA−899). The EVM kit contains the assembled
printed-circuit board and all of the released devices referred to in Table 1−1.
Using the EVM to evaluate these devices should provide insight into the design
of low-voltage differential circuits. The EVM board allows the designer to
connect an input to one or both of the drivers and configure a point-to-point,
multidrop, or multipoint data bus.
The EVM can be used to evaluate device parameters while acting as a guide
for high-frequency board layout. The board allows for the connection of a
100-Ω controlled impedance cable of varying lengths. This provides the
designer with a tool for evaluation and successful design of an end product.
The EVM comes with all the production devices in Table 1−1. The
SN65MLVD201 and SN65ML VD207 are installed on the circuit board, and ca n
easily be replaced with the other devices supplied. The M-LVDS devices
evaluated with this EVM are in the SN75ALS180 and SN75176 footprint. Use
of these industry standard footprints allows the designer to easily configure the
parts into a simplex or half-duplex data bus. These are all TIA/EIA−899
M-LVDS standard compliant devices. While initially intended for half-duplex or
multipoint applications, M-LVDS devices are not precluded from being used
in a point-to-point or multidrop configuration. In these configurations there can
be a distinct advantage to the additional current drive provided by an M-LVDS
driver.
The M-LVDS devices shown in Table 1−1 all include output slew-rate limited
drivers, thus the need for different nominal signaling rates. The M-LVDS
standard recommends the transition time not exceed 0.5 of the unit interval
(UI). The definition of transition time (tr and tf) in M-LVDS is the 10% to 90%
levels shown in Figure 1−1. Using the maximum transition time for each of the
drivers and the 0.5(tUI) rule results in the signaling rates shown in Table 1−1.
This slew-rate control differentiates M-LVDS devices from LVDS
(TIA/EIA−644A) compliant devices. The slower transition times available with
M-LVDS help to reduce higher frequency components in the transmitted
signal. This reduces EMI and allows longer stubs on the main transmission
line. For this reason it is generally better to select a driver with a specified
signaling rate no greater than is required in the system.