B&K Precision 1730A User Manual [en, es]

MODELS 1710A and 1730A
INSTRUCTION
MA
NUAL DE
INSTRUCCIÓN
MANUAL
MODELOS 1710A & 1730A
0-30V
DC POWER SUPPLY
0-1A (1710A)
0-3A (1730A)
FUENTE DE PODER DE DC
TEST INSTRUMENT SAFETY
Normal use of test equipment exposes you to a certain amount of danger from electrical shock because testing must sometimes be performed where exposed high voltage is present. An electrical shock causing 10 milliamps of current to pass through the heart will stop most human heartbeats. Voltage as low as 35 volts dc or ac rms should be considered dangerous and hazardous since it can produce a lethal current under certain conditions. Higher voltages are even more dangerous. Your normal work habits should include all accepted practices to prevent contact with exposed high voltage, and to steer current away from your heart in case of ac cidental contact with a high voltage. Observe the following safety precautions:
1. There is little danger of electrical shock from the dc output of this power supply. However, there are several other possible test
conditions using this power supply that can create a high voltage shock hazard: a. If the equipment under test is the “hot chassis” type, a serious shock hazard exists unless the equipment is unplugged (just turning
off the equipment does not remove the hazard), or an isolation transformer is used.
b. If the equipment under test is “powered up” (and that equipment uses high voltage in any of its circuits), the power supply outputs
may be floated to the potential at the point of connection. Remember that high voltage may appear at unexpected points in defective equipment. Do not float the power supply output to more than 100 volts peak with respect to chassis or earth ground.
c. If the equipment under test is “off” (and that equipment uses high voltage in any of its circuits under normal operation), discharge
high-voltage capacitors before making connections or tests. Some circuits retain high voltage long after the equipment is turned off.
2. Use only a polarized 3-wire ac outlet. This assures that the power supply chassis, case, and ground terminal are connected to a good
earth ground and reduces danger from electrical shock.
3. Don’t expose high voltage needlessly. Remove housings and covers only when necessary. Turn off equipment while making test
connections in high-voltage circuits. Discharge high-voltage capacit ors after removing power.
(continued on inside back cover)
WARNING
1
Instruction Manual
for
Model
1710A and 1730A
DC POWER SUPPLY
22820 Savi Ranch Parkway
Yorba Linda, CA 92887
www.bkprecision.com
2
TABLE OF CONTENTS
A
PPLICATIONS
................................
.............................
20
TEST INSTRUMENT SAFETY...................inside front cover
INTRODUCTION......................................................................4
FEATURES.................................................................................5
SPECIFICATIONS.....................................................................6
CONTROLS AND INDICATORS............................................8
OPERATING INSTRUCTIONS.............................................10
Safety Precautions................................................................10
Equipment Precautions.........................................................10
Hook-Up................................................................................10
Typical Constant Voltage Operation ...................................13
Setting Current Limit ...........................................................14
Typical Constant Current Operation...................................15
Constant Voltage/Constant Current Characteristic............16
Connecting Two Power Supplies in Series .........................16
Connecting Two Power Supplies in Parallel......................19
General..........................................................................20
Electronics Servicing...................................................20
Electronics Manufacturing..........................................20
Electronics Design Lab...............................................21
Electronics Education..................................................21
Battery Charging..........................................................21
MAINTENANCE.............................................................22
Fuse Replacement ........................................................22
Line Voltage Conversion, Internationa l Units........... 22
1710A/1730A Calibration...........................................23
Instrument Repair Service...........................................23
SERVICE INFORMATION............................................25
LIMITED TWO-YEAR WARRANTY..........................26
SPANISH MANUAL.......................................................28
3
INTRODUCTION
The B+K Precision Model 1710A and 1730A DC Power Supplies are high quality, general purpose dc power sources. The two models
are very similar to each other, and both are covered in this instruction manual. Each of these power supplies provides 0-30 volts dc output, adjustable with both coarse and fine controls for precise settability. The current output of the Model 1710A is 0-1 amp, while Model 1730A is 0-3 amps. Two current ranges, High and Low, provide excellent current settability and meter resolution. Two large panel-mounted meters continuously monitor the output voltage and cu rrent.
These power supplies exhibit excellent regulation and low ripple characteristics. The circuit design incorporates a pre-regulator, which greatly reduces internal power dissipation at low output voltages. The styling is both attractive and functional. The mechanical configuration conserves bench space and allows for easy portability.
These instrument may be used in constant voltage or constant current applications. The crossover from constant voltage to constant current modes is smooth and automatic. LEDs indicate the “CV” (constant voltage) or “CC” (constant current) mode of operation. In constant voltage applications, a current limit may be preset. When load variations cause the current to reach the preset limit, the unit then regulates output current rather than output voltage. Current limits are adjustable from 5% to 100% of maximum. In constant current applications, the maxi mum voltage may be preset. When load variations cause current to drop below the regulated value, the unit reverts to regulated voltage operation at the preset value.
Reverse polarity protection prevents accidental damage to the power supply from improper connection to an external voltage, and current limiting protects the equipment being powered, as well as the power supply.
The output is isolated from chassis and earth ground, which permits full flexibility of connections. When needed, the (+) or (-) polarity may be strapped to ground, or either polarity may be floated to an external voltage. Two supplies may be connected in series as a 0 -to-60 volt power source, or two supplies may be connected in parallel, with suitable balancing resistors, for up to twice the output current.
These power supplies are well suited for a wide variety of electrical and electronics applications, including service shops, engineering labs, production testing, school laboratories, and home use by hobbyists.
4
0-30 VOLTS
BUILT
-
IN METERING
controls.
0-1 AMP AND 0-3 AMP VERSIONS
LABORATORY QUALITY
CONSTANT VOLTAGE OR CONSTANT CURRENT
TWO CURRENT RANGES
Continuously variable over 0-to-30 volt range with coarse and fine controls.
0 to 1 amp (1710A) and 0 to 3 amp (1730A) models available. Each rated for continuous duty at full output current.
Excellent regulation, low ripple.
Provides regulated dc voltage output or regulated dc current output. Crossover is smooth and automatic.
High-Low switch selects full output (0-1A for Model 1710A, 0-3A for Model 1730A), or partial output (0-.25A for Model 1710A, and 0-.5A for Model 1730A). Low range improves current stability and meter resolution at lower current values. Switch simultaneously selects range of adjustment and corresponding meter scale.
FEATURES
Two large, easy-to-read meters continuously monitor output voltage and current.
LED INDICATORS
Act as pilot light and identify mode of operation.
PRE-REGULATOR
Limits internal dissipation for higher reliability.
ISOLATED OUTPUT
Either polarity may be floated or grounded.
OVERLOAD PROTECTION
Fully adjustable current limiting (from 5% to 100% of maximum output current) protects circuit under test and the power supply.
REVERSE POLARITY PROTECTION
Prevents damage to power supply from external voltage of reverse polarity.
STYLING
Modern functional styling. Configuration conserves bench space and aids portability. Logical, convenient layout of
5
SPECIFICATIONS
Model 1730A Model 1710A OUTPUT VOLTAGE 0 to 30 VDC, coarse and fine adjustment 0 to 30 VDC, coarse and fine adjustment OUTPUT CURRENT
High Range
Low Range
CONSTANT VOLTAGE OPERATION
Voltage Regulation
Line (108 - 132V) Load (no load to full load)
Recovery Time
Ripple Voltage
Peak-to-Peak
RMS
Temperature Coefficient
0° to +40° C
CONSTANT CURRENT OPERATION
Adjustable Current Limits
Current Regulation
Line (108 - 132V) Load
Current Ripple
0 to 3A 0 to 0.5A
0.01% + 3mV
0.01% + 3mV
100µs typical
2mV typical 1mV
300 PPM/°C
5 to 100%
0.2% + 3mA
0.2% + 3mA
3mA typical
0 to 1A 0 to 0.25A
0.01% + 3 mV
0.01% + 3 mV
100µs typical
3mV typical 1mV
300 PPM/°C
5 to 100%
0.2% + 3mA
0.2% + 3mA
3mA typical
6
Model 1730A Model 1710A
METERING
Voltmeter
Range
Accuracy
Ammeter
High Range
Low Range
Accuracy
POWER REQUIREMENTS Domestic: 120 VAC ±10%, 60 Hz
POWER CONSUMPTION Approx. 180W or less at full load Approx. 70W or less at full load PROTECTION Reverse polarity protection,
TEMPERATURE RANGE
Operation
Storage
DIMENSIONS (HxWxD) 6.2 x 5.5 x 12.5" 6.2 x 5.5 x 12.5" WEIGHT 10.5 lb. 8 lb. ACCESSORIES SUPPLIED Spare Fuse
NOTE: Specifications and information are subject to change without notice. Please visit www.bkprecision.com for the most current product
information.
0 to 32V ±2.5%
0 to 3.2A 0 to 0.53A ±2.5%
International: 120, 220, 230, 240 VAC ±10%, 50/60 Hz
Current limiting
0° to +40° C, <75% R.H.
-15° to +70°C, <85% R.H.
Instruction Manual
0 to 32V ±2.5%
0 to 1.04A 0 to 0.26A ±2.5%
Reverse polarity protection, Current limiting
0° to +40° C, <75% R.H.
-15° to +70°C, <85% R.H.
Spare Fuse Instruction Manual
7
current range: value is read on bottom meter scale of
A
meter.
POWER CONTROLS
INDICATORS
Either the “CC” or “CV” indicator will be lighted whenever the unit is operating, thus serving as a pilot light. The unit automatically changes from CV to CC operation when the preset current limit is reached.
1. C.C. (Constant Current) Indicator. Red LED lights in
constant current mode. Unit regulates output current at value set by CURRENT controls.
2. C.V. (Constant Voltage) Indicator. Green LED lights in
constant voltage mode. Unit regulates output voltage at value set by VOLTAGE controls.
VOLTAGE CONTROLS
3. Coarse Control. Coarse adjustment of output voltage. Read
value on V meter.
4. Fine Control. Fine adjustment of output voltage. Read
value on V meter.
CURRENT CONTROLS
5. CURRENT Control. Adjusts current limit in constant
voltage mode. Adjusts constant current value in constant current mode. Range of adjustment is determined by High ­Low switch.
6. High-Low Switch. High position selects high current range;
value is read on top meter scale of A meter. Low position selects low
CONTROLS AND INDICATORS
RANGE MODEL 1730A MODEL 1710A
High 0 to 3A 0 to 1A
Low 0 to 0.5A 0 to 0.25A
7. ON-OFF Switch.
OUTPUT TERMINALS
8. “+” Terminal (Red). Positive polarity output terminal.
9. Terminal (Green). Earth and chassis ground.
10. “-” Terminal (Black). Negative polarity output terminal.
METERS
11. A Meter. Reads output current in amperes. Use top scale
when High-Low switch is set to High, bottom scale when switch is set to Low.
12. V Meter. Reads output voltage on 0 to 32V scale.
REAR PANEL CONTROLS
13. Fuse.
14. Power Cord.
15. 110/220 Line Voltage Conversion Switch.
8
Figure 1. Front Panel Controls and Indicators.
Figure 2. Rear Panel
9
OPERATING INSTRUCTIONS
SAFETY PRECAUTIONS
power supply never exceeds
the preset value as the POWER switch is
Use only a polarized 3- wire ac outlet. This assures that the power supply chassis, case, and ground terminal are connected to a good earth ground and reduces danger from electrical shock.
There is little danger of electrical shock from the power supply output, which produces a maximum of 30 volts dc. However, there may be great
danger of electrical shock if the power supply output is connected to an external high voltage. Some equipment being powered may contain
high voltage and present a shock hazard. Observe caution. If the power supply out put is floated (referenced to a voltage rather than earth ground) turn off the power supply and the equipment under test when making connections. Never float the power supply to a potential greater than 100 volts peak with respect to earth ground.
EQUIPMENT PRECAUTIONS
Avoid using the power supply in ambient temperatures above +40° C. Always allow sufficient air space around the heat sink at the rear of the power supply for effective radiation to prevent internal heat build- up.
Although the power supply is protected against reverse polarity damage, the circuit being powered may not include such protection. Always carefully observe polarity; incorrect polarity may damage the equipment under test.
Do not exceed the voltage rating of the circuit being powered. Many transistors and integrated circuits will not withstand voltage of 30 volts.
There is no need to worry about voltage spikes or overshoot damaging the equipment under test. The voltage between the output terminals of the
turned on or off.
HOOK-UP
1. Turn off the power supply and the equipment to be powered
during hook- up.
2. Connect the positive polarity of the device being powered to the
red (+) terminal of the power supply.
3. Connect the negative polarity of the device being powered to the
black (-) terminal of the power supply.
4. Fig. 3 illustrates the grounding possibilities. a. If the negative polarity of the equipment or circuit being
powered is also the chassis or common, it may be grounded to earth by strapping the black (-) terminal to the green ( ) terminal as shown in Fig. 3A.
b. Similarly, the positive polarity can be grounded by strapping
the red (+) terminal to the green ( ) terminal as shown in Fig. 3B.
c. If an earth ground reference is not required, the configuration
of Fig. 3C may be used. The scheme in Fig. 3C should also be used where it is not known whether the chassis is common with either the positive or negative polarity.
d. If the chassis or common of the equipment being powered is
separate from both the positive and negative polarity power inputs, use the connection shown in Fig. 3D.
10
A. Grounded, common with
Hot
1710A or 1730A
1710A or 1730A
Strap
B. Grounded, common with
OPERATING INSTRUCTIONS
Equipment
Equipment
Strap
negative polarity
POWER SUPPLY
Being Powered
positive polarity
Figure 3 (A and B). Grounding Possibilities.
POWER SUPPLY
Being Powered
Hot
11
OPERATING INSTRUCTIONS
No
C. Grounded, common with
1710A or 1730A
1710A or 1730A
No
D. Grounded, not common with
Equipment
Equipment
Strap
negative polarity
POWER SUPPLY
Being Powered
Negative or positive polarity.
Figure 3 (C and D). Grounding Possibilities.
Strap
POWER SUPPLY
Being Powered
12
5.
Observe proper polarity. If the circuit being powered is not
OPERATING INSTRUCTIONS
Read output voltage and
Adjust to
CV Indicator on
Current meters
Desired voltage
Load
Figure 4. Typical Constant Voltage Operation
Present current
limiting
equipped with reverse polarity protection, damage to the circuit can result from reverse polarity. Use color coded hook-up leads for convenience in identifying polarity, red for (+) and black for ( -).
6. Make sure that the hook-up leads offer sufficient current
capability and low resistance between the power supply and the circuits being powered.
TYPICAL CONSTANT VOLTAGE OPERATION
1. Before connecting the device to be powered to the power
supply, determine the maximum safe load current for the device to be powered and set the current limit value (see “Setting Current Limit” procedure in this section).
2. Set Fine VOLTAGE control to center and Coarse
VOLTAGE control to minimum (fully counterclockwise).
3. Turn off power supply and connect it to the device to be
powered (see “Hook -Up” procedure in this section).
4. Turn on POWER switch. The CV indicator should light.
5. Increase the VOLTAGE setting until the V meter reads the
desired value. The Fine control permits easier setting to a specific value.
6. Note the load current on the ammeter.
7. If the load current exceeds the preset current limit, the CV
indicator will go off and the CC indicator will light. In this case, the power supply automatically switches to the constant current mode, and further rotation of the VOLTAGE control will not increase the output voltage as
13
read on the V meter.
SETTING CURRENT LIMIT
OPERATING INS
TRUCTIONS
Temporarily short
Midrange
1. Determine the maximum safe current for the device
to be powered. If that value is greater than 0.25 A for Model 1710A, or greater than 0.5 A for Model 1730A, set the High-Low switch to High. If less than these values, set High-Low switch to Low.
2. Temporarily short the (+) and (-) terminals of the
power supply together with a test lead.
3. Rotate the Coarse VOLTAGE control away from
zero sufficiently for the CC indicator to light.
4. Adjust the CURRENT control for the desired
current limit. Read the current value on the A meter.
5. The current limit (overload protection) has now
been preset. Do not change the CURRENT control setting after this step.
6. Remove the short between the (+) and (-) terminals
and hook up for constant voltage operation.
Adjust to
desired current
limit
CC Indicator on
Select High
Or Low
range
(+) to (-)
Figure 5. Setting Current Limit.
14
TYPICAL CONSTANT CURRENT OPERATION
Read output current
Midrange voltage
OPERATING INSTRUCTIONS
1. Before connecting the device to be powered to the
power supply, determine the maximum safe voltage to be applied and set the VOLTAGE controls to obtain that voltage reading on the V meter.
2. Determine the desired constant current value. If greater
than 0.25 A for Model 1710A, or greater than 0.5 A for Model 1730A, set the High -Low switch to High. If less than these values, set the High-Low switch to Low.
3. Set the CURRENT control to minimum (fully
counterclockwise).
4. Turn off the power supply and connect it to the device
to be powered.
5. Turn on the power supply. The CC indicator should
light.
6. Increase the CURRENT control setting until the desired
constant current value is read on the A meter, or set the current limit in advance (before connecting the load) as prescribed in the earlier “Setting Current Limit” procedure.
7. If the load current drops below the constant current
value, the CC indicator will go off and the CV indicator will light. In this case, the power supply automatically switches to the constant voltage mode, and further rotation of the CURRENT control will not increase the output current as read on the A meter.
on meter
limit
Adjust to desired
current
CC Indicator on
Select
High or Low
range
Load
Figure 6. Typical Constant Current Operation.
15
The working characteristic of the Model 1710A and 1730A Power
provide up to 1 amp; two 1730As provide up to 3 amps. See
Supplies is called a constant voltage/constant current automatic crossover type. This permits continuous transition from constant current to constant voltage modes in response to the load change. The intersection of constant voltage and constant current modes is called the crossover point. Fig. 7 shows the relationship between this crossover point and the load.
For example, if the load is such that the power supply is operating in the constant voltage mode, a regulated output voltage is provided. The output voltage remains constant as the load increases, up until the point where the preset current limit is reached. At that point, the output current becomes constant and the output voltage drops in proportion to further increases in load. The crossover point is indicated by the front panel LED indicators. The crossover point is reached when the CV indicator goes off and the CC indicator comes on.
Similarly, crossover from the constant current to the constant voltage mode automatically occurs from a decrease in load. A good example of this would be seen when charging a 12-volt battery. Initially, the open circuit voltage of the power supply may be preset for 13.8 volts. A low battery will place a heavy load on the supply and it will operate in the constant current mode, which may be adjusted for a 1 amp charging rate. As the battery becomes charged, and its voltage approaches 13.8 volts, its load decreases to the point where it no longer demands the full 1 amp charging rate. This is the crossover point where the power supply goes into the constant voltage mode.
CONNECTING TWO POWER SUPPLIES IN SERIES
Two Model 1710A or 1730A power supplies may be connected in series to provide a variable 0-60 volt output. In this configuration, two 1710As
16
Figure 7. Constant Voltage/Constant Current Characteristic.
Fig. 8 for the connection scheme.
When connected in series, the VOLTAGE controls of each power supply exercise control over a 0-30 volt range. Add the two V meter readings together to determine the total output voltage, or an external voltmeter may be connected across the load.
Load current may be monitored from either supply; the readings will be identical since they are connected in series. Also, since the supplies are connected in series, it is only necessary to set the current limit on one of the supplies; the
other may be set for maximum.
Loading...
+ 39 hidden pages