Cirrus Logic CS5463 User Manual

CS5463
VA+ VD+
IIN+
IIN-
VIN+
VIN-
VREFIN
VREFOUT
AGND
XIN XOUT CPUCLK DGND
CS
SDO
SDI
SCLK INT
Voltage
Reference
System
Clock
/K
Clock
Generator
Serial
Interface
E-to-F
Power
Monitor
PFMON
x1
RESET
Digital
Filter
Calibration
MODE
Power
Ca lc u la tion
Engine
4th Order 
Modulator
2nd Order 
Modulator
Temperature
Sensor
Digital
Filter
PGA
HPF
Option
HPF
Option
E1 E2 E3
x10
Single Phase, Bi-directional Power/Energy IC
Features
Energy Data Linearity: ±0.1% of Reading
over 1000:1 Dynamic Range
- Instantaneous Voltage, Current, and Power
- I
and V
RMS
(Real) Power
- Active Fundamental and Harmonic Power
- Reactive Fundamental, Power Factor, and Line
Frequency
- Energy-to-pulse Conversion
- System Calibrations and Phase Compensation
- Temperature Sensor
Meets accuracy spec for IEC, ANSI, JIS.
Low Power ConsumptionCurrent Input Optimized for Sense Resistor.GND-referenced Signals with Single SupplyOn-chip 2.5 V Reference (25 ppm/°C typ)Power Supply MonitorSimple Three-wire Digital Serial Interface“Auto-boot” Mode from Serial EPower Supply Configurations:
VA+ = +5 V; AGND = 0 V; VD+ = +3.3 V to +5 V
, Apparent, Reactive, and Active
RMS
2
PROM
Description
The CS5463 is an integrated power measure­ment device which combines two  analog-to-digital converters, power calculation engine, energy-to-frequency converter, and a serial interface on a single chip. It is designed to accurately measure instantaneous current and voltage, and calculate V neous power, apparent power, active power, and reactive power for single-phase, 2- or 3-wire power metering applications.
The CS5463 is optimized to interface to shunt re­sistors or current transformers for current measurement, and to resistive dividers or poten­tial transformers for voltage measurement.
The CS5463 features a bi-directional serial inter­face for communication with a processor and a programmable energy-to-pulse output function. Additional features include on-chip functionality to facilitate system-level calibration, temperature sensor, voltage sag detection, and phase compensation.
ORDERING INFORMATION:
See Page 45.
RMS
, I
, instanta-
RMS
http://www.cirrus.com
Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved)
APR ‘11
DS678F3
CS5463

TABLE OF CONTENTS

1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2. Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3. Characteristics & Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1 Digital Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Voltage and Current Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Power Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Linearity Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1 Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.1 Voltage Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.2 Current Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 IIR Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 High-pass Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4 Performing Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5 Energy Pulse Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5.1 Active Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5.2 Apparent Energy Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.5.3 Reactive Energy Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.5.4 Voltage Channel Sign Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.5.5 PFMON Output Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.5.6 Design Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.6 Sag and Fault Detect Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.7 No Load Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.8 On-chip Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.9 Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.10 System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.11 Power-down States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.12 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.13 Event Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.13.1 Typical Interrupt Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.14 Serial Port Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.14.1 Serial Port Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.15 Register Paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.16 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.16.1 Start Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.16.2 SYNC0 and SYNC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.16.3 Power-up/Halt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.16.4 Power-down and Software Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.16.5 Register Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.16.6 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6. Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1 Page 0 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1.1 Configuration Register ( Config ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1.2 Current and Voltage DC Offset Register ( I
6.1.3 Current and Voltage Gain Register ( I
6.1.4 Cycle Count Register ( Cycle Count ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1.5 PulseRateE Register ( PulseRateE ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1.6 Instantaneous Current, Voltage, and Power Registers ( I , V , P ) . . . . . . 28
, Vgn ) . . . . . . . . . . . . . . . . . . . . 27
gn
DCoff
, V
) . . . . . . . . . . . . 27
DCoff
2 DS678F3
CS5463
6.1.7 Active (Real) Power Register ( P
6.1.8 RMS Current & Voltage Registers ( I
) . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Active
RMS
, V
). . . . . . . . . . . . . . . . . . 28
RMS
6.1.9 Epsilon Register ( e ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1.10 Power Offset Register ( P
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
off
6.1.11 Status Register and Mask Register ( Status , Mask ) . . . . . . . . . . . . . . . 29
6.1.12 Current and Voltage AC Offset Register ( V
ACoff
, I
) . . . . . . . . . . . 30
ACoff
6.1.13 Operational Mode Register ( Mode ). . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.1.14 Temperature Register ( T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.1.15 Average and Instantaneous Reactive Power Register ( Q
6.1.16 Peak Current and Peak Voltage Register ( I
6.1.17 Reactive Power Register ( Q
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Trig
peak
, V
peak
, Q ) . . . . 31
AVG
). . . . . . . . . . . . 31
6.1.18 Power Factor Register ( PF ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.1.19 Apparent Power Register ( S ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.1.20 Control Register ( Ctrl ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1.21 Harmonic Active Power Register ( P
6.1.22 Fundamental Active Power Register ( P
6.1.23 Fundamental Reactive Power Register ( Q
) . . . . . . . . . . . . . . . . . . . . . . . . . 33
H
) . . . . . . . . . . . . . . . . . . . . . . 33
F
) . . . . . . . . . . . . . . . . . . . . 34
H
6.1.24 Page Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 Page 1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2.1 Energy Pulse Output Width ( PulseWidth ). . . . . . . . . . . . . . . . . . . . . . . . 35
6.2.2 No Load Threshold ( Load
6.2.3 Temperature Gain Register ( T
6.2.4 Temperature Offset Register ( T
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Min
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Gain
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Off
6.3 Page 3 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3.1 Voltage Sag & Current Fault Duration Registers . . . . . . . . . . . . . . . . . . . 36
6.3.2 Voltage Sag & Current Fault Level Registers . . . . . . . . . . . . . . . . . . . . . . . 36
7. System Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.1 Channel Offset and Gain Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.1.1 Calibration Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.1.1.1 Duration of Calibration Sequence . . . . . . . . . . . . . . . . . . . . . 37
7.1.2 Offset Calibration Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.1.2.1 DC Offset Calibration Sequence . . . . . . . . . . . . . . . . . . . . . . 37
7.1.2.2 AC Offset Calibration Sequence . . . . . . . . . . . . . . . . . . . . . . 38
7.1.3 Gain Calibration Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.1.3.1 AC Gain Calibration Sequence . . . . . . . . . . . . . . . . . . . . . . . 38
7.1.3.2 DC Gain Calibration Sequence . . . . . . . . . . . . . . . . . . . . . . . 39
7.1.4 Order of Calibration Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 Phase Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.3 Active Power Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8. Auto-boot Mode Using E2PROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.1 Auto-boot Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.2 Auto-boot Data for E
8.3 Which E
2
PROMs Can Be Used? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2
PROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9. Basic Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10. Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
11. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
12. Environmental, Manufacturing, & Handling Information . . . . . . . . . . . . . . . . . 45
13. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
DS678F3 3
CS5463

LIST OF FIGURES

Figure 1. CS5463 Read and Write Timing Diagrams..................................................................12
Figure 2. Timing Diagram for
Figure 3. Data Measurement Flow Diagram...............................................................................14
Figure 4. Power Calculation Flow. ..............................................................................................15
Figure 5. Active and Reactive Energy Pulse Outputs.................................................................17
Figure 6. Apparent Energy Pulse Outputs..................................................................................18
Figure 7. Voltage Channel Sign Pulse outputs...........................................................................18
Figure 8. PFMON Output to Pin
Figure 9. Sag and Fault Detect...................................................................................................19
Figure 10. Oscillator Connection.................................................................................................20
Figure 11. CS5463 Memory Map................................................................................................22
Figure 12. Calibration Data Flow ................................................................................................37
Figure 13. System Calibration of Offset......................................................................................37
Figure 14. System Calibration of Gain........................................................................................38
Figure 15. Example of AC Gain Calibration................................................................................38
Figure 16. Example of AC Gain Calibration................................................................................38
Figure 17. Typical Interface of E
Figure 18. Typical Connection Diagram (Single-phase, 2-wire)..................................................41
E1, E2, and E3....................................................................................... 13
E3.......................................................................................................19
2
PROM to CS5463...................................................................40
Figure 20. Typical Connection Diagram (Single-phase, 3-wire)..................................................42
Figure 19. Typical Connection Diagram (Single-phase, 2-wire – Isolated from Power Line)...... 42
Figure 21. Typical Connection Diagram (Single-phase, 3-wire – No Neutral Available)............. 43

LIST OF TABLES

Table 1. Current Channel PGA Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 2. E2 Table 3. E3
Table 4. Interrupt Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 DS678F3
CS5463

1. OVERVIEW

The CS5463 is a CMOS monolithic power measurement device with a computation engine and an ener­gy-to-frequency pulse output. The CS5463 combines a programmable gain amplifier, two  Ana­log-to-Digital Converters (ADCs), system calibration, and a computation engine on a single chip.
The CS5463 is designed for power measurement applications and is optimized to interface to a current sense resistor or transformer for current measurement, and to a resistive divider or potential transformer for voltage measurement. The current channel provides programmable gains to accommodate various in­put levels from a multitude of sensing elements. With single +5 V supply on VA+/AGND, both of the CS5463’s input channels can accommodate common mode plus signal levels between (AGND - 0.25 V) and VA+.
The CS5463 also is equipped with a computation engine that calculates instantaneous power, I V
, apparent power, active (real) power, reactive power, harmonic active power, active and reactive
RMS
fundamental power, and power factor. The CS5463 additional features include line frequ ency, current and voltage sag detection, zero-cross detection, positive-only accumulation mode, and three programmable pulse output pins. To facilitate communication to a microprocessor, the CS5463 includes a simple three-wire serial interface which is SPI™ and Microwire™ compatible. The CS5463 provides three out­puts for energy registration. E1
, E2, and E3 are designed to interface to a microprocessor.
RMS
,
DS678F3 5
CS5463
12
11
10
9
8
7
6
5
4
3
2
1
13
14
15
16
17
18
19
20
21
22
23
24
AGND Analog Ground
VA+ Positive Analog Supply
IIN- Differential Current Input
IIN+ Differential Current Input
PFMON Power Fail Monitor
E3 High Frequency Energy Output
RESET Reset
INT Interrupt
E1 Energy Output 1
SDI Serial D a t a Input
XIN Crysta l In
E2
Energy Output 2
VREFINVoltage Reference Input
VREFOUTVoltage Reference Output
VIN-Differential Voltage Input
VIN+Differential Voltage Input
MODEMode Select
CSChip Select
SDOSerial Data Ouput
SCLKSerial Clock
DGNDDigital Ground
VD+Positiv e Digita l Supp ly
CPUCLKCPU Clock Output
XOUTCrystal Out

2. PIN DESCRIPTION

Clock Generator
Crystal Out
1,24
Crystal In
CPU Clock Output 2
Control Pins and Serial Data I/O
Serial Clock Input 5
Serial Data Output 6 Chip Select 7 Mode Select 8 Energy Output 18,21,22
Reset 19
Interrupt 20 Serial Data Input 23
Analog Inputs/Outputs
Differential V ol tage Inputs 9,10 Differential Current Inputs 15,16 Voltage Reference Output 11
Voltage Reference Input 12
Power Supply Connections
Positive Digital Supply 3 Digital Ground 4 Positive Analog Supply 14 Analog Ground 13 Power Fail Monitor
6 DS678F3
XOUT, XIN – The output and input of an inverting amplifier. Oscillation occurs when connected to
a crystal, providing an on-chip system clock. Alternatively, an external clock can be supplied to the XIN pin to provide the system clock for the device.
CPUCLK – Output of on-chip oscillator which can drive one standard CMOS load.
SCLK – A Schmitt-trigger input pin. Clocks data from the SDI pin into the receive buffer and out
of the transmit buffer onto the SDO pin when CS
SDO – Serial port data output pin.SDO is forced into a high-impedance state when CS is high. CS – Low, activates the serial port interface. MODE - High, enables the “auto-boot” mode. The mode pin has an internal pull-down resistor. E3, E1, E2 – Active-low pulses with an output frequency proportional to the selected power. Con-
figurable outputs for active, apparent, and reactive power, negative energy indication, zero cross detection, and power failure monitoring. E1 Modes Register.
RESET – A Schmitt-trigger input pin. Low activates Reset, all internal registers (some of which drive output pins) are set to their default states.
INT - Low, indicates that an enabled event has occurred. SDI - Serial port data input pin. Data will be input at a rate determined by SCLK.
VIN+, VIN- – Differential analog input pins for the voltage channel. IIN+, IIN- – Differential analog input pins for the current channel. VREFOUT – The on-chip voltage reference output. The voltage reference has a nominal magni-
tude of 2.5 V and is referenced to the AGND pin on the converter.
VREFIN – The input to this pin establishes the voltage reference for the on-chip modulator.
VD+ – The positive digital supply. DGND – Digital Ground. VA+ – The positive analog supply. AGND – Analog ground. PFMON – The power fail monitor pin monitors the analog supply. If the analog supply does not
17
meet or falls below PFMON’s voltage threshold, a Low-supply Detect (LSD) event is set in the status register.
is low.
, E2, E3 outputs are configured in the Operational
CS5463

3. CHARACTERISTICS & SPECIFICATIONS

RECOMMENDED OPERATING CONDITIONS

Parameter Symbol Min Typ Max Unit
Positive Digital Power Supply VD+ 3.135 5.0 5.25 V Positive Analog Power Supply VA+ 4.75 5.0 5.25 V Voltage Reference VREFIN - 2.5 - V Specified Temperature Range T
A

ANALOG CHARACTERISTICS

Min / Max characteristics and specifications are guaranteed over all Recommended Operating Conditions.
Typical characteristics and specifications are measured at nominal supply voltages and TA = 25 °C.
VA+ = VD+ = 5 V ±5%; AGND = DGND = 0 V; VREFIN = +2.5V. All voltages with respect to 0 V.
MCLK = 4.096 MHz.
Parameter Symbol Min Typ Max Unit
Accuracy
Active Power All Gain Ranges (Note 1) Input Range 0.1% - 100%
Average Reactive Power All Gain Ranges (Note 1 and 2) Input Range 0.1% - 100%
Power Factor All Gain Ranges (Note 1 and 2) Input Range 1.0% - 100%
Input Range 0.1% - 1.0%
Current RMS All Gain Ranges (Note 1) Input Range 0.2% - 100%
Input Range 0.1% - 0.2%
Voltage RMS All Gain Ranges (Note 1) Input Range 5% - 100%
Analog Inputs (Both Channels)
Common Mode Rejection (DC, 50, 60 Hz) CMRR 80 - - dB Common Mode + Signal All Gain Ranges -0.25 - VA+ V
Analog Inputs (Current Channel)
Differential Input Range (Gain = 10) [(IIN+) - (IIN-)] (Gain = 50)
Total Harmonic Distortion (Gain = 50) THD 80 94 - dB Crosstalk with Voltage Channel at Full Scale (50, 60 Hz) - -115 - dB Input Capacitance (Gain = 10)
(Gain = 50) Effective Input Impedance EII 30 - - k Noise (Referred to Input) (Gain = 10)
(Gain = 50) Offset Drift (Without the High Pass Filter) OD - 4.0 - µV/°C
Gain Error (Note 3) GE - ±0.4 %
Notes: 1. Applies when the HPF option is enabled.
2. Applies when the line frequency is equal to the product of the Output Word Rate (OWR) and the value of epsilon (
).
P
Active
Q
Avg
PF -
I
RMS
V
RMS
IIN
IC
N
I
-40 - +85 °C
0.1-%
0.2-%
±0.2
-
±0.27
-
-
% %
%
-
-
±0.2 ±1.5
-
-
% %
0.1-%
-
-
-
-
-
-
500 100
32 52
22.5
4.5
-
-
-
-
-
-
mV mV
µV µV
P-P P-P
pF pF
rms rms
DS678F3 7
CS5463
PSRR 20
150 V
eq
--------- -
log=
ANALOG CHARACTERISTICS (Continued)
Parameter Symbol Min Typ Max Unit
Analog Inputs (Voltage Channel)
Differential Input Range [(VIN+) - (VIN-)] VIN - 500 - mV Total Harmonic Distortion THD 65 75 - dB
Crosstalk with Current Channel at Full Scale (50, 60 Hz) - -70 - dB Input Capacitance All Gain Ranges IC - 0.2 - pF Effective Input Impedance EII 2 - - M Noise (Referred to Input) N
V
-140-µV
Offset Drift (Without the High Pass Filter) OD - 16.0 - µV/°C Gain Error (Note 3) GE - ±3.0 %
Temperature Channel
Temperature Accuracy T - ±5 - °C
Power Supplies
Power Supply Currents (Active State) I
I
(VA+ = VD+ = 5 V)
D+
(VA+ = 5 V, VD+ = 3.3 V)
I
D+
Power Consumption Active State (VA+ = VD+ = 5 V) (Note 4) Active State (VA+ = 5 V, VD+ = 3.3 V)
St and-by State
Sleep State
Power Supply Rejection Ratio (50, 60 Hz) (Note 5) Voltage Channel
Current Channel
PSCA
A+
PSCD PSCD
PC -
PSRR 45
70
-
-
-
-
-
-
1.1
2.9
1.7 21
11.6 8
10
­65 75
-
-
-
29
17.5
-
-
-
-
­PFMON Low-voltage Tr igger Threshold (Note 6) PMLO 2.3 2.45 - V PFMON High-voltage Power-on Trip Point (Note 7) PMHI - 2.55 2.7 V
Notes: 3. Applies before system calibration.
4. All outputs unloaded. All inputs CMOS level.
5. Measurement method for PSRR: VREFIN tied to VREFOUT, VA+ = VD+ = 5 V, a 150 mV (zero-to-peak) (60 Hz) sinewave is imposed onto the +5 V DC supply voltage at VA+ and VD+ pins. The “+” and “-” input pins of both input ch annels a re sh or ted to AGND. T hen the CS5 463 is command ed to continuous conversion acquisition mode, and digital output data is collected for the chan nel under test. The (zero-to-peak) value of the digital sinusoidal out put signal is determined, and this value is converted into the (zero-to-peak) value of the sinusoidal voltage (me asured in m V) that would need to be applied at the channel’s inputs, in order to cause the sa me digital sinusoidal output. This voltage is then defined as Veq. PSRR is then (in dB)
:
P-P
rms
mA mA mA
mW mW mW
µW
dB dB
6. When voltage level on PFMON is sagging, and LSD bit = 0, the voltage at which LSD is set to 1.
7. If the LSD bit has been set to 1 (because PFMON voltage fell below PMLO), this is the voltage level on PFMON at which the LSD bit can be permanently reset back to 0.
8 DS678F3
CS5463
(VREFOUTMAX - VREFOUTMIN)
VREFOUT
AVG
(
(
1
T
A
MAX
- T
A
MIN
(
(
1.0 x 10
(
(
6
TC
VREF
=

VOLTAGE REFERENCE

Parameter Symbol Min Typ Max Unit
Reference Output
Output Voltage VREFOUT +2.4 +2.5 +2.6 V Temperature Coefficient (Note 8) TC
Load Regulation (Note 9) V
Reference Input
VREF
R
Input Voltage Range VREFIN +2.4 +2.5 +2.6 V Input Capacitance - 4 - pF Input CVF Current - 25 - nA
Notes: 8. The voltage at VREFOUT is measured across the temperature range. From these measurements the
following formula is used to calculate the VREFOUT Temperature Coefficient:.
9. Specified at maximum recommended output of 1 µA, source or sink.

DIGITAL CHARACTERISTICS

Min / Max characteristics and specifications are guaranteed over all Recommended Operating Conditions.
Typical characteristics and specifications are measured at nominal supply voltages and TA = 25 °C.
VA+ = VD+ = 5V ±5%; AGND = DGND = 0 V. All voltages with respect to 0 V.
MCLK = 4.096 MHz.
- 25 60 ppm/°C
-610mV
Parameter Symbol Min Typ Max Unit
Master Clock Characteristics
Master Clock Frequency Internal Gate Oscillator (Note 11) MCLK 2.5 4.096 2 0 MHz Master Clock Duty Cycle 40 - 60 % CPUCLK Duty Cycle (Note 12 and 13) 40 - 60 %
Filter Characteristics
Phase Compensation Range (Voltage Channel, 60 Hz) -2.8 - +2.8 ° Input Sampling Rate DCLK = MCLK/K - DCLK/8 - Hz Digital Filter Output Word Rate (Both Channels) OWR - DCLK/1024 - Hz High-pass Filter Corner Frequency -3 dB - 0.5 - Hz Full-scale DC Calibration Range (
Referred to Input) (Note 14) FSCR 25 - 100 %F.S.
Channel-to-channel Time-shift Error (Note 15) 1.0 µs
Input/Output Characteristics
High-level Input Voltage
All Pins Except XIN and SCLK and RESET
XIN
SCLK and RESET
Low-level Input Voltage (VD = 5 V)
All Pins Except XIN and SCLK and RESET
XIN
SCLK and RESET
V
IH
V
IL
0.6 VD+
(VD+) - 0.5
0.8VD+
-
-
-
-
-
-
-
-
-
-
-
-
0.8
1.5
0.2VD+
V V V
V V V
DS678F3 9
Parameter Symbol Min Typ Max Unit
Low-level Input Voltage (VD = 3.3 V)
All Pins Except XIN and SCLK and RESET
XIN
SCLK and RESET
High-level Output Voltage I Low-level Output Voltage I
= +5 mA V
out
= -5 mA V
out
Input Leakage Current (Note 16) I 3-state Leakage Current I Digital Output Pin Capacitance C
Notes: 10. All measurements performed under static conditions.
11. If a crystal is used, then XIN frequency must remain between 2.5 MHz - 5.0 MHz. If an external oscillator is used, XIN frequency range is 2.5 MHz - 20 MHz, but K must be set so that MCLK is between
2.5 MHz - 5.0 MHz.
12. If ex ternal MC LK is used, then the duty cycle must be between 45% and 55% to maintain this specification.
13. The frequency of CPUCLK is equal to MCLK.
14. The minimum FSCR is limited by the maximum allowed gain register value. The maximum FSCR is limited by the full-scale signal applied to the channel input.
15. Configuration Register bits PC[6:0] are set to “0000000”.
16. The MODE pin is pulled low by an internal resistor.
V
IL
OH
OL in
OZ
out
-
-
-
-
-
-
(VD+) - 1.0 - - V
--0.4V
1±10µA
--±10µA
-5-pF
CS5463
0.48
0.3
0.2VD+
V V V
10 DS678F3
CS5463

SWITCHING CHARACTERISTICS

Min / Max characteristics and specifications are guaranteed over all Recommended Operating Conditions.
Typical characteristics and specifications are measured at nominal supply voltages and TA = 25 °C.
VA+ = 5 V ±5% VD+ = 3.3 V ±5% or 5 V ±5%; AGND = DGND = 0 V. All voltages with respect to 0 V.
Logic Levels: Logic 0 = 0 V, Logic 1 = VD+.
Parameter Symbol Min Typ Max Unit
Rise Times Any Digital Input Except SCLK (Note 17) SCLK
Any Digital Output
Fall Times Any Digital Input Except SCLK (Note 17) SCLK
Any Digital Output
Start-up
Oscillator Start-up Time XTAL = 4.096 MHz (Note 18) t
Serial Port Timing
Serial Clock Frequency SCLK - - 2 MHz Serial Clock Pulse Width High
Pulse Width Low
SDI Timing
CS Falling to SCLK Rising t Data Set-up Time Prior to SCLK Rising t Data Hold Time After SCLK Rising t
SDO Timing
CS Falling to SDI Driving t SCLK Falling to New Data Bit (hold time) t
Rising to SDO Hi-Z t
CS
Auto-Boot Timing
Serial Clock Pulse Width Low
Pulse Width High
MODE setup time to RESET RESET CS SCLK falling to CS CS
rising to CS falling t
falling to SCLK rising t
rising t
rising to driving MODE low (to end auto-boot sequence) t
Rising t
SDO guaranteed setup time to SCLK rising t
Notes: 17. Specified using 10% and 90% points on waveform of interest. Output loaded with 50 pF.
18. Oscillator start-up time varies with crystal parameters. This specification does not apply when using an external clock source.
t
t
t
rise
fall
ost
t
1
t
2
3 4 5
6 7 8
t
9
10 11 12 13 14 15 16
-
-
-
-
-
-
50
50
-
-
-
-
1.0
100
-
1.0
100
-
µs µs ns
µs µs ns
-60-ms
200 200
-
-
-
-
ns ns
50 - - ns 50 - - ns
100 - - ns
-2050ns
-2050ns
-2050ns
8 8
MCLK MCLK
50 ns 48 MCLK
100 8 MCLK
16 MCLK
50 ns
100 ns
DS678F3 11
t
1
t
2
t
3
t
4
t
5
MSB
MSB-1
LSB
MSB
MSB-1
LSB
MSB
MSB-1
LSB
MSB
MSB-1
LSB
Com m and Tim e 8 SC LKs High Byte M id Byte Low Byte
CS
SCLK
SDI
t
10
t
9
RESET
SDO
SCLK
CS
Last 8
Bits
SDI
MODE
STOP bit
D a ta fro m E E P R O M
t
16
t
4
t
5
t
14
t
15
t
7
t
13
t
12
t
11
(INPUT)
(INPUT)
(O UT P U T )
(O UT P U T )
(O UT P U T )
(INPUT)
SDI Write Timing (Not to Scale)
SDO Read Timing (Not to Scale)
Figure 1. CS5463 Read and Write Timing Diagrams
Auto-boot Sequence Timing (Not to Scale)
t
1
t
2
MSB
MSB-1
LSB
Com m and Time 8 SC LKs
SYNC0 or SYNC1
Com mand
SYN C 0 or SYN C1
Command
MSB
MSB-1
LSB
MSB
MSB-1
LSB
MSB
MSB-1
LSB
H igh B y te M id B y te Low By te
CS
SDO
SDI
t
6
t
7
t
8
SYNC0 or SYNC1
Command
UNKNOWN
CS5463
12 DS678F3
CS5463
t
period
E1
t
3
t
4
t
5
t
3
t
5
t
4
E2
E3
t
pw
t
period
t
pw
Figure 2. Timing Diagram for E1, E2, and E3

SWITCHING CHARACTERISTICS (Continued)

Parameter Symbol Min Typ Max Unit
E1
, E2, and E3 Timing (Note 19 and 20)
Period t Pulse Width t Rising Edge to Falling Edge t
Setup to E1 and/or E3 Falling Edge t
E2
Falling Edge to E3 Falling Edge t
E1
period
pw
3 4 5
Notes: 19. Pulse output timing is specified at MCLK = 4.096 MHz, E2MODE = 0, and E3MODE[1:0] = 0. Refer to
Section 5.5 Energy Pulse Output on page 17 for more information on pulse output pins.
20. Timing is proportional to the frequency of MCLK.
250 - - s 244 - - s
6--s
1.5 - - s
248 - - s

ABSOLUTE MAXIMUM RATINGS

WARNING: Operation at or beyond these limits may result in permanent damage to the device.
Normal operation is not guaranteed at these extremes
Parameter Symbol Min Typ Max Unit
DC Power Supplies (Notes 21 and 22)
Positive Digital
Positive Analog
Input Current, Any Pin Except Supplies (Notes 23, 24, 25) I Output Current, Any Pin Except VREFOUT I Power Dissipation (Note 26) P
Analog Input Voltage All Analog Pins V Digital Input Voltage All Digital Pins V Ambient Operating Temperature T Storage Temperature T
Notes: 21. VA+ and AGND must satisfy [(VA+) - (AGND)] + 6.0 V.
22. VD+ and AGND must satisfy [(VD+) - (AGND)] + 6.0 V.
23. Applies to all pins including continuous over-voltage conditions at the analog input pins.
24. Transient current of up to 100 mA will not cause SCR latch-up.
25. Maximum DC input current for a power supply pin is ±50 mA.
26. Total power dissipation, including all input currents and output currents.
.
VD+ VA+
IN
OUT
D --500mW
INA
IND
A
stg
-0.3
-0.3
--±10mA
--100mA
- 0.3 - (VA+) + 0.3 V
-0.3 - (VD+) + 0.3 V
-40 - 85 °C
-65 - 150 °C
-
-
+6.0 +6.0
V V
DS678F3 13

4. THEORY OF OPERATION

VOLTAGE
SINC
3
+
X
V*
gn
CURRENT
SINC
3
+
X
I*
gn
DELAY
REG
DELAY
REG
I
DCoff
*
V
DCoff
*
PGA
+
+
Configuration Register *
Digital Filter
Digital Filter
HPF
2nd Order

Modulator
4th Order

Modulator
x10
X
X
SYS
Gain
*
PC6 PC5 PC4 PC3
PC2
PC1 PC0
6
*
DENOTES REGISTER NAME.
DELAY
REG
DELAY
REG
HPF
V
Q
*
XVDEL XIDEL
012
2322
87
...
Operational Modes Register *
+
X
+
X
X
Q
*
2
MUX
X
V
*
P
*
I
*
MUX
VHPF IHPF
65
*
APF
HPF
APF
MUX
IIR
MUX
IIR
3
IIR
4
Figure 3. Data Measurement Flow Diagram.
I
RMS
I
n
n0=
N1
N
-------------------- -
=
The CS5463 is a dual-channel analog-to-digital convert­er (ADC) followed by a computation engine that per­forms power calculations and energy-to-pulse conversion. The data flow for the voltage and current channel measurement and the power calculation algo­rithms are depicted in Figure 3 and 4, respectively.
The analog inputs are structured with two dedicated channels, fy interfacing to various sensing elements.
The voltage-sensing element introduces a voltage waveform on the voltage channel input VIN± and is sub­ject to a gain of 10x. A second-order delta-sigma modu­lator samples the amplified signal for digitization.
Simultaneously, the current-sensing element introduces a voltage waveform on the current channel input IIN± and is subject to two selectable gains of the program­mable gain amplifier (PGA). The amplified signal is sampled by a fourth-order delta-sigma modulator for digitization. Both converters sample at a rate of MCLK /8, the over-sampling provides a wide dynamic range and simplified anti-alias filter design.
Voltage and Current, then optimized to simpli-
CS5463
from the calculated V
RMS
and I
ent power. When the optional HPF in either channel is disabled, an
all-pass filter (APF) is implemented. The APF has an amplitude response that is flat within the channel band­width and is used for matching phase in systems where only one HPF is engaged.

4.2 Voltage and Current Measurements

The digital filter output word is then subject to a DC off­set adjustment and a gain calibration (See Section 7.
System Calibration on page 37). The calibrated me a-
surement is available by reading the instantaneous volt­age and current registers.
The Root Mean Square ( are performed on N instantaneous voltage and current samples, V
n and In, respectively (where N is the cycle
count), using the formula:
RMS in Figure 4) calculations
as well as the appar-
RMS

4.1 Digital Filters

3
and likewise for V
, using Vn. I
RMS
RMS
and V cessible by register reads, which are updated once ev­ery cycle count (referred to as a computational cycle).

4.3 Power Measurements

The instantaneous voltage and current samples are multiplied to obtain the instantaneous power (see Fig­ure 3). The product is then averaged over N conver­sions to compute active power and is used to drive energy pulse output E1 providing an energy sign or a pulse output that is pro­portional to the apparent power. Energy output E3
. Energy output E2 is selectable,
RMS
The decimating digital filters on both channels a re Sinc filters followed by 4th-order IIR filters. The single-bit data is passed to the low-pass decimation filter and out­put at a fixed word rate. The output word is passed to an optional IIR filter to compensate for the magnitude roll off of the low-pass filtering operation.
An optional digital high-pass filter ( moves any DC component from the selected signal
HPF in Figure 3) re-
path. By removing the DC component from the voltage and/or the current channel, any DC content will also be removed from the calculated active power as well. With both HPFs enabled the DC component will be removed
14 DS678F3
are ac-
Loading...
+ 32 hidden pages