– 120 Powe rful Instructions – Most Single Clock Cy cle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
• Non-Volatile Program and Data Memories
– 2/4/8K Bytes of In-System Programmable Program Memory Flash
• Endurance: 10,000 Write/Erase Cycles
– 128/256/512 Bytes of In-System Programmable EEPROM
• Endurance: 100,000 Write/Erase Cycles
– 128/256/512 Bytes of Internal SRAM
– Data retention: 20 years at 85°C / 100 years at 25°C
– Programming Lock for Self-Programming Flash & EEPROM Data Security
• Peripheral Features
– One 8-Bit and One 16-Bit Timer/Counter with Two PWM Channels, Each
– 10-bit ADC
• 8 Single-Ended Channels
• 12 Differential ADC Channel Pairs with Programmable Gain (1x / 20x)
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-Chip Analog Comparator
– Universal Serial Interface
• Special Microcontroller Features
– debugWIRE On-chip Debug System
– In-System Programmable via SPI Port
– Internal and External Interrupt Sources: Pin Change Interrupt on 12 Pins
– Low Power Idle, ADC Noise Reduction, Standby and Power-Do wn Modes
– Enhanced Power-on Reset Circuit
– Programmable Brown-Out Detection Circuit
– Internal Calibrated Oscillator
– On-Chip Temperat ure Sensor
• I/O and Pac kages
– Available in 20-Pin QFN/MLF & 14-Pin SOIC and PDIP
– Twelve Programmable I/O Lines
• Operating Voltage:
– 1.8 – 5.5V for ATtiny24V/44V/84V
– 2.7 – 5.5V for ATtiny24/44/84
• Speed Grade
– ATtiny24V/44V/84V
• 0 – 4 MHz @ 1.8 – 5.5V
• 0 – 10 MHz @ 2.7 – 5.5V
– ATtiny24/44/84
• 0 – 10 MHz @ 2.7 – 5.5V
• 0 – 20 MHz @ 4.5 – 5.5V
• Industrial Temperature Range: -40°C to +85°C
• Low Power Consumption
– Active Mode (1 MHz System Clock): 300 µA @ 1.8V
– Power-down Mode: 0.1 µA @ 1.8V
®
8-Bit Microcontroller
8-bit
Microcontroller
with 2/4/8K
Bytes In-System
Programmable
Flash
Port B is a 4-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability except PB3 which has the RESET
RESET pin, program (‘0’) RSTDISBL fuse. As inputs, Port B pins that are externally pulled low
will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a
reset condition becomes active, even if the cloc k is not ru nn in g.
capability. To use pin PB3 as an I/O pin, instead of
8006GS–AVR–01/08
Port B also serves the functions of various special features.
1.1.4RESET
Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running and provided the reset pin has not been disabled. Shorter
pulses are not guaranteed to generate a reset.
The reset pin can also be used as a (weak) I/O pin.
1.1.5Port A (PA7...PA0)
Port A is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset co ndition becomes active,
even if the clock is not running.
Port A has alternate functions as analog inputs for the ADC, analog comparator, timer/counter,
SPI and pin change interrupt.
ATtiny24/44/84
8006GS–AVR–01/08
3
ATtiny24/44/84
2.Overview
The ATtiny24/44/84 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced
RISC architecture. By executing powerful instructions in a single clock cycle, the ATt iny24/ 44/ 84
achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize
power consumption versus processing speed.
Figure 2-1.Block Diagram
VCC
GND
PROGRAM
COUNTER
PROGRAM
FLASH
INSTRUCTION
REGISTER
INSTRUCTION
DECODER
CONTROL
LINES
PROGRAMMING
LOGIC
STACK
POINTER
SRAM
GENERAL
PURPOSE
REGISTERS
X
Y
Z
ALU
STATUS
REGISTER
ISP INTERFACE
8-BIT DATABUS
INTERNAL
OSCILLATOR
WATCHDOG
TIMER
MCU CONTROL
REGISTER
MCU STATUS
REGISTER
TIMER/
COUNTER0
TIMER/
COUNTER1
INTERRUPT
UNIT
EEPROM
INTERNAL
CALIBRATED
OSCILLATOR
TIMING AND
CONTROL
OSCILLATORS
4
DATA REGISTER
+
-
PORT A
ANALOG
COMPARATOR
PORT A DRIVERS
PA7-PA0
DATA DIR.
REG.PORT A
ADC
DATA REGISTER
PORT B
PORT B DRIVERS
PB3-PB0
DATA DIR.
REG.PORT B
The AVR core combines a rich instruction set with 32 general purpose working registers. All 32
registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.
8006GS–AVR–01/08
ATtiny24/44/84
The ATtiny24/44/84 provides the following features: 2/4/8K byte of In-System Programmable
Flash, 128/256/512 bytes EEPROM, 128/256/512 bytes SRAM, 12 general purpose I/ O lines, 32
general purpose working registers, a 8-bit Timer/Counter with two PWM channels, a 16-bit
timer/counter with two PWM channels, Internal and External Interrupts, a 8-channel 10-bit ADC,
programmable gain stage (1x, 20x) for 12 differential ADC channel pairs, a programmable
Watchdog Timer with internal Oscillator, internal calibrated oscillator, and four software selectable power saving modes. Idle mode stops the CPU while allowing the SRAM, Timer/Counter,
ADC, Analog Comparator, and Interrupt system to continue functioning. ADC Noise Reduction
mode minimizes switching noise during ADC conversions by stopping the CPU and all I/O modules except the ADC. In Power-down mode registers keep their contents and all chip functions
are disbaled until the next interrupt or hardware reset. In Standby mode, the crystal/resonator
oscillator is running while the rest of the device is sleeping, allowing very fast start-up combined
with low power consumption.
The device is manufactured using Atmel’s high density no n-volat ile mem ory tech nology. The onchip ISP Flash allows the Program memory to be re-programmed in-system through an SPI
serial interface, by a conventional non-volatile memory programmer or by an on-chip boot code
running on the AVR core.
The ATtiny24/44/84 AVR is supported with a full suite of pr ogram and system d evelopment tools
including: C Compilers, Macro Assemblers, Program Debugger/Simulators and Evaluation kits.
8006GS–AVR–01/08
5
ATtiny24/44/84
3.About
3.1Resources
A comprehensive set of drivers, application notes, data sheet s and descr iption s on development
tools are available for download at http://www.atmel.com/avr.
3.2Code Examples
This documentation contains simple code examples t hat brief ly show h ow to us e various parts of
the device. These code examples assume that the part specific header file is included b efore
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent . Please con firm wit h the C com piler d ocume ntation for more details.
For I/O Registers located in the extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically, this
means “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”. Note that not all
AVR devices include an extended I/O map.
3.3Data Retention
3.4Disclaimer
Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.
Typical values contained in this datasheet are based on simulations and characterization of
other AVR microcontrollers manufactured o n th e same proce ss te ch nolo gy. Min a nd Ma x valu es
will be available after the device is characterized.
Note:1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.
2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.
8
8006GS–AVR–01/08
Loading...
+ 18 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.