Cirrus Logic CS53L30 User Manual

CS53L30
Digital Processing
Control
Port
Level Shifters
MIC1_BIAS
Serial Port
MIC2_BIAS
VP
MCLK
DMIC1_SCLK
MIC3_BIAS MIC4_BIAS
–6 to +12 dB,
0.5 dB steps
+10 or +20 dB
ADC1B
+
+
Decimators
MIC1 B i a s MIC2 B i a s MIC3 B i a s MIC4 B i a s
HPF , No i se
Gate, Volume,
Mute
Audio
Serial Port
Control Port
RESET
MCLK_INT
Clock Divider Synchronizer
DMIC
ADC1A
+
LDO
VA
VD
2
2
4
MCLK_INT
HPF , No i se
Gate, Volume,
Mute
SYNC
MUTE
Synchronous
SRC
IN1+ /DMIC1_SD
IN2–
IN1–
IN2+
DMIC2_SCLK
+
–6 to +12 dB,
0.5 dB steps
+10 or +20 dB
ADC2B
+
+
Decimators
ADC2A
+
MCLK_INT
IN3+/DMIC2_SD
IN4–
IN3–
IN4+
+
CS53L30
Low-Power Quad-Channel Microphone ADC with TDM Output
Analog Input and ADC Features
91-dB dynamic range (A-weighted) @ 0-dB gain–84-dB THD+N @ 0-dB gainFour fully differential inputs: Four an alog mic/line inputsFour analog programmable gain amp lifie rs
–6 to +12 dB, in 0.5-dB steps
+10 or +20 dB boost for mic inputFour mic bias generatorsMUTE pin for quick mic mute and programmable quick
power down
Digital Processing Features
Volume contro l, mute, programmable high-pass filter,
noise gate Two digital mic (DMIC) interfaces
Digital Output Features
Two DMIC SCLK generators
2
Four-channel I
can be used to output 16 channels of 24-bit 16-kHz
sample rate data on a single TDM line.
S output or TDM output. Four CS53L30s
System Features
Native (no PLL required) support for 6-/12-MHz, 6.144-/
12.288-MHz, 5.6448-/1 1.2896-MHz, or 19.2-MHz ma ster clock rates and 8- to 48-kHz audio sample rates
Master or Slave Mode. Clock dividers can be used to
generate common audio clocks from single-master clock input.
Low power consumption
Less than 4.5-mW stereo (16 kHz) analog mic record
Less than 2.5-mW mono (8 kHz) analog mic recordSelectable mic bias and digital interface logic voltagesHigh-speed (400-kHz) I²C™ control portAvailable in 30-ball WLCSP and 32-pin QFN
Applications
Voice-recognition systemsAdvanced headsets and telephony systemsVoice recordersDigital cameras and video cameras
http://www.cirrus.com
Copyright Cirrus Logic, Inc. 2013
(All Rights Reserved)
DS992F1
MAY '13
CS53L30
General Description
The CS53L30 is a high-performance, low-power, quad-channel ADC. It is designed for use in multiple-mic applications while consuming minimal board space and po we r.
The flexible ADC inputs can accommodate four channels of analog mic or line-input data in differential, pseudodifferential, or single-ended mode, or four channels of digital mic data. The analog input path includes a +10- to +20-dB boost and a –6- to +12-dB PGA. Digital mic data bypasses the analog gain circuits and is fed directly to the decimators.
Four mic bias generators are integrated into the device. The device also includes two digital mic serial clock outputs. The CS53L30 includes several digital signal processing features such as high-pass filters, noise gate, and volume control. The device can output its four channels of audio data over two I
CS53L30s can be used to output up to 16 channels of data over a single TDM line. This is done by settin g the appropriate frame slots for each device, and each device then alternates between outputting data and setting the output pin to high impedance.
The CS53L30 can operate as a serial port clock master or slave. In Master Mode, clock dividers are used to generate the internal master clock and audio clocks from either the 6-/12-MHz, 6.144-/12.288-MHz, 5.6448-/11.2896-MHz, or 19.2-MHz master clock.
The device is powered from VA, a 1.8-V nominal supply and VP, a typical battery supply. An internal LDO on the VA supply powers the device’s digital core. The VP supply powers the mic bias generators and the AFE.
The CS53L30 is controlled by an I pitch WLCSP package and 32-pin 5 x 5-mm QFN package.
2
C control port. A reset pin is also included. The device is available in a 30-ball 0.4-mm
2
S ports or a single TDM port. Additionally, up to four
2 DS992F1
Table of Contents
1.1 WLCSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 3-1. Recommended Operating Conditions . . . . . . . . . . . . . . . . . . 9
Table 3-2. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 3-3. Combined ADC On-Chip Analog, Digital Filter, SRC, and DMIC
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 3-4. ADC High-Pass Filter (HPF) Characteristics . . . . . . . . . . . . . 9
Table 3-5. Analog-Input-to-Serial-Port Characteristics . . . . . . . . . . . . . 10
Table 3-6. MIC BIAS Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 3-7. Power-Supply Rejection Ratio (PSRR) Characteristics . . . . 11
Table 3-8. Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 3-9. Switching Specifications—Digital Mic Interface . . . . . . . . . . 14
Table 3-10. Specifications—I
2
S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 3-11. Switching Specifications—Time-Division Multiplexed (TDM)
Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 3-12. Switching Specifications—I
2
C Control Port . . . . . . . . . . . . 16
Table 3-13. Digital Interface Specifications and Characteristics . . . . . . 17
Table 3-14. Thermal Overload Detection Characteristics . . . . . . . . . . . 17
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Capture-Path Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5 Digital Microphone (DMIC) Interface . . . . . . . . . . . . . . . . . . 23
4.6 Serial Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.7 TDM Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.8 Synchronous Sample-Rate Converter (SRC) . . . . . . . . . . . .33
4.9 Multichip Synchronization Protocol . . . . . . . . . . . . . . . . . . . 34
4.10 Input Path Source Selection and Poweri ng . . . . . . . . . . . .34
4.11 Thermal Overload Notification . . . . . . . . . . . . . . . . . . . . . . 34
4.12 MUTE Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.13 Power-Up and Power-Down Control . . . . . . . . . . . . . . . . . 35
4.14 I
2
C Control Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.15 QFN Thermal Pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1 Octal Microphone Array to the Audio Serial Port . . . . . . . . . 38
5.2 Power-Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
5.3 Power-Down Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Capture-Path Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5 MCLK Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.6 Frequency Response Considerations . . . . . . . . . . . . . . . . . 44
5.7 Connecting Unused Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.1 Device ID A and B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Device ID C and D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.3 Device ID E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.4 Revision ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.5 Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.6 MCLK Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.7 Internal Sample Rate Control . . . . . . . . . . . . . . . . . . . . . . . . 48
7.8 Mic Bias Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.9 ASP Configuration Control . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.10 ASP Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.11 ASP TDM TX Control 1–4 . . . . . . . . . . . . . . . . . . . . . . . . .50
7.12 ASP TDM TX Enable 1–6 . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.13 ASP Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.14 Soft Ramp Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.15 LRCK Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.16 LRCK Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.17 MUTE
Pin Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.18 MUTE Pin Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.19 Input Bias Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.20 Input Bias Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.21 DMIC1 Stereo Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.22 DMIC2 Stereo Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.23 ADC1/DMIC1 Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.24 ADC1/DMIC1 Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.25 ADC1 Control 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.26 ADC1 Noise Gate Control . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.27 ADC1A/1B AFE Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.28 ADC1A/1B Digital Volume . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.29 ADC2/DMIC2 Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.30 ADC2/DMIC2 Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.31 ADC2 Control 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.32 ADC2 Noise Gate Control . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.33 ADC2A/2B AFE Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.34 ADC2A/2B Digital Volume . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.35 Device Interrupt Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.36 Device Interrupt Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8 Parameter Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.1 Digital Filter Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.2 PGA Gain Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
9.3 Dynamic Range Versus Sampling Frequency . . . . . . . . . . .63
9.4 FFTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.1 WLCSP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.2 QFN Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
11 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
12 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
13 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
CS53L30
DS992F1 3
1 Pin Descriptions
A1A2A3A4A5A6B1
B2
B3B4B5B6C1C2C3C4C5
C6
D1D2D3D4D5
D6
E1E2E3E4E5
E6
Filter pins Analog outputs Digital I/O
PowerCapture-path pins

1.1 WLCSP

CS53L30

1 Pin Descriptions

IN1+/DMIC1_
SD
IN1– IN2– IN3– IN4– GNDA VP
DMIC2_SCLK/
AD1
ASP_SDOUT1 ASP_SCLK SCL SYNC MIC4_BIAS MIC_BIAS_
MCLK SDA ASP_SDOUT2/
IN2+ IN3+/DMIC2_
SD
DMIC1_SCLK ASP_LRCK/
FSYNC
AD0
IN4+ VA FILT+
MIC1_BIAS MIC2_BIAS MIC3_BIAS
FILT
GNDD RESET
MUTE
Figure 1-1. Top-Down (Through-Package) View—30-Ball WLCSP Package
4 DS992F1

1.2 QFN

Thermal Pad
109
8
7
6
5
4
3
2
1
11 12 13 14 15 16
17
18
19
20
21
22
23
24
25
262728
29
303132
SCL
ASP_SDOUT2/AD0
ASP_LRCK/FSYNC
VA
GNDD
SYNC
RESET
INTGNDA
MUTE
IN1–
DMIC2_SCLK/AD1
IN1+/DMIC1_SD
DMIC1_SCLK
ASP_SDOUT1
ASP_SCLK
MCLK
SDA
MIC_BIAS_FILT
MIC4_BIAS
MIC3_BIAS
MIC2_BIAS
MIC1_BIAS
VP
FILT+
VA
IN4–
IN4+
IN3–
IN3+/DMIC2_SD
IN2–
IN2+
Capture-Path Pins
CS53L30
1.2 QFN

1.3 Pin Descriptions

Name
IN1+/DMIC1_SD IN2+ IN3+/DMIC2_SD IN4+
IN1– IN2– IN3– IN4–
DS992F1 5
Figure 1-2. Top-Down (Through-Package) View—32-Pin QFN Package
Ball#Pin#Power
A1
31 A2 A3 A4
B1 B2 B3 B4
1 3 5
32
2 4 6
Supply
I/O Description
VA I Noninverting Inputs/DMIC Inputs.
VA I Inverting Inputs. Negative analog inputs
Positive analog inputs for the stereo ADCs when CH_TYPE = 0 (default) or DMIC inputs when CH_TYPE = 1.
for the stereo ADCs when CH_TYPE = 0 (default) or unused when CH_TYPE = 1.
Table 1-1. Pin Descriptions
Internal
Connection
Programmable Hysteresis
Programmable Hysteresis
Driver Receiver
State at
Reset
on CMOS
input
on CMOS
input
Table 1-1. Pin Descriptions (Cont.)
Filter pins
Analog Outputs
Digital I/O
CS53L30
1.3 Pin Descriptions
Name
MIC_BIAS_FILT D6 15 VP I Mi crophone Bias Voltage Filter. Filter
FILT+ A6 9 VA O Positive Reference Filter. Positive
MIC1_BIAS MIC2_BIAS MIC3_BIAS MIC4_BIAS
INT
RESET
SYNC D4 19 VA I/O Multidevice Synchronization Signal.
SCL D3 24 VA I Serial Control Port Clock. Serial clock
SDA E2 25 VA I/O Serial Control Data. Bidirectional data
MCLK E1 26 VA I Master Clock. Clock source for device’s
ASP_SCLK D2 27 VA I/O Audio Serial Clock. Audio bit clock. Input
ASP_LRCK/ FSYNC
ASP_SDOUT1 D1 28 VA O Audio Data Output. Output for the two’s
ASP_SDOUT2/ AD0
DMIC1_SCLK C2 29 VA O Digital MIC Interface 1 Serial Clock.
Ball#Pin#Power
C4 C5 C6 D5
—17 VA OInterrupt. Outgoing interrupt signal
E5 18 VA I Reset. The device enters a low power
C3 22 VA I/O Audio Left/Right Clock/Frame SYNC.
E3 23 VA I/O Au dio Data Output/Address Select.
Supply
11
12
13
14
I/O Description
connection for the internal quiescent voltage used for the MICx_BIAS outputs.
reference voltage filter for internal sampling circuits.
VP O Microphone Bias Voltage. Low-noise
bias supply for an external mic.
generated upon registering an error (fault).
mode when this pin is driven low.
Synchronization output when SYNC_EN is set, otherwise it is a synchronization input. Defaults to input.
2
for the I
pin for the I
core.
in Slave Mode, output in Master Mode.
Identifies the start of each seri alized PCM data word and indicates the active channel on each serial PCM audio data line. Input in Slave Mode, output in Master Mode.
complement serial PCM data. Channels 1 and 2 are output in I channels of data are output on this single pin in TDM Mode.
Output for the two’s-complement serial PCM data. Channels 3 and 4 are output in
2
I immediately sets the I RESET
High speed clock output to the digital mics.
C port.
2
C port.
2
S Mode, while all four
S Mode. Along with DMIC2_SCLK/AD1,
is deasserted. Default is 0.
2
C address when
Internal
Connection
———
———
———Hi-Z
—CMOS
Hysteresis
Weak
pulldown
Hysteresis
—CMOS
Weak
pulldown
Weak
pulldown
Weak
pulldown
Weak
pulldown
Weak
pulldown
Weak
pulldown
Driver Receiver
open-drain
output
on CMOS
CMOS
output
open-drain
output
Hysteresis
CMOS
output
CMOS
output
Tristateable
CMOS
output
Tristateable
CMOS
output
CMOS
output
Hysteresis
on CMOS
on CMOS
Hysteresis
on CMOS
on CMOS
Hysteresis
on CMOS
Hysteresis
on CMOS
—Hi-Z
input
input
input
input
input
input
input
—Hi-Z
—Hi-Z
—Hi-Z
State at
Reset
Hi-Z
Hi-Z
Hi-Z
6 DS992F1
Table 1-1. Pin Descriptions (Cont.)
Power
CS53L30
GNDD
GNDA
DMIC1_SCLK
MIC1_BIAS
IN1
IN1+
MIC2_BIAS
IN2
IN2+
MIC3_BIAS
IN3
IN3+
MIC4_BIAS
IN4
IN4+
Analog Mic r op hone Conn ec tion
Two-wire microphone connection
Rbias
Ground Ring
MICx_BIAS
INx+
INx–
Three-wire microphone connection
Ground Ring
MICx_BIAS
INx+
INx–
1 µF
C
INM
C
INM
Analog
Microphone
(see
connection
diagram)
1 µF
C
INM
C
INM
Analog
Microphone
(see
connection
diagram)
1 µF
C
INM
C
INM
Analog
Microphone
(see
connection
diagram)
1 µF
C
INM
C
INM
Analog
Microphone
(see
connection
diagram)
MIC_BIAS_FILT
*
4.7 µF
SYNC
SCL SDA
SoC
VA
0.1 µF
R
P
*
R
P
+1.8 V +1.8 V
VP
0.1 µF
*
+3.6 V
FILT+
2.2 µF
*
PMU
ASP_LRCK/F SYNC ASP_SCLK ASP_SDOUT2/AD0
ASP_SDOUT1
MCLK
RESET
MUTE
R
P_I
Key for Capacitor Types Required:
* U s e low ESR, X7R /X5R c apac it ors
All External Passive Component Values Shown Are Nominal Values.
DMIC2_SCLK/AD1
INT
Note 1
Note 3
Note 1
Note 3
Note 2
Note 2
Note 5
Note 4 Note 4
Note 7
Note 7
Note 2
Note 1
Note 3
Note 2
Note 1
Note 3
Note 6
CS53L30

2 Typical Connection Diagram

Name
DMIC2_SCLK/ AD1
Ball#Pin#Power
Supply
I/O Description
C1 30 VA I/O Digital MIC Interface 2 Serial Clock/
Address Select. High speed clock output
to the digital mics. Along with ASP_ SDOUT2/AD0, immediately sets the I address when RESET
is deasserted.
2
C
Internal
Connection
Weak
pulldown
Driver Receiver
CMOS
—Hi-Z
output
State at
Reset
Default is 0.
MUTE E6 16 VA I Mute. Asserting this pin mutes all four
channels. Also can be programmed to power down modules as configured in the
Weak
pulldown
Hysteresis
on CMOS
input
MUTE pin control registers.
VA A5 7
N/A I Analog/Digital Power. Power supply for
21
analog circuitry and digital circuitry via
———
internal LDO.
VP B6 10 N/A I Analog Power. Power supply for mic
———
bias. GNDA B5 8 N/A I Analog Ground. Ground reference. — GNDD E4 20 N/A I Digital Ground. Ground reference.
2 Typical Connection Diagram
Figure 2-1. Typical Connection Diagram—Analog Microphone Connections
DS992F1 7
CS53L30
CS53L30
GNDDGNDA
Left Digital Mic rophone 1
Right D igital Mic rophone 1
IN1+/DMIC1_SD
DMIC1_SCLK
L/R DATA
L/R
DATA
IN3+/DMIC2_SD
Left Digital Mic rophone 2
Right Digital Mic rophone 2
L/R DATA
L/R
DATA
+1.8 V +1.8 V
VP
0.1 µF
*
+3.6 V
FILT+
MIC_BIAS_FILT
*
4.7 µF
PMU
SCL SDA
SoC
VA
0.1 µ F
R
P
*
R
P
ASP_LRCK/FSYNC ASP_SCLK
ASP_SDOUT1
MCLK
RESET
MUTE
R
P_I
Key for Capacitor Types Required:
* U s e low ESR, X7R/X5 R c apac it ors
All External Passive Component Values Shown Are Nominal Values.
0.47 µF
0. 47 µ F
0.47 µF
0.47 µF
MIC1_BIAS
MIC3_BIAS
DMIC2_SCLK/AD1
SYNC
IN1–, IN2+, IN2–, IN3
, IN4+, IN4
ASP_SDOUT2/AD0
INT
Note 4 Note 4
Note 8
Note 7
Note 7
Note 6
2 Typical Connection Diagram
1. The MICx_BIAS compensation capacitor must be 1 µF (nominal values indicated, can vary from the nominal by ±20%). This value is bounded by the stability of the amplifier and the maximum rise-t ime specification of the output.
Figure 2-2. Typical Connection Diagram—Digital Microphone Connections
2. The DC-blocking capacitor, C impedance. See Table 3-5 and Section 4.4.2.
3. The reference terminal of the INx inputs connects to the ground pin of the mic cartridge in the pseudodifferential case. I n a fully differential configuration, the reference terminal of the INx inputs connects to the inverting output terminal of differential mic.
4. R
and RP can be calculated by using the values in Table 3-14.
P_I
5. The value of R
6. The INT
7. ASP_SDOUT2/AD0 and DMIC2_SCLK/AD1 have internal pull-downs that allow for the default I See Table 3-14 for typical and maximum pull-down values. If an I
pin is provided only on the QFN package.
, the bias resistor for electret condenser mics, is dictated by the mic cartridge.
BIAS
termination to VA is required. The minimum value resistor allowed on these I/O pins is 10 kThe time constant resulting from the pull-up/ pull-down resistor and the total net cap acit ance should be consi dered when determining the time required for the p in voltage t o settle befo re
RESET is deasserted.
8. Unconnected INx pins can be terminated with an internal weak_vcm or weak pull-down by setting the termin ation in the INxy_BIAS bit s. See
Section 5.7, Section 7.19, and Section 7.20.
, forms a high-pass filter whose corner frequency is determined by the capacitor value and the input
INM
2
C physical address other than the default is desired, then external resi stor
2
C address with no external components.
8 DS992F1
CS53L30

3 Characteristics and Specification s

3 Characteristics and Specifications
Section 8 provides additional details about parameter definitions.

Table 3-1. Recommended Operating Conditions

Test conditions: GNDA = GNDD = 0 V; all voltages are with respect to ground.
Parameters
DC power supply Analog/Digital VA 1.71 1.89 V
External voltage applied to pin
2
Ambient temperature Commercial T
1.Device functional operation is guaranteed within these limits; operation outside them is not guaranteed or implied and may reduce device reliability.
2.The maximum over/under voltage is limited by the input current.

Table 3-2. Absolute Maximum Ratings

Test conditions: GNDA = GNDD = 0 V; all voltages are with respect to ground.
Parameters Symbol Min Max Units
DC power supply Analog/digital
Input current Ambient operating temperature (power applied) T Storage temperature (no power applied) T CAUTION: Operation at or beyond these limits may permanently damage the device.
1.Any pin except supplies. Transient currents of up to ±100 mA on the capture-path pins do not cause SCR latch-up.
1
1
VP_MIN = 1
VP_MIN = 0 VA domain pins V VP domain pins V
Mic bias
Symbol Min Max Unit
VP 3.2
3.0
IN-AI IN-PI
A
VA VP
I
in
A
stg
–0.3 VA + 0.3 V –0.3 VP + 0.3 V
–10 +70 C
–0.3 –0.3
—±10mA –50 +115 °C –65 +150 °C
5.25
5.25
2.22
5.6
V V
V V

Table 3-3. Combined ADC On-Chip Analog, Digital Filter, SRC, and DMIC Characteristics

Test conditions (unless otherwise specified): TA = +25°C; MCLK = 12.288 MHz; characteristics do not include the effects of external AC-coupling capacitors. Path is INx to SDOUT. Analog and digital gains are all set to 0 dB; HPF disabled.
1
–3.0-dB corner——
Min Typ Max Units
0.391
0.410
— —
Fs
= Fs
int
Fs = 48 kHz
ext
=
ADC notch filter on
[2]
(ADCx_NOTCH_ DIS = 0)
Parameters
Passband –0.05-dB corner
Passband ripple (0 Hz to 0.394 Fs; normalized to 0 Hz) –0.13 0.14 dB Stopband @ –70 dB 0.492
ADC notch filter off (ADCx_NOTCH_
DIS = 1)
Total group delay 15.3/Fs Passband –0.05-dB corner
–3.0-dB corner——
Passband ripple (0 Hz to 0.447 Fs; normalized to 0 Hz) –0.09 0.14 dB
+6.5/Fs
int
0.445
0.470
—s
ext
— —
Stopband @ –70 dB 0.639 — Total group delay 15.5/Fs
1.Specifications are normalized to Fs and can be denormalized by multiplying by Fs.
2.See Section 5.6 for information about combined filter response when Fs
is not equal to Fs
int
ext
.
+6.6/Fs
int
—s
ext

Table 3-4. ADC High-Pass Filter (HPF) Characteristics

Test conditions (unless specified otherwise): Analog and digital gains are all set to 0 dB; ADCx_HPF_CF = 00.
Passband
Passband ripple (0.417x10 Phase deviation @ 0.453 x 10 Filter settling time
2
–3
Fs to 0.417 Fs; normalized to 0.417 Fs) 0.01 dB
–3
3
Fs 4.896 °
ADCx_HPF_CF = 00 (3.88 x 10
ADCx_HPF_CF = 01 (2.5 x 10 ADCx_HPF_CF = 10 (4.9 x 10 ADCx_HPF_CF = 11 (9.7 x 10
Parameters
1.Response scales with Fs
2.Characteristics do not include effects of the analog HPF filter formed by the external AC-coupling capacitors and the input impedance.
3.Required time for the magnitude of the DC component present at the output of the HPF to reach 5% of the applied DC signal.
. Specifications are normalized to Fs
int
1
–0.05-dB corner
–3.0-dB corner
–5
x Fs
mode)
int
–3
x Fs
mode)
int
–3
x Fs
mode)
int
–3
x Fs
mode)
int
and are denormalized by multiplying by Fs
int
Min Typ Max Units
200/Fs 100/Fs
50/Fs
.
int
–4 –5
int int int
int
— —
— — — —
Fs Fs
— —
— — — —
3.57x10
3.88x10
12260/Fs
Fs Fs
Fs
Fs Fs
Fs
int int
s s s s
DS992F1 9
CS53L30
–60 dB,
1 kHz
INx+ INx–
MICx_BIAS
2.21 k
2.21 k
0.1 µF
0.1 µF
100 mVPP, 25 Hz
0.1 µF
INx+ INx–
3 Characteristics and Specification s

Table 3-5. Analog-Input-to-Serial-Port Characteristics

Test conditions (unless oth erwise spe cified): Fig. 2-1 shows CS53L30 connections; input is a full-scale 1- kHz sine wav e; ADCx_P REAMP = + 10 dB; ADCx_PGA_ VOL = 0 dB; GNDA = GNDD = 0; voltages are min/max performance data ta ken with
Dynamic range
2
Preamp setting: Bypass, PGA setting: 0 dB A-weighted Preamp setting: Bypass, PGA setting: +12 dB A-weighted Preamp setting: +10 dB, PGA setting: 0 dB A-weighted Preamp setting: +10 dB, PGA setting: +12 dB A-weighted Preamp setting: +20 dB, PGA setting: 0 dB A-weighted Preamp setting: +20 dB, PGA setting: +12 dB A-weighted
Total harmonic distortion + noise
Preamp setting: Bypass, PGA setting: 0 dB –1 dB –84 –78 dB
3
Preamp setting: Bypass, PGA setting: +12 dB –1 dB –80 –74 dB Preamp setting: +10 dB, PGA setting: 0 dB –1 dB –76 –70 dB Preamp setting: +10 dB, PGA setting: +12 dB –1 dB –63 –57 dB Preamp setting: +20 dB, PGA setting: 0 dB –1 dB –70 –64 dB Preamp setting: +20 dB, PGA setting: +12 dB –1 dB –62 –56 dB
Common-mode rejection
4
DC accuracy Interchannel gain mismatch
Gain drift
5
±100 ppm/°C
PGA A/B gain G
Preamp A/B gain G Offset error
Phase accuracy Multichip interchannel phase mismatch
Interchannel phase mismatch
Input Interchannel isolation
Full-scale signal input voltage
Input impedance
DC voltage at INx (pin floating)
Preamp setting: Bypass ADCx_PDN = 0
11,12
Preamp setting: +10 dB or +20 dB ADCx_PDN = 0
1.Measures are referred to the applicable typical full-scale voltages. Applies to all THD+N and dynamic range values in the table.
2.INx dynamic range test configuration (pseudodifferential) Includes noise from MICx_BIAS output (2.7-V setting) through a series 2.21-k resistor connected to INx. Input signal is –60 dB down from the corresponding full-scale signal input voltage.
with respect to ground; param ete rs can vary with VA , typica l perfo rm ance data ta ken w ith VA= 1.8 V, VP = 3.6 V,
V
A = 1.8 V, VP = 3.6 V; TA = +25°C; measurement bandwidth is 20 Hz –20 kH z; LRC K= Fs = 48 kHz.
Parameters
1
unweighted8785 unweighted8078 unweighted8482 unweighted7472 unweighted7876 unweighted6664
Min Typ Max Units
93 91
86 84
90 88
80 78
84 82
72 70
— —
— —
— —
— —
— —
— —
—70—dB
5
MIN
G
MAX
G
MIN
G
6
7
8
8
9
10
Preamp setting: 0 dB, PGA setting: 0 dB
Preamp setting: +10 dB, PGA setting: 0 dB
Preamp setting: +10 dB, PGA setting: +12 dB
Preamp setting: +20 dB, PGA setting: 0 dB
Preamp setting: +20 dB, PGA setting: +12 dB
Preamp setting: 0 dB
MAX
217 Hz
1kHz
20 kHz
Preamp setting: +10 or +20 dB;450.9
ADCx_PDN = 1—— ADCx_PDN = 1——
—±0.2— dB
–6.25
11.75
0.375
9.5
19.9 — — — —
— —
0.78•VA — — — —
–6 12
0.5 10
20
128
0.5
0.5 90
90 80
0.82•VA
0.258•VA
0.064•VA
0.081•VA
0.020•VA 50
1
0.42•VA
0.50•VA
0.39•VA
0.50•VA
–5.75
12.25
0.625
10.5
20.5 —LSB — — —
— —
0.88•VA — — — —
— —
— —
— —
dB dB
dB dB
dB dB
dB dB
dB dB
dB dB
dB dB dB
dB dB
° °
dB dB dB
Vpp Vpp Vpp Vpp Vpp
k
M
V V
V V
3.Input signal amplitude is relative to typical full-scale signal input voltage.
4.INx CMRR test configuration
5.Measurements taken at all defined full-scale signal input voltages.
6.SDOUT code with ADC_HPF_ EN = 1, DIG_BOOSTx = 0. The offset is added at the ADC output; if two ADC sources are mixed, their offsets add.
7.Measured between two CS53L30 chips with input pairs IN1 selected and driven from same source with an MCLK of 19.2 MHz, 16-kHz sample rate, and 8-kHz full-scale sine wave with preamp gain of +20 dB and PGA gain of +12 dB.
8.Measured between input pairs (IN1 to INx, IN2 to INx, IN3 to INx, IN4 to INx) with +20 dB preamp gain and +12 dB PGA gain.
9.ADC full-scale input voltage is measured between INx+ and INx– with the preamp set to bypass and the PGA set to 0-dB gain. Maximum input signal level for INx depends on the preamp and PGA gain settings described in Section 5.4.1. The digital output level corresponding to ADC full-scale input is less than 0 dBFS due to signal attenuation through the SRC; see Table 4-4.
10.Measured between INx+ and INx–.
11.INx pins are biased as specified when weak VCM is selected in the input bias control registers; see Section 7.19 and Section 7.20.
12.Changing gain settings to Bypass Mode may cause audible artifacts due to the difference in DC operating points between modes.
10 DS992F1
CS53L30
Operational
Amplifier
OUT
GND
Power DAC
OUT
GND
PWR
DUT
+5V +5V
++–
+
OUT
Analog Generator Analog Analy zer
Analog Test Equipment
Analog Output P S RR
Operational
Amplifier
OUT
GND
Power DAC
SDOUT
GND
PWR
DUT
+5V +5V
+–
+
OUT
Analog Generator Analog Analyzer
Test Equipment
Digital Output PSRR
Digital Analyzer
3 Characteristics and Specification s

Table 3-6. MIC BIAS Characteristics

Test conditions (unless otherwise specified): Fig. 2-1 shows CS53L30 connections; GNDA = GNDD = 0; all voltages are with respect to ground; VA =
1.8 V, VP = 3.6 V, T
Output voltage
Mic bias startup delay Rise time
3
DC output current (I Integrated output noise f = 100 Hz–20 kHz 3 µVrms Dropout voltage PSRR reduction voltage Output resistance (R
1.The output voltage includes attenuation due to the MIC BIAS output resistance (R
2.Startup delay times are approximate and vary with MCLK scaling factor. The MCLK
3.From 10% to 90% of typical output voltage. External capacitor on MICx_BIAS is as shown in Fig. 2-1.
4.Dropout voltage indicates the point where an output’s voltage starts to vary significantly with reductions to its supply voltage. When the VP supply voltage drops below the programmed MICx_BIAS output voltage plus the dropout voltage, the MICx_BIAS output voltage progressively decreases as its supply decreases. Dropout voltage is measured by reducing the VP supply until MICx_BIAS drops 10 mV from its initial voltage with the default typical test condition VP voltage (= 3.6 V, as in test conditions listed above). The difference between the VP supply voltage and the MICx_BIAS voltage at this point is the dropout voltage. For instance, if the initial MICx_BIAS output is 2.86 V when VP = 3.6 V and VP = 3.19 V when MICx_BIAS drops to 2.85 V (–10 mV), the dropout voltage is 340 mV (3.19 V – 2.85 V).
5.PSRR voltage indicates the point where an output’s supply PSRR starts to degrade significantly with supply voltage reductions. When the VP supply voltage drops below the programmed MICx_BIAS output voltage plus the PSRR reduction voltage, the MICx_BIAS output’s PSRR progressively decreases as its supply decreases. PSRR reduction voltage is measured by reducing the VP supply until MICx_BIAS PSRR @ 217 Hz falls below 100 dB. The difference between the VP supply voltage and the MICx_BIAS voltage at this point is the PSRR reduction voltage. For instance, if the MICx_BIAS PSRR falls to 99.9 dB when VP is reduced to 3.25 V and the MICx_BIAS output voltage is 2.75 V at that point, PSRR reduction voltage is 500 mV (3.25 V – 2.75 V).
= +25°C; only one bias output is powered up at a time; MCLK_INT_SCALE = 0.
A
Parameters Min Typ Max Units
1
MIC_BIAS_CTRL = 01 (1.8-V mode) MIC_BIAS_CTRL = 10 (2.7-V mode)
2
I
= 500 µA, MIC_BIAS_CTRL = 01 (1.8-V mode)
OUT
= 500 µA, MIC_BIAS_CTRL = 10 (2.7-V mode)
I
OUT
) Per output 2 mA
OUT
4
5
) I
OUT
frequency. If MCLK_INT_SCALE = 1, the startup delay time is scaled up by the MCLK
scaling factor is 1, 2, or 4, depending on Fs
INT
INT
EXT
= 2 mA
I
OUT
= 2-mA 30
OUT
).
OUT
. See Table 4-2.
1.71
2.61
1.80
2.75
1.89
2.86
V
V —10—ms —
— —
0.2
0.5 —
— —
ms ms
3
ms
340 mV — 500 mV
INT

Table 3-7. Power-Supply Rejection Ratio (PSRR) Characteristics

Test conditions (unless specified otherwise): Fig. 2-1 shows CS53L30 connections; input test signal held low (all zero data); GNDA = GNDD = 0; voltages are with respect to ground; VA = 1.8 V, VP = 3.6V; T
INx (32-dB analog gain) PSRR with 100-mVpp signal AC coupled to VA supply
MICx_BIAS (MICx_BIAS = 2.7-V mode, I PSRR with 100 mVpp signal AC coupled to VA supply VP_MIN = 0 (3.0 V)
MICx_BIAS (MICx_BIAS = 2.7-V mode, I PSRR with 100 mVpp signal AC coupled to VA supply VP_MIN = 1 (3.2 V)
MICx_BIAS (MICx_BIAS = 2.7-V mode, I PSRR with 100 mVpp signal AC coupled to VP supply VP_MIN = 0 (3.0 V)
MICx_BIAS (MICx_BIAS = 2.7-V mode, I PSRR with 1 Vpp signal AC coupled to VP supply VP_MIN = 1 (3.2 V)
1.PSRR test configuration: Typical PSRR can vary by approximately 6 dB below the indicated values.
DS992F1 11
Parameters
OUT
OUT
OUT
OUT
= +25°C.
A
1
= 500 µA)
= 500 µA)
= 500 µA)
= 500 µA)
217 Hz
1kHz
20 kHz 217 Hz
1kHz
20 kHz 217 Hz
1kHz
20 kHz 217 Hz
1kHz
20 kHz 217 Hz
1kHz
20 kHz
Min Typical Max Units
— — —
— — —
— — —
— — —
— — —
70 70 55
105 100
95
105 100
95 90
90 70
120
115
105
— — —
— — —
— — —
— — —
— — —
dB dB dB
dB dB dB
dB dB dB
dB dB dB
dB dB dB
CS53L30
DAC
+
10
DUT
V
supply
GND
supply
0.1 µF
Voltmeter
+
3 Characteristics and Specification s

Table 3-8. Power Consumption

Test conditions (unless specified otherwise): Fig. 2-1 shows CS53L30 connections; GNDA = GNDD = 0 V; voltages are with respect to ground; performance data taken with VA = 1.8 V, VP = 3.6 V; T on any input; control port inactive; MCLK_INT_SCALE = 1.
(See Table 3-9 for register field settings.)
1 Standby 2A
Quiescent
2
3
B C D
3 A Capture, analog mic input,
ADCx_PREAMP = +20 dB,
BFs
ADCx_PGA_VOL = +12 dB
CFs DFs EFs FFs GFs HFs IFs JFs KFs LFs MFs NFs OFs PFs QFs RFs
4 A Capture, analog line input,
ADCx_PREAMP = 0 dB,
BFs
ADCx_PGA_VOL = 0 dB
CFs
5 A Capture, digital mic input Fs
BFs CFs
1.Power consumption test configuration. The curren
t draw on the power supply pins is derived from the measured voltage drop across a 10- series resistor between the associated supply source and the voltage supply pin.
2.Standby configuration: Clock/data lines are held low; RESET = LOW; VA = 1.8 V, VP = 3.6 V
3.Quiescent configuration: data lines held low; RESET = HIGH
= +25°C; MCLK = 12.288 MHz; serial port set to Slave Mode; digital volume = 0 dB; no signal
A
Use Cases
1
Typical Current
(µA)
i
VA
i
VP
20 4
MCLK low, MCLK_DIS = x, PDN_ULP = 1, PDN_LP = x
MCLK active, MCLK_DIS = 1, PDN_ULP = 1, PDN_LP = x
MCLK low, MCLK_DIS = x, PDN_ULP = 0, PDN_LP = 1
MCLK active, MCLK_DIS = 1, PDN_ULP = 0, PDN_LP = 1
= 48 kHz, mono input, MICx_BIAS_PDN = 1 1998 58 3805
Fs
ext
= 48 kHz, mono input, MICx_BIAS_PDN = 0 2003 147 4136
ext
= 16 kHz, mono input, MICx_BIAS_PDN = 1 1423 58 2770
ext
= 16 kHz, mono input, MICx_BIAS_PDN = 0 1432 147 3107
ext
= 8 kHz, mono input, MICx_BIAS_PDN = 1 1046 58 2092
ext
= 8 kHz, mono input, MICx_BIAS_PDN = 0 1053 147 2425
ext
= 48 kHz, stereo input, MICx_BIAS_PDN = 1 2697 81 5147
ext
= 48 kHz, stereo input, MICx_BIAS_PDN = 0 2702 243 5739
ext
= 16 kHz, stereo input, MICx_BIAS_PDN = 1 1955 81 3811
ext
= 16 kHz, stereo input, MICx_BIAS_PDN = 0 1960 243 4405
ext
= 8 kHz, stereo input, MICx_BIAS_PDN = 1 1494 81 2981
ext
= 8 kHz, stereo input, MICx_BIAS_PDN = 0 1498 243 3573
ext
= 48 kHz, four-channel input, MICx_BIAS_PDN = 1 4138 145 7969
ext
= 48 kHz, four-channel input, MICx_BIAS_PDN = 0 4141 454 9087
ext
= 16 kHz, four-channel input, MICx_BIAS_PDN = 1 3033 145 5981
ext
= 16 kHz, four-channel input, MICx_BIAS_PDN = 0 3040 454 7106
ext
= 8 kHz, four-channel input, MICx_BIAS_PDN = 1 2397 145 4836
ext
= 8 kHz, four-channel input, MICx_BIAS_PDN = 0 2403 454 5959
ext
= 48 kHz, four-channel input, MICx_BIAS_PDN = 1 3151 145 6193
Fs
ext
= 16 kHz, four-channel input, MICx_BIAS_PDN = 1 2059 145 4227
ext
= 8 kHz, four-channel input, MICx_BIAS_PDN = 1 1429 145 3092
ext
= 48 kHz, four-channel input, MICx_BIAS_PDN = 0 2433 352 5645
ext
= 16 kHz, four-channel input, MICx_BIAS_PDN = 0 1366 352 3725
ext
= 8 kHz, four-channel input, MICx_BIAS_PDN = 0 881 352 2852
ext
7
54 103 134
1
1 19 19
Total Power
(µW)
101 253 308
17
12 DS992F1
CS53L30
3 Characteristics and Specification s
Table 3-9. Register Field Settings
Register Fields and Settings
Use
Cases
PDN_ULP
PDN_LP
MCLK_DIS
MCLK_INT_SCALE
MIC1_BIAS_PDN
MIC2_BIAS_PDN
MIC3_BIAS_PDN
MIC4_BIAS_PDN
MIC_BIAS_CTRL
ASP_RATE[3:0]
ASP_SDOUT1_PDN
ASP_SDOUT2_PDN
ASP_3ST
ADC1A_PDN
ADC1B_PDN
ADC2A_PDN
ADC2B_PDN
ADC1A_PREAMP[1:0]
ADC1A_PGA_VOL[5:0]
ADC1B_PREAMP[1:0]
ADC1B_PGA_VOL[5:0]
ADC2A_PREAMP[1:0]
ADC2A_PGA_VOL[5:0]
ADC2B_PREAMP[1:0]
ADC2B_PGA_VOL[5:0]
DMIC1_PDN
1 ————————— — ———————— ——— 2 A 1 ———————— — ———————— ———
B 1 — 1 — ——— —— — ———————— ——— C 0 1 ——————— — ———————— ——— D 0 1 1 —————— — ———————— ———
3 A 0 0 0 — 1 1 1 1 — 1100 0 1 0 0 1 1 1 10 011000 10 011000 10 011000 10 011000 1 1 0
B 0 0 0 — 0 1 1 1 10 1100 0 1 0 0 1 1 1 10 011000 10 011000 10 011000 10 011000 1 1 0 C 0 0 0 1 1 1 1 1 — 0101 0 1 0 0 1 1 1 10 011000 10 011000 10 011000 10 011000 1 1 0 D 0 0 0 1 0 1 1 1 10 0101 0 1 0 0 1 1 1 10 011000 10 011000 10 011000 10 011000 1 1 0 E 0 0 0 1 1 1 1 1 — 0001 0 1 0 0 1 1 1 10 011000 10 011000 10 011000 10 011000 1 1 0 F 0 0 0 1 0 1 1 1 10 0001 0 1 0 0 1 1 1 10 011000 10 011000 10 011000 10 011000 1 1 0 G 0 0 0 — 1 1 1 1 — 1100 0 1 0 0 0 1 1 10 011000 10 011000 10 011000 10 011000 1 1 0 H 0 0 0 — 0 0 1 1 10 1100 0 1 0 0 0 1 1 10 011000 10 011000 10 011000 10 011000 1 1 0 I 0 0 0 1 1 1 1 1 — 0101 0 1 0 0 0 1 1 10 011000 10 011000 10 011000 10 011000 1 1 0 J 0 0 0 1 0 0 1 1 10 0101 0 1 0 0 0 1 1 10 011000 10 011000 10 011000 10 011000 1 1 0 K 0 0 0 1 1 1 1 1 — 0001 0 1 0 0 0 1 1 10 011000 10 011000 10 011000 10 011000 1 1 0 L 0 0 0 1 0 0 1 1 10 0001 0 1 0 0 0 1 1 10 011000 10 011000 10 011000 10 011000 1 1 0 M 0 0 0 — 1 1 1 1 — 1100 0 0 0 0 0 0 0 10 011000 10 011000 10 011000 10 011000 1 1 0 N 0 0 0 — 0 0 0 0 10 1100 0 0 0 0 0 0 0 10 011000 10 011000 10 011000 10 011000 1 1 0 O 0 0 0 1 1 1 1 1 — 0101 0 0 0 0 0 0 0 10 011000 10 011000 10 011000 10 011000 1 1 0 P 0 0 0 1 0 0 0 0 10 0101 0 0 0 0 0 0 0 10 011000 10 011000 10 011000 10 011000 1 1 0 Q 0 0 0 1 1 1 1 1 — 0001 0 0 0 0 0 0 0 10 011000 10 011000 10 011000 10 011000 1 1 0 R 0 0 0 1 0 0 0 0 10 0001 0 0 0 0 0 0 0 10 011000 10 011000 10 011000 10 011000 1 1 0
4 A 0 0 0 — 1 1 1 1 — 1100 0 0 0 0 0 0 0 00 000000 00 000000 00 000000 00 000000 1 1 0
B 0 0 0 1 1 1 1 1 — 0101 0 0 0 0 0 0 0 00 000000 00 000000 00 000000 00 000000 1 1 0 C 0 0 0 1 1 1 1 1 — 0001 0 0 0 0 0 0 0 00 000000 00 000000 00 000000 00 000000 1 1 0
5 A 000—00001011000000000— — — — — — — — 000
B 000100001001010000000— — — — — — — — 000 C 000 10 0001000010000000— — — — — — — — 000
DMIC2_PDN
ASP_M/S
DS992F1 13
CS53L30
DMIC_CLK
DMIC_SD
Left
(A, DA T A1)
Channel Dat a
Right
(B, DATA2)
Channel Dat a
Left
(A, DATA1)
Channel Dat a
t
hm(SK-SDO)
//
//
//
//
//
//
MSB
LRCK
SCLK
SDOUT
t
Pm
t
sm(SDO-SK)
//
//
//
//
//
//
t
sm(LK-SK)
t
hs(SK-SDO)
//
//
//
//
//
//
MSB
LRCK
SCLK
SDOUT
t
ss(LK-SK)
t
P
t
ss(SDO-SK)
//
//
//
//
//
//
t
hs(LK-SK)
Serial Port Timing—Master Mode
Serial Port Timing—Slave Mode
3 Characteristics and Specification s

Table 3-10. Switching Specifications—Digital Mic Interface

Test conditions (unless specified otherwise): Fig. 2-1 parameters can vary with VA, typical performance data taken with VA = 1.8 V, VP = 3.6 V, min/max performance data taken with VA = 1.8V, VP = 3.6 V; T
= +25°C; logic 0 = ground, logic 1 = VA; DMIC_DRIVE = 0 (normal); input timings are measured at VIL and VIH thresholds, and output timings are
A
measured at V
and VOH thresholds (see Table 3-14).
OL
Parameters
Output clock (DMICx_SCLK) frequency 1/t DMICx_SCLK duty cycle
4
DMICx_SCLK rise time (10% to 90% of VA) DMICx_SCLK fall time (90% to 10% of VA) DMICx_SD setup time before DMICx_SCLK rising edge t DMICx_SD hold time after DMICx_SCLK rising edge t DMICx_SD setup time before DMICx_SCLK falling edge t DMICx_SD hold time after DMICx_SCLK falling edge t
1.Digital mic interface timing
2.Oversampling rate of the digital mic must match the oversampling rate of the CS53L30 internal decimators.
3.The output clo ck frequency follows the internal MCLK rate divided by 2 or 4, as set in the ADCx/DMICx control registers (see DMIC1_SCLK_DIV on
p. 53 and DMIC2_SCLK_DIV on p. 55). DMICx_SCLK is further divided by up to a factor of 4 when MCLK_INT_SCALE is set (see p. 48). MCLK
source deviation from nominal supported rates is applied directly to the output clock rate by the same factor (e.g., a +100-ppm offset in the frequency of MCLK becomes a +100-ppm offset of DMICx_SCLK.
4.Timing guaranteed with pull-up or pull-down resistor, with a minimum value 10 ktied to DMIC2_SCLK/AD1 for I2C address determination.
shows CS53L30 connections
1,2
4
4
; GNDA = GNDD = 0 V; voltages are with respect to ground;
Symbol Min Max Units
P
—3.2
[3]
—45 55%
t
r
t
f s(SD-CLKR) h(CLKR-SD) s(SD-CLKF) h(CLKF-SD)
—21ns —13ns 10 ns
4—ns
10 ns
4—ns
MHz

Table 3-11. Specifications—I2S

Test conditions (unless specified otherwise): Fig. 2-1 shows CS53L30 connections; GNDA = GNDD = 0 V; all voltages are with respect to ground; parameters can vary with VA; typical performance data taken with VA = 1.8 V, VP = 3.6 V; min/max performance data taken with VA = 1.8 V, VP = 3.6 V; T
= +25°C; Test load for ASP_LRCK/FSYNC, ASP_SCLK, and ASP_SDOUTx CL = 60 pF; logic 0 = ground, logic 1 = VA; ASPx_DRIVE = 0; input
A
timings are measured at V
MCLK frequency 1.024 19.2 MHz MCLK duty cycle 45 55 % Slave mode Input sample rate (LRCK) Fs (See Table 4-2)kHz
LRCK duty cycle 45 55 % SCLK frequency 1/t SCLK duty cycle 45 55 % SCLK rising edge to LRCK edge t LRCK setup time before SCLK rising edge t SDOUT setup time before SCLK rising edge t SDOUT hold time after SCLK rising edge t
Master mode Output sample rate (LRCK) All speed modes Fs
LRCK duty cycle 45 55 % SCLK frequency 1/t SCLK duty cycle 33 67 % LRCK time before SCLK falling edge t SDOUT setup time before SCLK rising edge t SDOUT hold time after SCLK rising edge t
1.Serial port interface timing
and VIH thresholds, and output timings are measured at VOL and VOH thresholds (see Table 3-14).
IL
Parameters
1,2
Symbol Min Max Units
Ps
hs(LK-SK)
ss(LK-SK) ss(SDO-SK) hs(SK-SDO)
ext
Pm
sm(LK-SK)
sm(SDO-SK) hm(SK-SDO)
64•Fs
10 ns 40 ns 20 ns 30 ns
(See Table 4-2)kHz
64•Fs
–2 +2 ns 20 ns 30 ns
ext
ext
Hz
Hz
2.MCLK must be stable before powering up the device. In Slave Mode, ASP_LRCK/FSYNC and ASP_SCLK must be stable before powering up the device. Before making changes to any clock setting, the device must be powered down by setting either the PDN_ULP or PDN_LP bit.
14 DS992F1
CS53L30
//
//
//
//
//
SLOT0:MSB
FSYNC (programmable
pulse width)
SCLK (SCLK_INV = 0)
SDOUT (SHIFT_LEFT = 0)
//
//
//
//
//
//
t
setup1
t
Fsync
t
CLK-Q1
SLOT0:MSB -1
//
//
//
SLOT0:MSB
SDOUT (SHIFT_LEFT = 1)
//
//
t
CLK-Q1
SLOT0:MSB -1
//
//
SLOT0:MSB -2
//
//
SCLK (SCLK_INV = 1)
//
//
//
//
//
SLOTx:LSB+1
SCLK
Device 0: SDOUT
t
HOLD2
SLOTx:LSB
SLOTx:MSB
Device 1: SDOUT
SLOTx:MSB -1
SLOTx:MSB -2
Output Not Driven (Hi-Z)
Output Not Driven (Hi-Z)
3 Characteristics and Specification s

Table 3-12. Switching Specifications—Time-Division Multiplexed (TDM) Mode

Test conditions (unless specified otherwise): Fig. 2-1 shows CS53L30 connections; GNDA = GNDD = 0 V; all voltages are with respect to ground; parameters can vary with VA; typical performance data taken with VA = 1.8 V, VP = 3.6 V; min/max performance data taken with VA = 1.8 V, VP = 3.6 V; T
= +25°C; Test load for ASP_LRCK/FSYNC, ASP_SCLK, and ASP_SDOUT1 CL = 60 pF; logic 0 = ground, logic 1 = VA; ASPx_DRIVE = 0; input
A
timings are measured at V
MCLK frequency 1.024 19.2 MHz MCLK duty cycle —45 55 % Slave mode Input sample rate (FSYNC)
FSYNC high time pulse FSYNC setup time before SCLK rising edge t SCLK frequency SCLK duty cycle 45 55 % SDOUT delay time after SCLK rising edge
SDOUT hold time of LSB before transition to Hi-Z SHIFT_LEFT = 0
Master mode Output sample rate (FSYNC)
FSYNC high time pulse FSYNC setup time before SCLK rising edge t SCLK frequency f SCLK duty cycle 45 55 % SDOUT delay time after SCLK rising edge SHIFT_LEFT = 0 t SDOUT delay time after SCLK rising edge SDOUT hold time of LSB before transition to Hi-Z SHIFT_LEFT = 0
1.Clock rates must be stable when the device is powered up and the serial port is not powered down. Therefore, the appropriate serial port must be powered down before any clock rates are changed.
2.Maximum frequency for the highest supported nominal rate is indicated.
3.“n” refers to the total number of SCLKs in one FSYNC frame.
4.If MCLK_19MHZ_EN is set, the maximum SCLK frequency is 6.4 MHz. If SHIFT_LEFT is set, the maximum SCLK frequency is 6.4 MHz.
5.SCLK frequency must be high enough to provide the necessary SCLK cycles to capture all the serial audio port bits.
6.Single-device TDM timings
and VIH thresholds, and output timings are measured at VOL and VOH thresholds (see Table 3-14).
IL
Parameters Symbol Min Max Units
4,5
1,2
3
6
SHIFT_LEFT = 0 t SHIFT_LEFT = 1 t
SHIFT_LEFT = 1
1
10
6
SHIFT_LEFT = 1 t
SHIFT_LEFT = 1
Fs
ext
t
FSYNC
SETUP1
f
SCLK
CLK-Q1 CLK-Q1
[7]
t
HOLD2
[8]
t
HOLD2
Fs
ext
t
FSYNC
SETUP1
SCLK
CLK-Q1 CLK-Q2
[7]
t
HOLD2
[8]
t
HOLD2
—48kHz
1/f
SCLK
20 ns —12.288MHz
—25ns —45ns 10 30 ns 10 40 ns —
1/f
SCLK
15 ns
(See Table 4-3)MHz
—25ns —45ns 10 30 ns 10 40 ns
Table 4-2 shows nominal MCLK rates and their associated configurations.
(n–1)/f
[9]
(n–1)/f
SCLK
SCLK
s
kHz
s
7.Hand-off timing for multidevice systems (SHIFT_LEFT = 0.
DS992F1 15
CS53L30
SLOTx:LSB+1
SCLK
Device 0: SDOUT
t
HOLD2
SLOTx:LSB
SLOTx:MSB
SLOTx:MSB -1
SLOTx:MSB -2
Output Not Driven (Hi-Z)
Output Not Driven (Hi-Z)
t
buf
t
hdst
t
hdst
t
low
t
r
t
f
t
hdd
t
high
t
sud
t
sust
t
susp
Stop Start
Start
Stop
Repeated
SDA
SCL
t
irs
RESET
3 Characteristics and Specification s
8.Hand-off timing for multidevice systems (SHIFT_LEFT = 1). When SHIFT_LEFT = 1, it is recommended to insert an empty slot between devices on the TDM bus to prevent contention possibilities.
9.In Master Mode, the output sample rate follows the MCLK rate, per Section 4.6.5. MCLK deviations from the nominal supported rates are passed directly to the output sample rate by the same factor (e.g., a +100 ppm offset in the frequency of MCLK becomes a +100 ppm offset in FSYNC).
10.“n” refers to number of SCLK cycles programmed in LRCK_TPWH[10:3] | LRCK_TPWH[2:0] (see p. 51) when
otherwise, t
has a 50% duty cycle.
FSYNC

Table 3-13. Switching Specifications—I2C Control Port

Test conditions (unless specified otherwise): Fig. 2-1 Parameters can vary with VA, typical performance data taken with VA = 1.8 V , VP = 3.6 V, min/max performance data taken with VA = 1.8V, VP = 3.6V; T
= +25°C; logic 0 = ground, logic 1 = VA; input timings are measured at VIL and VIH thresholds, and output timings are measured at VOL and VOH
A
thresholds (see Table 3-14).
Parameter
rising edge to start
RESET SCL clock frequency f
Start condition hold time (prior to first clock pulse) t Clock low time t Clock high time t Setup time for repeated start condition t SDA input hold time from SCL falling
3
SDA output hold time from SCL falling t SDA setup time to SCL rising t Rise time of SCL and SDA t Fall time SCL and SDA t Setup time for stop condition t Bus free time between transmissions t SDA bus capacitance C SDA pull-up resistance R
1.All specifications are valid for the signals at the pins of the CS53L30 with the specified load capacitance.
2
2.I
C control port timing.
shows CS53L30 connections
1,2
; GNDA = GNDD = 0 V; all voltages are with respect to ground;
Symbol Min Max Unit
t
irs scl
hdst
low high sust
t
hddi
hddo
sud
rc fc
susp
buf
L p
LRCK_50_NPW (see p. 51) is set;
500 ns
550 kHz
0.6 µs
1.3 µs
0.6 µs
0.6 µs
00.9µs
0.2 0.9 µs
100 ns
300 ns — 300 ns
0.6 µs
1.3 µs — 400 pF
500
3.Data must be held for sufficient time to bridge the transition time, tf, of SCL.
16 DS992F1
CS53L30
3 Characteristics and Specification s

Table 3-14. Digital Interface Specifications and Charact eristics

Test conditions (unless specified otherwise): Fig. 2-1 shows CS53L30 connections; GNDA = GNDD = 0 V; all voltages are with respect to ground; VA =1.8 V, VP = 3.6 V; T
Input leakage current
Internal weak pulldown 550 2450 k Input capacitance
current sink (VOL = 0.3 V max) 825 µA
INT High-level output voltage Low-level output voltage High-level input voltage V Low-level input voltage V
1.See Table 1-1 for serial and control port power rails.
2.Specification is per pin. Includes current through internal pull-down resistors on serial port.
3.IOH = –100 µA for x_DRIVE = 0; IOH = –67 µA for x_DRIVE = 1
4.IOL = 100 µA for x_DRIVE = 0; IOL = 67 µA for x_DRIVE = 1

Table 3-15. Thermal Overload Detection Characteristics

Test conditions (unless otherwise specified): GNDA = GNDD = 0; all voltages are with respect to ground; VA = 1.8 V, VP = 3.6 V.
Thermal overload detection threshold 150
2
= +25°C
A
2
3
4
Parameters
MCLK, SYNC, MUTE, all serial port inputs
1
All control port inputs, INT,
RESET
Symbol Min Max Units
I
in
— —
±4000
±100
—— 10pF
V
OH
V
OL
IH IL
VA – 0.2 V
—0.2V
0.70•VA V —0.30VAV
Parameters Min Typ Max Units
nA nA
C
DS992F1 17
CS53L30
CS53L30
Digital Processing
Control
Port
Level Shifters
MIC1_BIAS
Serial Port
MIC2_BIAS
VP
MCLK
DMIC1_SCLK
MIC3_BIAS MIC4_BIAS
–6 to +12 dB,
0.5 dB st eps
+10 or +20 dB
ADC1B
+
+
Decimators
–6 to +12 dB,
0.5 dB st eps
+10 or +20 dB
+
+
Decimators
MIC1 B i as MIC2 B i as MIC3 B i as MIC4 B i as
HPF , No i se
Gate, Volum e,
Mute
Audio
Serial Port
Control Port
RESET
MCLK_INT
Clock Divider Synchronizer
DMIC
ADC1A
ADC2B
ADC2A
+
+
LDO
VA
VD
2
2
4
MCLK_INT
MCLK_INT
HPF , No i se
Gate, Volum e,
Mute
SYNC
MUTE
Synchronous
SRC
IN2–
IN1–
IN2+
IN4–
IN3–
IN4+
DMIC2_SCLK
See Section 4.4.
See
Section 4.9.
See Section4.5.
See Section4.6.
See
Section4.8.
See Section4.14.
See Section 4.12.
See Section 4.2.

4 Functional Description

4 Functional Description
This section provides a general description of the CS53L30 architecture and detailed functional descriptions of the various blocks that comprise the CS53L30.

4.1 Overview

Fig. 4-1 is a block diagram of the CS53L30 with links to descriptions of major subblocks.
Figure 4-1. Overview of Signal Flow
The CS53L30 is a low-power, four-channel, 24-bit audio ADC. The ADCs are fed by fully differential analog inputs that support mic and line-level input signals. The ADCs are designed usin g multibit delta-sigma techniques. The ADCs operate at an optimal oversampling ratio balancing performance with power saving s. Enhanced power savings are possible when the internal MCLK is scaled by setting MCLK_INT_SCALE (see p. 45). Table 4-2 lists supported sample rates with scaled internal MCLK.
The serial data port operates at a selectable range of stan dard audio samp le rates as either timing master or slave. Core timing is flexibly sourced, without the need of a PLL, by clocks with typical audio clock rates (N x 5.6448, or N x 6.1440 MHz; where N = 1 or 2), USB rates (6 or 12 MHz), or 3G and DVB rates (19.2 MHz).
The integrated LDO regulator allows the digital core to ope rate at a very low voltage , significantly reducing the CS53L30’s overall power consumption.
The CS53L30 can operate in a system with multiple CS53L30s to increase the number of channels available. The CS53L30s may be connected in a multidrop configuration in TDM Mode. Up to four CS53L30s can operate sim ultaneously on the same TDM bus. Connecting together the SYNC pins of multiple CS53L30s allows operation with minimal channel-to-channel phase mismatch across devices.
The signal to be converted can be either mic/line-level. The digital mic inputs (IN1+/DMIC1_SD, IN3+/DMIC2_SD) connect directly to the decimators.
18 DS992F1
The CS53L30 consists of the following blocks:
CS53L30

4.2 Resets

Interrupts. The CS53L30 QFN package includes an open-drain, active-low interrupt output, INT describes interrupts.
Capture-path inputs. The analog input block, described in Section 4.4, allows selection from either analog line-level, or analog mic sources. The selected analog source is fed into a mic preamplifier (whe n applicable ) and then into a PGA, before entering the ADC. The pseudodifferential input configuration can provide noise rejection for single-ended analog inputs. The digital mic inputs (IN1+/DMIC1_SD, IN3+/DMIC2_SD) connect directly to the decimators.
Serial ports. The CS53L30 has either two I devices in the system such as applications processors. The serial data ports are described in Section 4.6.1. The TDM port allows multidrop operation (i.e., tristate capable SDOUT driver) for sharing the TDM bus between multiple devices, and flexible data structuring via control port registers.
Synchronous sample rate converter (SRC). The SRC, described in Section 4.8, is used to bridge different sample rates at the serial port within the digital-processing core.
Multichip synchronization protocol. Some applications require more than four simultaneous audio channels requiring multiple CS53L30s. In a subset of these multidevice applications, special attention to phase alignment of audio channels is required. The CS53L30 has a synchro nization pr otocol to align all a udio chan nels a nd mi nimize interchannel phase mismatch. Section 4.9 describes the synchronization protocol.
Thermal overload notification. The CS53L30 can be configured to notify the system processor that its die temperature is too high. This functionality is described in Section 4.11.
Mute pin. The CS53L30 audio outputs can be muted with the assertion of the register-programmable MUTE pin. The MUTE pin function can also be programmed to power-down ADCs, MICx_BIAS, etc., by setting the appropriate bits in Section 7.17 and Section 7.18. Section 4.12 describes the MUTE pin functionality.
Power management. Several registers provide independent powe r-down control of the analog and digital sections of the CS53L30, allowing operation in select applications with minimal power consumption. Power management considerations are described in Section 4.13.
Control port operation. The control port is used to access the registers allowing the CS53L30 to be configured for the desired operational modes and formats. The oper ation of the control port may be completely asynchronous with respect to the audio sample rates. To avoid interference problems, the control port pins must remain static if no operation is required. Control port operation is described in Section 4.14.
2
S output ports or one TDM output port allowing communication to other
. Section 4.3
4.2 Resets
The CS53L30 can be reset only by asserting RESET. When RESET is asserted, all registers and all state machines are immediately set to their default values/states. No operation can begin until RESET can begin, RESET before the VA supply.
must be asserted at least once after the VA supply is broug ht up. The VP supply should be brought u p
is deasserted. Before normal operation

4.3 Interrupts

The status of events that may require special attention is recorded in the interrupt status register (see Section 7.36). Interrupt status bits are sticky and read-to-clear: That is, once set, they remain set until the status register is read and the associated interrupt condition is no longer present.

4.3.1 Interrupt Handling with the WLCSP Package

If the WLCSP package is used, events and conditions are detected in software by polling the interrupt status register. The mask register can be ignored (see Section 7.35). Status register bits are cleared when read, as Fig. 4-2 shows. If the underlying condition remains valid, the bit remains set even after the status register is read.
DS992F1 19
CS53L30
Raw signal feeding st atus re gi ster bi t
Stat us regis t er bi t ___
INT pin Register read
signal Stat us read val ue
0 110 10
Read Sourc e
10
Poll cycle
Interrupt
service
Extra read for
pre s ent state
Interrupt
service
Extra read for
pre s ent state
Poll cycle
Extra read for
pre s ent state
Poll cycle
Channel 2B Data Path
Channel 2A Data Path
Channel 1B Data Path
Channel 1A Data Path
PGA
Decimator
PGA
Decimator
Digital Gain
Adjust
HPF
ADC1A
ADC1B
Digital Gain
Adjust
HPF
Noise Gate To Serial Port
PGA
Decimator
PGA
Decimator
Digital Gain
Adjust
HPF
ADC2A
ADC2B
Digital Gain
Adjust
HPF
Noise Gate To Serial Port
IN1 +/DMIC1_SD
IN 2 –
IN 1 –
IN2+
IN3 +/DMIC3_SD
IN4–
IN 3 –
IN4+
ADC1x_VOL
ADC1x_PGA_VOL
CH_TYPE
ADC1_HPF_EN
ADC1x_VOL
ADC1x_PREAMP
ADC1x_PREAMP
ADC2x_VOL
ADC2x_PGA_VOL
ADC2_HPF_EN
ADC2x_PGA_VOL
ADC2x_VOL
ADC2x_PREAMP
ADC2x_PREAMP
ADC1x_NG
ADC2x_NG
ADC1_HPF_EN
ADC1x_PGA_VOL
ADC2_HPF_EN
CH_TYPE
CH_TYPE CH_TYPE

4.4 Capture-Path Inputs

4.3.2 Interrupt Handling with the QFN Package

The interrupt pin (INT) is implemented on the QFN package. Interrupt status bits can be individually masked by setting corresponding bits in the interrupt mask register (see Section 7.35). The configuration of mask bits determines which events cause the assertion of INT
:
When an unmasked interrupt status event is detected, the status bit is set and INT
When a masked interrupt status event is detected, the interrupt status bit is set, but INT
Once INT remains present and the status bit is read, alth ou gh IN T
is asserted, it remains asserted until all status bits that are unmasked and set have been read. If a condition
is deasserted, the status bit remains set.
is asserted.
is not affected.
To clear any status bits set due to the initiation of a path or block, all interrupt status bits should be read after reset and before normal operation begins. Otherwise, unmasking any previously set status bits causes INT
Figure 4-2. Example of Rising-Edge Sensitive, Sticky, Interru pt Status Bit Behavior (INT Pin in QFN only)
to assert.
4.4 Capture-Path Inputs
This section describes the line in and mic inputs. Fig. 4-3 shows the capture-path signal flow.
20 DS992F1
Figure 4-3. Capture-Path Signal Flow
Fig. 4-4 shows details of the various analog input gain settings, including control register fields.
–6 to +12 dB
with 0.5-dB
steps
Bypas s, +10,
or +20 dB
0 or +20 dB
and/or
–96 to +12 dB
with 1-dB steps or
dB (mute)
INx±,
(x=1,2)
Gain Adjust
Digital Gain
Adjust
ADC1xPGA
...
(Note 1)
(Note 1)
Bypas s, +10,
or +20 dB
INx±,
(x=3,4)
Gain AdjustDigital Gain
Adjust
ADC2xPGA
...
(Note 1)
(Note 1)
1. Gains within analog blocks vary with supply voltage, with temperat ure, and from part t o part. The gain val ues listed for these b locks are typical values with nominal parts and conditions.
ADC1x_PREAMP on p. 54
ADC1x_DIG_BOOST on p. 53 ADC1x_VOL on p. 54
ADC2x_PGA_VOL on p. 56
ADC2x_PREAMP on p. 56
ADC1x_PGA_VOL on p. 54
ADC2x_DIG_BOOST on p. 55 ADC2x_VOL on p. 56
+
Preamp+
+
Preamp–
INx–
INx+
100 k
900 k
900 k
100 k
Quick­Ref
700 k700 k
VA
Weak-VCM
700 k700 k
Weak-VCM
VA
VCM
+
PGA
ADCx+
ADCx–
ADC1x_PGA_VOL ADC2x_PGA_VOL
ADC1x_PREAMP ADC2x_PREAMP
CS53L30
4.4 Capture-Path Inputs
Figure 4-4. Input Gain Paths

4.4.1 Analog Input Configurations

The CS53L30 implements fully differential analog input stages, as shown in Fig. 4-5. In addition to accepting fully differential input signals, the inputs can be used in a pseudodifferential configuration to improve common mode noise rejection with single-ended signals. In this configuration, a low-level referen ce signal is sensed at the ground point of the internal mic or external mic jack and used as a pseudodifferential reference for the internal input amplifiers. Sitting between the preamp and the PGA is an internal antialias filter with a first-order pole at 95 kHz and a first-order pole at 285 kHz.
Fig. 4-6 shows the INx interface and the related connections recommended for a fully differential internal mic. These
connections are truncated in Fig. 4-6.
Figure 4-5. Op-Amp Level Schematic—Analog Inputs
DS992F1 21
Loading...
+ 46 hidden pages