This document is exclusive property of Cisco Systems, Inc. Permission is granted to print and copy
this document for noncommercial distribution and exclusive use by instructors in the CCNA 2:
Routers and Routing Basics course as part of an official Cisco Networking Academy Program.
I.Welcome
Welcome to the CCNA 2 version 3.1 Instructor Guide. Cisco Worldwide Education (WWE) has
developed this guide to provide a helpful resource for instructors. This introduction will
emphasize four themes:
• Student-centered, instructor-facilitated model
• One size does not fit all
• Hands-on, skills-based learning
• Global community of educators
Student-Centered, Instructor-Facilitated
The CCNA curriculum has not been designed as a standalone e-learning or distance-learning
course. The teaching and learning model of the Cisco Networking Academy® Program is
based on instructor facilitation. The Learner Model: Academy Student diagram shows the
emphasis that WWE puts on the learner. The model begins with the prior knowledge of
students. The instructor guides learning events, which are built from a variety of resources, to
help the students achieve their desired comprehension of networking.
The Cisco Networking Academy Program serves hundreds of thousands of students in almost
150 countries. Students range from early teens to mature adults and from advanced middle
school students to undergraduate engineering students.
One curriculum cannot fit the needs of all students. WWE relies on local instructors to make
the program work and to help their students achieve the learning goals of the program. There
are three fixed reference points for each program that provide flexibility for the instructors:
• The mission of WWE to educate and train
• The requirements of the CCNA certification exam
• The hands-on skills that help prepare students for the industry and further
education
The WWE policy allows instructors to "add anything, but subtract nothing" from the curriculum.
WWE supports in-class differentiation, which is used to provide additional support for students
who need it and additional challenges for advanced students. WWE also allows instructors to
decide how much time to spend on various topics. Some topics can be skimmed, while others
may need to be emphasized for different audiences. The local instructor must decide how to
balance the need for hands-on labs with the realities of the local student-to-equipment ratio
and time schedule. This Guide can be used to facilitate the preparation of lesson plans and
presentations. Instructors are encouraged to research and use external sources to develop
additional labs and exercises.
Core TIs have been highlighted for emphasis to assist the instructor in course and lesson
planning. These are not the only TIs that need to be taught. Many core TIs will only make
sense after the preceding TIs have been reviewed. It may be useful to have a map of the core
TIs, which contain the most important knowledge and skills for success in the CCNA program.
The assessment process is multifaceted and flexible. A wide variety of assessment options
exist to provide feedback to students and document their learning. The Academy assessment
model is a blend of formative and summative assessments that include online and hands-on,
skills-based exams.
Hands-On, Skills-Based
The core of the CCNA 2 experience is the sequence of hands-on labs. Labs are designated as
either essential or optional. Essential labs include information that is fundamental to the CCNA
Academy student experience. This information will help students prepare for the certification
exam, succeed in job situations, and develop their cognitive abilities. In CCNA 2, students will
learn about the following elements of basic router configuration:
• Hostnames, banners, and passwords
• Interface configuration
• IOS file system
• Static routes and dynamic routing (RIP version 1 and IGRP)
• Standard and extended access-list configuration and placement
• show, debug, ping, trace, and telnet commands to verify and troubleshoot
Global Community
WWE instructors are members of a global community of educators. There are over 10,000
instructors that teach the same eight CCNA and CCNP courses in the program. Instructors
should take advantage of the diversity and skills of this community through their Regional
Academies, Cisco Academy Training Centers (CATCs), the Cisco Academy Connection
(CAC), or through other forums. WWE is committed to the improvement of the curriculum,
assessment model, and instructional resources such as this guide. Please submit any
feedback through CAC. Check CAC for new releases of instructional materials.
Guide Overview:
Section II provides a scope and sequence overview of the course. Section III summarizes the
most important learning objectives, target indicators, and labs, and offers teaching suggestions
and background information. Section IV provides a case study related to network design,
implementation, and troubleshooting. Instructors can also devise their own case studies.
Section V includes four appendices:
• Cisco online tools and utilities
• CCNA assessment guidelines
• Evidence-centered design of assessment tasks in the Networking Academy
The target audience is anyone who desires a practical and technical introduction to the field of
networking. This includes high school, community college, and lifelong-learning students who
are interested in careers as network technicians, network engineers, network administrators,
and network help-desk staff.
Prerequisites
The successful completion of this course requires the following:
• Reading age level of 13 or higher
• Successful completion of CCNA 1
The following prerequisites are beneficial, but not required:
• Prior experience with computer hardware and command line interfaces
• Background in computer programming
Course Description
CCNA 2: Routers and Routing Basics is the second of four CCNA courses that lead to the
Cisco Certified Network Associate (CCNA) designation. CCNA 2 focuses on initial router
configuration, Cisco IOS Software management, routing protocol configuration, TCP/IP, and
access control lists (ACLs). Students will learn how to configure a router, manage Cisco IOS
software, configure routing protocols on routers, and set access lists to control access to
routers.
Course Objectives
The CCNA certification indicates knowledge of networking for the small office, home office
(SOHO) market and the ability to work in small businesses or organizations that use networks
with fewer than 100 nodes. A CCNA-certified individual can perform the following tasks:
• Install and configure Cisco switches and routers in multiprotocol internetworks that
use LAN and WAN interfaces
• Provide Level 1 troubleshooting service
• Improve network performance and security
• Perform entry-level tasks in the planning, design, installation, operation, and
Students must successfully complete the CCNA 2 course before they can achieve CCNA
certification.
Upon completion of this course, students will be able to perform tasks related to the following:
• Routers and their roles in WANs
• Cisco IOS Software Management
• Router configuration
• Router file management
• RIP and IGRP routing protocols
• TCP/IP error and control messages
• Router troubleshooting
• Intermediate TCP
• Access control lists
Lab Requirements
Please refer to the CCNA equipment bundle spreadsheets on the Cisco Academy Connection.
Certification Alignment
The curriculum is aligned with the following Cisco Internet Learning Solution Group (ILSG)
courses:
• CCNA (Cisco Certified Network Associate)
• INTRO (Introduction to Cisco Networking Technologies)
The Course 2 claims state that students will be able to complete the following tasks:
• Identify the key characteristics of common wide-area network (WAN)
configurations and technologies, and differentiate between these and common
LAN technologies
• Describe the role of a router in a WAN
• Describe the purpose and operations of the router Internet Operating System
(IOS)
• Establish communication between a terminal device and the router IOS, and use
IOS for system analysis, configuration, and repair
• Identify the major internal and external components of a router, and describe the
associated functionality
• Use commands incorporated within IOS to analyze and rectify network problems
• Describe the operation of the major transport layer protocols and the interaction
and carriage of application layer data
• Identify the application of packet control through the use of various access control
lists
• Analyze, configure, implement, verify, and rectify access control lists within a
router configuration
Course Overview
The course has been designed for 70 contact hours. Approximately 35 hours will be
designated to lab activities and 35 hours will be designated to curriculum content. A case
study on routing is required. The format and timing should be determined by the Local
Academy.
For example, 3.2.5 references Module 3, LO 2, and TI 5. The following terms are commonly
used to describe the curriculum, instructional materials, and assessments in WWE and Cisco
documentation:
• Certification-level claims
High-level statements about what a CCNA-certified person should know and be
able to do. These claims are measured through certification exams.
• Course
A subset of a curriculum which is a collection of chapters to be offered as a
scheduled course
• Course-level claims
Medium-level statements about what a person who completes the CCNA 2 course
should know and be able to do.
• Core TI
The TIs that apply most directly to the claims and learning objectives. Instructors
should not skip over these TIs or move through them quickly.
• Curriculum
A predefined or dynamic path of learning events with an end goal such as
certification or the acquisition of required job skills and knowledge.
• Hands-on skills
There is some overlap between hands-on skills and claims. These statements
• Module
Logical groupings that comprise a course. Modules contain multiple lessons or
LOs. Modules are also referred to as chapters.
• Learning objective (LO)
A statement that establishes a measurable behavioral outcome. LOs are used to
organize content and to indicate how the acquisition of skills and knowledge will be
measured. LOs are also referred to as terminal objectives or RLOs.
• Lesson
A set of TIs, or enabling objectives, that are grouped together and presented in a
coherent format to meet an LO, or terminal objective. Lessons emphasize the role
of the instructor. Learning objectives emphasize the role of the students.
• Module caution
Suggestions related to areas where difficulties may be encountered. These are
especially important for syllabus development, lesson planning, and pacing.
• Optional lab
A lab that is for practice, enrichment, or differentiation.
• Essential lab
A lab that is fundamental to the course.
• Reusable Learning Object (RLO)
This is a Cisco Instructional Design term. RLOs typically consist of five to nine
RIOs. In this guide, RLOs are equivalent to lessons or learning objectives.
• Reusable Information Object (RIO)
This is a Cisco Instructional Design term. In this guide, RIOs are equivalent to
target indicators.
• Target indicator (TI)
TIs are also referred to as enabling objectives or RIOs. TIs typically consist of a
text frame with graphics and several media content items.
When teaching Module 1, show the students how router configuration relates to the Internet,
which is a global internetwork made possible by routers. Students will learn the difference
between WANs and LANs, and will identify WAN connections, encapsulations, and protocols.
Module 1 Caution
WANs will be taught in detail in CCNA 4. In CCNA 2, it is important to teach students the
fundamental basics of WANs and roles that routers play in the WAN connection. Inform the
students that the serial interfaces will be used to simulate the DCE to DTE WAN connection.
Do not spend too much time on this module.
Students who complete this module should be able to:
• Identify organizations responsible for WAN standards
• Explain the difference between WANs and LANs and the types of addresses they
use
• Describe the role of a router in a WAN
• Identify internal components of a router and describe their functions
• Describe the physical characteristics of a router
Essential labs: None
Optional labs: None
Core TIs: All
Optional TIs: none
Course-level claim: Students can identify the important characteristics of common WAN
configurations and technologies, differentiate between these and common LAN technologies,
and describe the role of a router in a WAN.
Certification-level claim: Students can evaluate the important characteristics of WANs and
implement simple WAN protocols.
Hands-on skills: none
1.1.1 Introduction to WANs
WANs differ from LANs in several ways:
• LANs connect workstations, peripherals, terminals, and other devices in a single
building or several buildings that are located next to each other, and WANs
connect large geographic areas.
• LANs connect devices and WANs connect data connections across a broad
geographic area.
WANs operate at the physical and data-link layers of the OSI model. Devices used in a WAN
are routers, switches, modems, and communication servers. The following topics are relevant
to this TI:
• Discuss the various carriers and devices available for WAN connections.
• Show students what routers in a WAN look like.
• Explain what routers do.
Figure 3 is an important figure to review. Best instructional practices for this TI include online
study sessions with study guides, group work, and mini-lectures. This TI provides essential
background information for the CCNA exam.
1.1.2 Introduction to routers in a WAN
Routers and computers have four basic common components:
However, the main purpose of a router is to route, not to compute. The main components of
the router are as follows:
• RAM
• NVRAM
• Flash
• ROM
• Interfaces
The following topics should be covered in this TI:
• Discuss the similarities of computers and routers such as the software they use.
• Explain the components of the router and what each component contains.
• Open a router and let the students examine the inside. Point out the main
components.
• Explain that just as a computer cannot work without an operating system and
software, a router cannot work without an operating system and configurations.
1.1.3 Router LANs and WANs
Routers function in both LANs and WANs. They are primarily used in WANs. Explain that
routers have both LAN and WAN interfaces. Students should be able to identify the
differences. The two main functions of a router are to select the best path and to forward
packets to the correct outgoing interfaces.
Networking models are useful because they facilitate modularity, flexibility, and adaptability.
Like the OSI model, the three-layer design model is an abstract picture of a network. Models
may be difficult to comprehend because the exact composition of each layer varies from
network to network.
Explain that each layer of a three-layer design model may include a router, a switch, a link, or
some combination of these. Some networks may combine the function of two layers into a
single device or may omit a layer entirely. The three-layer design model consists of the
following:
• The core layer forwards packets as quickly as possible.
• The distribution layer provides a boundary by using filters to limit what gets to the
core.
• The access layer feeds traffic into the network and controls entry into the network.
There are several encapsulations associated with serial lines:
• HDLC
• Frame Relay
• PPP
• SDLC
• SLIP
• LAPB
Some of the most common WAN technologies are as follows:
• POTS
• ISDN
• X.25
• Frame Relay
• ATM
• T1, T3, E1, and E3
• DSL
• SONET
Ask students to briefly explain each of the WAN technologies and discuss the differences
between technologies and encapsulations. They will be covered in detail in CCNA 4.
It is important to encourage student interest and enthusiasm in this TI. The world of WAN
technologies is briefly introduced. Many students will be familiar with one or more of the
technologies used. Many of these topics will be covered in CCNA 4 and students should be
encouraged to do additional research on one of these technologies and present it to the class.
1.1.5 Academy approach to hands-on labs
In the Networking Academy lab, all the networks are connected with a serial or Ethernet cable.
This allows the students to see and touch all of the equipment. In a real network, the routers
would not be in one physical location. In the Networking Academy lab, the serial cables are
connected back-to-back. However, in the real world the cables would be connected through a
CSU or DCE device.
Discuss the differences between real networking environments and the router lab setup. Help
the students visualize the components between the V.35 connectors. If they can understand
this picture, then they will realize that they are working with a complete WAN minus the carrier
services.
Each student should build a complete topology and then take it apart and let the next student
do the lab. These labs are a review of the cabling labs in CCNA 1. This may be one of the last
opportunities students have to cable a network, so do not miss this opportunity to make sure
students complete the CCNA 2 Lab setup. This is a good place to introduce troubleshooting
and the Layer 1 issues that occur in CCNA 2. It is also a fairly simple and fun activity.
1.2 Routers
Essential Labs: 1.2.5, 1.2.6, and 1.2.7
Optional Labs: None
Core TIs: All
Optional TIs: none
Course- Level Claim: Students can properly connect router Fast Ethernet, Serial WAN, and
console ports.
Certification-Level Claim: Students can describe the components of network devices. They
can also identify the major internal and external components of a router and describe the
associated functionality.
Hands-on skills: none
1.2.1 Introduction to WANs
This section overviews the physical aspect of a router. The physical layer is always studied
first in networking topics. The student will be able to identify internal components of the router
and describe their functions, describe the physical characteristics of the router, identify
common ports on a router, and properly connect FastEthernet, Serial WAN, and console ports.
The components in a router are essentially the same as those in a computer. In fact, a router
can be thought of as a computer designed for the special purpose of routing. While the exact
architecture of the router varies in different router series, this section will introduce the major
internal components. The figures show the internal components of some of the Cisco router
models.
Ask students the following questions:
• What are the common components of a router?
• What is NVRAM used for?
1.2.2 Router physical characteristics
It is not necessary to know the location of the physical components inside the router to
understand how to use the router. The exact components used and their locations vary in
different router models.
• What are the different types of RAM used by a router?
• Can the RAM be upgraded in a router?
1.2.3 Router external connections
The three basic types of connections on a router are LAN interfaces, WAN interfaces, and
management ports. LAN interfaces allow the router segment network boundaries within a LAN
and reduce broadcast traffic within a LAN. WAN connections are provided through a service
provider which connects two or more distant site through the Internet or PSTN. The LAN and
WAN connections provide network connections through which frames are passed. The
management port provides an ASCII or text-based connection for the configuration and
troubleshooting of the router.
Ask students the following questions:
• What are the three basic types of connections on a router?
• What is the console connection used for?
1.2.4 Management port connections
The management ports are asynchronous serial ports. They are the console port and the
auxiliary port. Not all routers have an auxiliary port. These serial ports are not designed as
networking ports. To prepare for initial startup and configuration, attach an RS-232 ASCII
terminal or a computer that emulates an ACSII terminal to the system console port.
It is essential for students to understand the difference between network interfaces and nonnetwork interfaces. The instructor may need to talk about the differences extensively.
Discuss the following topics:
• The network ports use network encapsulation frames while the non-network ports
are bit and byte oriented.
• There is no addressing involved in the serial management ports.
• The serial interface for management is asynchronous and the serial WAN interface
is synchronous.
Ask students the following questions:
• Which port is preferred for troubleshooting and why?
• Do all routers have an auxiliary port?
1.2.5 Console Port Connections
The console port is a management port used to provide out-of-band access to a router. It is
used for the initial configuration of the router, monitoring, and disaster recovery procedures.
Students may not be familiar with the term out-of-band. Out-of-band refers to the fact that the
management control communications use a different path or channel than the data
communications.
Ask students the following questions:
• What type of terminal emulation must the PC or terminal support?
• What are the steps to connect the PC to a router?
1.2.6 Connecting Router LAN interfaces
In most LAN environments, an Ethernet or FastEthernet interface is used to connect the router
to the LAN. The router is a host that connects to the LAN through a hub or a switch. A straightthrough cable is used to make this connection. The correct interface must be used.
If the wrong interface is connected, the router or other networking devices may be damaged.
This is generally not true within LAN interfaces. However, if LAN interfaces are connected to
some form of WAN interface such as ISDN, damage can occur. The students should be taught
to be observant and careful whenever connections are made.
Ask students the following questions:
• What type of cable is used to connect from the router Ethernet interface to a hub
or switch?
• What type of cable is used to connect from the router Ethernet interface to a router
Ethernet interface?
1.2.7 Connecting WAN interfaces
There are many forms of WAN connections. A WAN uses many different types of technology
to make data connections across a broad geographic area. WAN services are usually leased
from service providers. The WAN connection types include leased line, circuit switched, and
packet switched.
Many of the WAN interfaces use the same physical interfaces but different pinouts and
electrical characteristics. This difference in electrical characteristics could potentially cause
damage if the wrong connections were made. Again, the students should be taught to be
observant and careful when they make any connections.
Ask students to perform the following tasks:
• List the physical layer standards that Cisco routers support.
Before students move on to Module 2, they must be able to cable the lab setup, identify all
external relevant ports, and identify internal router components.
Online assessment options include the end-of-module online quiz in the curriculum and the
online Module 1 exam. Consider introducing formative assessments, where the instructor
supervises the students as they work on the router setup. The use of formative assessments
can be very valuable while students work through this router-intensive and IOS-intensive
course.
Students should understand the following main points:
• WAN and LAN concepts
• Role of a router in WANs and LANs
• WAN protocols
• How to configure console connections
• The identification and description of the internal components of a router
• The physical characteristics of a router
• The common ports on a router
• How to connect router console, LAN, and WAN ports
Consider the prior knowledge of students when teaching Module 2. Some students may be
familiar with command-line interfaces (CLIs). Students who have only used GUIs may not
know how to use CLIs to interact with a computer. Students should experiment with CLIs to
learn how to interact with a router.
Module 2 Caution
Students need to know what the IOS is and what it does. They also need to know the
difference between the configuration file and the IOS. It is also important for students to feel
comfortable when they enter into and move around in the CLI. Do not move too quickly
through these labs. If students are uncomfortable with the CLI, they will have difficulties with
more complex labs.
Students who complete this module should be able to perform the following tasks:
• Describe the purpose of the IOS
• Describe the basic operation of the IOS
• Identify various IOS features
• Identify the methods to establish a command-line interface (CLI) session with the
router
• Move between the user command executive (EXEC) and privileged EXEC modes
• Establish a HyperTerminal session on a router
• Log into a router
• Use the help feature in the command-line interface
Essential Labs: None
Optional Labs: None
Core TIs: All
Optional TIs: none
Course-Level Claim: Students can describe the purpose and fundamental operation of the
router IOS.
Certification-Level Claim: Students can establish communication between a terminal device
and the router IOS and use it for system analysis, configuration, and repairs.
Hands-on skills: none
2.1.1 The purpose of Cisco IOS software
In this TI, students will be introduced to the fundamentals of the Cisco Internet Operating
System (IOS). Student will learn about the show version command, which helps users gain
information about the Cisco IOS. The IOS command line interface is introduced in another
lesson, so there is no need to focus on the show command in this TI.
A router and switch cannot function without an operating system. Cisco IOS is the installed
software in all Cisco routers and Catalyst switches.
A computer needs an operating system such as Windows or UNIX. Discuss how the hardware
cannot function without this software. Make sure the students understand the role of the IOS.
2.1.2 Router user interface
Cisco IOS software uses a command-line interface (CLI) as its console environment. The CLI
is accessible through several methods:
• Console port
• Auxiliary port
• Telnet session
Students should know the difference between these methods. They should also be
comfortable with the term CLI.
2.1.3 Router user interface modes
The user EXEC mode allows a limited number of basic monitoring commands. This mode is
often referred to as a view-only mode. The privileged EXEC mode provides access to all router
commands. To enter the privileged mode from user mode the enable command must be
entered. The privileged mode is used to access other modes to configure the router.
Students should be able to identify the router prompts. The user mode prompt is Router>.
The privileged mode prompt is Router#.
2.1.4 Cisco IOS software features
Cisco IOS devices have three operating environments:
• ROM monitor
• Boot ROM
• Cisco IOS
ROM monitor is used to recover from system failures and recover a lost password. Boot ROM
is used to modify the Cisco IOS image in flash. There is a limited subset of features in this
mode. Normal operation of a router requires the full Cisco IOS image. Discuss the three
operating environments. Students should be able to identify these environments. Students
must be familiar with the IOS to control the router. Cisco technology is in the IOS, not in the
hardware.
2.1.5 Operation of Cisco IOS software
There are numerous IOS images for different Cisco device models. Each devise uses a similar
basic command structure for configuration. The configuration and troubleshooting skills
acquired on a specific device will apply to a variety of products.
The naming convention for the different Cisco IOS Releases contains three parts:
• The platform on which the image runs
• The special capabilities and feature sets supported in the image
• Where the image runs and whether it has been zipped or compressed
One of the major constraints for the use of a new IOS image is compatibility with the router
flash and RAM memory.
The students should also understand that the same IOS is used on the smallest to the largest
Cisco products. This will assure students that the skills they develop on small Cisco routers
can be applied to larger routers and switches.
Show students various naming conventions and identify the three parts of the naming
convention. For example, in cpa25-cg-1, cpa25 is the Cisco Pro 2500 Router, cg is the feature
capability such as communication server, remote-access server, or ISDN, and the 1 is the run
location or compressed status.
Explain that it is important to install and maintain various IOS versions, especially newer
versions with advanced features. Encourage the students to conduct research online at
www.cisco.com for more information on how to obtain various IOS images.
Essential Labs: 2.2.1, 2.2.4, and 2.2.9
Optional Labs: None
Core TIs: All
Optional TIs: none
Course-Level Claim: Students can describe the purpose and fundamental operation of the
router IOS
Certification-Level Claim: Students can establish communication between a terminal device
and the router IOS and use it for system analysis, configuration, and repair
Hands-on skills: none
2.2.1 Initial startup of Cisco routers
This section teaches students about the startup process for a router. Students learn how to
establish a HyperTerminal session and log into a router. Students will then be introduced to
the help feature and enhanced editing commands.
When a Cisco router powers up, it performs a POST. This executes diagnostics from ROM on
all hardware modules. After the POST, the following events occur as the router initializes:
• Bootstrap is loaded from ROM.
• IOS is loaded from flash, TFTP, or ROM.
• Config is loaded from NVRAM or TFTP into setup mode.
This section teaches students how to check the configuration during the boot process. Setup
mode is intended to quickly install a router with minimal configuration. Discuss the initial
startup of routers and explain why the IOS and configuration files can be loaded from several
places.
2.2.2 Router LED indicators
Router LED indicators indicate the status of a router. If an interface is extremely busy, its LED
will be on all the time. The green LED will be on after the router card initializes correctly.
Have the students view the LED indicators on the routers in the lab setup. Show them LEDs
that work correctly and explain what they are. Make sure the students understand that the port
status and link LEDs are the prime indicators of the physical layer status.
2.2.3 The initial router bootup
Bootup messages displayed by a router include messages such as “NVRAM invalid, possibly
due to write erase”, which indicates that the router has not been configured or the backup
configuration has been erased.
If a router does not boot up correctly, issue the show version command to examine the
configuration register to see if it is booting.
Remind the students that the router is a special purpose computer. It has a boot sequence that
is similar to a standard computer. The router must load the IOS from one of several sources.
The router must also obtain a configuration file. If a configuration file is not available, the router
will enter setup mode, which prompts the user for a basic router configuration. Make sure the
students understand what the router needs as basic configuration information. This provides a
lot of information about how the router works. It is very important for students to understand
the difference between the IOS and the configuration file.
2.2.4 Establish a console session
To establish a HyperTerminal Console session, students should complete the following steps:
1. Connect the terminal with an RJ-45-to-RJ-45 rollover cable and an RJ-45-to-DB-9 or
RJ-45-to-DB-25 adapter
2. Configure the terminal or PC terminal emulation software for 9600 baud, 8 data bits, no
parity, 1 stop bit, and no flow control
Instruct the students to connect the cables from the router to the PC and to connect with the
HyperTerminal program. To configure a router, a connection must be established between the
PC and a router. Make sure students understand that this is how routers need to be configured
initially, but it is not the only way to configure a router.
2.2.5 Router login
There are two levels of access to commands in a router:
• User EXEC mode
• Privileged EXEC mode
The user EXEC mode is a view-only mode. Enter privileged EXEC mode with the enable
command from the User prompt. Other modes can be accessed from privileged mode to
configure a router. The students should have a lot of practice with hands-on activities in the lab
setup. It is important for students to understand the various modes to be able to accurately
configure a router. It is not necessary to memorize all commands. Students must understand
each mode so they can make the configurations from the correct locations.
2.2.6 Keyboard help in the router CLI
At the user mode prompt, a question mark (?) should be typed to display a list of commands
available in the router. From user mode, the enable command will switch the router into the
privileged mode. If a question mark (?) is entered from the privileged mode prompt, many
more commands are listed as available commands to use in the router. Students should briefly
review the types of commands in each mode. There is no need to memorize all of the
commands.
The context-sensitive help is one of the most useful features of the IOS. Teach the student
that the question mark (?) is extremely helpful in the router.
To demonstrate the help feature, instruct students to set the clock without telling them which
commands to use. The question mark (?) will guide students through the process.
2.2.7 Enhanced editing commands
Enhanced editing commands are on by default. To disable enhanced editing mode, the
terminal no editing command can be used at the privileged mode prompt.
The editing command set provides a horizontal scrolling feature for commands that extend
beyond a single line. When the cursor reaches the right margin, the command line shifts ten
spaces to the left. The first ten characters of the line cannot be seen, but a user can scroll
back to check the syntax. It is represented by a dollar sign ($).
Some of the editing commands are as follows:
• Ctrl-A moves to the beginning of the command line.
• Ctrl-B moves back one character.
• Ctrl-E moves to the end of the command line.
• Ctrl-F moves forward one character.
• Ctrl-Z moves back out of configuration mode.
• Esc and then B moves back one word.
• Esc and then F moves forward one word.
The syntax of IOS commands can be complex. Keyboard editing features can be used to
correct text that has been entered. When a router is being configured, repetitive command
statements, typing errors that need to be fixed, and commands that need to be reused may be
encountered. Questions about the Ctrl key and Esc key sequences will probably appear on
the CCNA exam.
2.2.8 Router command history
The user interface provides a history of commands that have been entered. This feature can
be used to recall long or complex commands. The command history feature can be used to
complete the following tasks:
• Set the command history buffer size
• Recall commands
• Disable the command history feature
By default, the command history records ten command lines in the history buffer. To recall
commands, press Ctrl-P or the Up Arrow key to recall repeated commands. Press Ctrl-N or
the Down Arrow key to recall more recent commands in the history. The Ctrl-P and Ctrl-N
features are also likely to be tested on the CCNA exam.
The syntax of IOS commands can be complex. The feature used to recall commands can help
students save time when they program or troubleshoot a router.
2.2.9 Troubleshooting command line errors
This troubleshooting lab allows students to log into the router and access various modes.
Demonstrate the use of the question mark (?) as a helpful tool for students who do not know
which command to enter.
Also demonstrate the use of the history command as a helpful tool for students to
troubleshoot problems without retyping repeated commands.
2.2.10 The show version command
The show version command displays information about the Cisco IOS software version.
This information includes the system image file name and the location from which it was
booted. It also contains the configuration register and the boot-field setting. Explain that an
important aspect of router and IOS maintenance is to know exactly which version of the IOS is
being used.
Cisco has numerous major and minor IOS releases. There are many different versions and
different features to meet the requirements of a network. Students should know that the show version command shows much more than just the version of the IOS. This is an important
command. Explain to students is that this is the only command that can be used to examine
the configuration register.
Before students move on to Module 3, they must be able to interact with the router through a
HyperTerminal session and the CLI.
Online assessment options include the end-of-module online quiz in the curriculum and the
online Module 2 exam. Make sure students know how to access the command-line prompt.
Formative assessments related to lab work are relevant to Module 2.
Students should understand the following main points:
• Understand the basic operation of IOS
• Identify various IOS features
• Identify methods to establish a CLI session with the router
• Use HyperTerminal to establish a CLI session
• Log into the router
• Use the help feature in the command line interface
When teaching Module 3, emphasize the empowerment that students will gain from the ability
to configure routers and the importance of familiarity with the IOS through extensive practice.
There are many tools available to teach IOS:
• The curriculum text and graphics are used to introduce command syntax and
context.
• The online command references are integrated.
• CiscoPedia is the IOS command reference in the form of a Windows help file. All
CCNA and CCNP commands are included.
• Integrated e-Labs provide guided practice of command syntax.
• Standalone e-SIMs provide more open-ended practice of CCNA 2-level router
configuration.
• Hands-on labs are integrated PDF files that should be the core of the learning
experience.
Module 3 Caution
Spend a lot of time on this module. Students have wanted to program routers since the first
day of CCNA 1. This module presents the core skills that the students will use to build all
Cisco device configurations. From this point in the CCNA 2 curriculum through the end of the
CCNA 4 curriculum, students may be deprived of the opportunity to learn about the IOS if the
student-to-equipment ratio is high. Only the local instructor can decide what mix of lab
equipment, group work, creative rotations, lab access, remote access through NetLabs or
other solutions, e-Labs, e-SIM, CiscoPedia, and other tools can be used to give students
adequate opportunities to learn IOS.
After completing this module, students should be able to perform the following tasks:
Essential Labs: 3.1.2, 3.1.3, 3.1.4, 3.1.5, 3.1.6, and 3.1.7
Optional Labs: None
Core TIs: All
Optional TIs: none
Course-Level Claim: Students can perform, save, and test an initial configuration on a router.
Certification Level Claim: Students can perform an initial configuration on a router.
Hands-on skills: none
3.1.1 CLI command modes
The students need to understand that the router does not know what routing to do until it is
configured. This section will help students begin the configuration of a router.
To gain access to a router, a login is required. After login, there is a choice of modes. The
modes interpret the commands that are typed and perform the operations. There are two
EXEC modes:
• User EXEC mode
• Privileged EXEC mode
The first configuration mode is referred to as global configuration mode or global config. The
following configuration modes are available in global configuration mode:
• Interface
• Subinterface
• Controller
• Map-list
• Map-class
• Line
• Router
Global configuration commands are used in a router to apply configuration statements that
affect the entire system. Use the privileged EXEC command configure terminal to enter
global configuration mode.
Explain that Cisco IOS is modal. Emphasize that in the CLI that there are different modes to
accomplish different tasks. There are several advantages to this. One is that the commands
are generally shorter because the object of the mode, i.e., the interface, or routing protocol, to
be changed does not need to be specified in the command. Another advantage is that only the
parameters, or objects of the mode, i.e., the interface, or routing protocol, can be modified by
the command. This helps prevent accidental configuration of the wrong object. There are
shortcuts to show students at a later time:
• config t for configure terminal
• int fa0/0 for interface fastethernet 0/0
Students commonly enter the correct command at the incorrect prompt. If the students are
unable to enter a command, check the mode. The prompt will be either Router(config)# or
Router(config-if)#.
Ask students the following questions:
• Which mode is the user in when first logging into the router?
• What mode is the user in after entering the enable command?
3.1.2 Configuring a router name
One of the first basic configuration tasks is to name a router. This task helps with network
management and uniquely identifies each router within a network. Use global configuration
mode to name a router. The name of a router is called the hostname and will be displayed as
the system prompt. If a router is not named, then the system default will be “Router”.
Students need to understand that the name is an important part of the configuration process.
Much of the configuration and troubleshooting will be performed remotely. Users will telnet into
different routers. For practice, ask students to name the routers. When instructors are asked to
help troubleshoot a lab, they can easily identify the different routers. The router name at the
prompt confirms the student has completed this task. Students should also understand that
names should be chosen to represent a location or a function. In many organizations, there
are naming conventions to be followed.
Ask students the following questions:
• What is the default name of the router?
• In which mode can the user name the router?
• What is the command to name a router?
3.1.3 Configuring router passwords
Passwords can be used to secure a router and restrict access. Passwords can be established
for virtual terminal lines and the console line. The privileged EXEC mode may also have a
password. From global configuration mode use the enable password command to restrict
access to the privileged mode. The line configuration mode can be used to establish a login
password on the console terminal. Use the command line vty 0 4 to establish a login
password on incoming Telnet sessions.