63 mW per channel at 80 MSPS
Differential input with 700 MHz bandwidth
On-chip voltage reference and sample-and-hold circuit
DNL = ±0.11 LSB
Serial port control options
Scalable analog input: 1 V p-p to 2 V p-p differential
Offset binary, gray code, or twos complement data format
Optional clock duty cycle stabilizer
Integer 1-to-8 input clock divider
Built-in selectable digital test pattern generation
Energy-saving power-down modes
Data clock out with programmable clock and data
alignment
APPLICATIONS
Communications
Diversity radio systems
Multimode digital receivers
1. The AD9204 operates from a single 1.8 V analog power
supply and features a separate digital output driver supply
to accommodate 1.8 V to 3.3 V logic families.
2. The patented sample-and-hold circuit maintains excellent
performance for input frequencies up to 200 MHz and is
designed for low cost, low power, and ease of use.
3. A standard serial port interface supports various product
features and functions, such as data output formatting,
internal clock divider, power-down, DCO/DATA timing
and offset adjustments, and voltage reference modes.
4. The AD9204 is packaged in a 64-lead RoHS compliant
LFCSP that is pin compatible with the AD926816-bit
ADC, the AD9251 and AD9258 14-bit ADCs, and the
AD9231 12-bit ADC, enabling a simple migration path
between 10-bit and 16-bit converters sampling from
20 MSPS to 125 MSPS.
08122-001
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
The AD9204 is a monolithic, dual-channel, 1.8 V supply, 10-bit,
20 MSPS/40 MSPS/65 MSPS/80 MSPS analog-to-digital converter
(ADC). It features a high performance sample-and-hold circuit
and on-chip voltage reference.
The product uses multistage differential pipeline architecture
with output error correction logic to provide 10-bit accuracy at
80 MSPS data rates and to guarantee no missing codes over the
full operating temperature range.
The ADC contains several features designed to maximize
flexibility and minimize system cost, such as programmable
clock and data alignment and programmable digital test pattern
generation. The available digital test patterns include built-in
deterministic and pseudorandom patterns, along with custom
user-defined test patterns entered via the serial port interface (SPI).
A differential clock input controls all internal conversion cycles.
An optional duty cycle stabilizer (DCS) compensates for wide
variations in the clock duty cycle while maintaining excellent
overall ADC performance.
The digital output data is presented in offset binary, gray code, or
twos complement format. A data output clock (DCO) is provided
for each ADC channel to ensure proper latch timing with receiving
logic. Both 1.8 V and 3.3 V CMOS levels are supported and output
data can be multiplexed onto a single output bus.
The AD9204 is available in a 64-lead RoHS compliant LFCSP
and is specified over the industrial temperature range (−40°C
to +85°C).
Rev. 0 | Page 3 of 36
AD9204
SPECIFICATIONS
DC SPECIFICATIONS
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS,
DCS disabled, unless otherwise noted.
Table 1.
AD9204-20/AD9204-40 AD9204-65 AD9204-80
Parameter Temp
RESOLUTION Full 10 10 10 Bits
ACCURACY
No Missing Codes Full Guaranteed Guaranteed Guaranteed
Offset Error Full ±0.1 ±0.70 ±0.1 ±0.50 ±0.1 ±0.70 % FSR
Gain Error1 Full +1.8 +1.8 +1.8 % FSR
Differential Nonlinearity (DNL)2 Full ±0.30 ±0.30 ±0.30 LSB
25°C ±0.075 ±0.15 ±0.11 LSB
Integral Nonlinearity (INL)2 Full ±0.60 ±0.60 ±0.60 LSB
25°C ±0.15 ±0.25 ±0.25 LSB
Output Voltage (1 V Mode) Full 0.981 0.993 1.005 0.981 0.993 1.005 0.981 0.993 1.005 V
Load Regulation Error at 1.0 mA Full 2 2 2 mV
INPUT REFERRED NOISE
VREF = 1.0 V 25°C 0.06 0.08 0.08 LSB rms
ANALOG INPUT
Input Span, VREF = 1.0 V Full 2 2 2 V p-p
Input Capacitance3 Full 6 6 6 pF
Input Common-Mode Voltage Full 0.9 0.9 0.9 V
Input Common-Mode Range Full 0.5 1.3 0.5 1.3 0.5 1.3 V
REFERENCE INPUT RESISTANCE Full 7.5 7.5 7.5 kΩ
POWER SUPPLIES
Supply Voltage
AVDD Full 1.7 1.8 1.9 1.7 1.8 1.9 1.7 1.8 1.9 V
DRVDD Full 1.7 3.6 1.7 3.6 1.7 3.6 V
Supply Current
IAVDD2 Full 33.5/46.4 35.8/49.6 61.1 64.8 70.3 75.2 mA
IDRVDD2 (1.8 V) Full 2.6/4.4 6.5 8.0 mA
IDRVDD2 (3.3 V) Full 5.0/8.3 12.4 15.3 mA
POWER CONSUMPTION
DC Input Full 59.5/82.1 108 125 mW
Sine Wave Input2 (DRVDD = 1.8 V) Full 64.9/91.4 69.5/97.7 121.7 128.5 141 150 mW
Sine Wave Input2 (DRVDD = 3.3 V) Full 76.7/111 150.8 177 mW
Standby Power4 Full 37/37 37 37 mW
Power-Down Power Full 2.2 2.2 2.2 mW
1
Measured with a 1.0 V external reference.
2
Measured with a 10 MHz input frequency at rated sample rate, full-scale sine wave, with approximately 5 pF loading on each output bit.
3
Input capacitance refers to the effective capacitance between one differential input pin and AGND.
4
Standby power is measured with a dc input, the CLK active.
Unit Min Typ Max Min Typ Max Min Typ Max
Rev. 0 | Page 4 of 36
AD9204
AC SPECIFICATIONS
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS,
DCS disabled, unless otherwise noted.
Table 2.
AD9204-20/AD9204-40 AD9204-65 AD9204-80
Parameter1 Temp
SIGNAL-TO-NOISE RATIO (SNR)
fIN = 9.7 MHz 25°C 61.7 61.5 61.3 dBFS
fIN = 30.5 MHz 25°C 61.6 61.4 61.3 dBFS
Full 61.0 60.5 dBFS
fIN = 70 MHz 25°C 61.6 61.4 61.3 dBFS
Full 60.4 dBFS
fIN = 200 MHz 25°C 61.0 61.0 dBFS
SIGNAL-TO-NOISE-AND DISTORTION (SINAD)
fIN = 9.7 MHz 25°C 61.5 61.2 61.1 dBFS
fIN = 30.5 MHz 25°C 61.5 61.2 61.1 dBFS
Full 60.1 59.7 dBFS
fIN = 70 MHz 25°C 61.5 61.2 61.1 dBFS
Full 59.5 dBFS
fIN = 200 MHz 25°C 60 60 dBFS
EFFECTIVE NUMBER OF BITS (ENOB)
fIN = 9.7 MHz 25°C 9.9 9.8 9.8 Bits
fIN = 30.5 MHz 25°C 9.9 9.8 9.8 Bits
fIN = 70 MHz 25°C 9.9 9.8 9.8 Bits
fIN = 200 MHz 25°C 9.6 9.6 Bits
WORST SECOND OR THIRD HARMONIC
fIN = 9.7 MHz 25°C −81 −78 −78 dBc
fIN = 30.5 MHz 25°C −81 −78 −78 dBc
Full −65 −64 dBc
fIN = 70 MHz 25°C −82 −78 −78 dBc
Full −64 dBc
fIN = 200 MHz 25°C −73 −73 dBc
SPURIOUS-FREE DYNAMIC RANGE (SFDR)
fIN = 9.7 MHz 25°C 78 75 75 dBc
fIN = 30.5 MHz 25°C 78 75 75 dBc
Full 65 64 dBc
fIN = 70 MHz 25°C 78 75 75 dBc
Full 64 dBc
fIN = 200 MHz 25°C 73 73 dBc
WORST OTHER (HARMONIC OR SPUR)
fIN = 9.7 MHz 25°C −82 −80 −80 dBc
fIN = 30.5 MHz 25°C −82 −80 −80 dBc
Full −71 −70 dBc
fIN = 70 MHz 25°C −82 −80 −80 dBc
Full −70 dBc
fIN = 200 MHz 25°C −80 −80 dBc
TWO-TONE SFDR
fIN = 30.5 MHz (−7 dBFS), 32.5 MHz (−7 dBFS) 25°C 78 78 dBc
CROSSTALK2 Full −100 −100 −100 dBc
ANALOG INPUT BANDWIDTH 25°C 700 700 700 MHz
1
See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.
2
Crosstalk is measured at 100 MHz with −1.0 dBFS on one channel and no input on the alternate channel.
Rev. 0 | Page 5 of 36
Unit Min Typ Max Min Typ Max Min Typ Max
AD9204
DIGITAL SPECIFICATIONS
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS,
DCS disabled, unless otherwise noted.
Table 3.
AD9204-20/AD9204-40/AD9204-65/AD9204-80
Parameter Temp
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)
Logic Compliance CMOS/LVDS/LVPECL
Internal Common-Mode Bias Full 0.9 V
Differential Input Voltage Full 0.2 3.6
Input Voltage Range Full GND − 0.3 AVDD + 0.2 V
High Level Input Current Full −10 +10 μA
Low Level Input Current Full −10 +10 μA
Input Resistance Full 8 10 12 kΩ
Input Capacitance Full 4 pF
LOGIC INPUTS (SCLK/DFS, SYNC, PDWN)1
High Level Input Voltage Full 1.2 DRVDD + 0.3 V
Low Level Input Voltage Full 0 0.8 V
High Level Input Current Full −50 −75 μA
Low Level Input Current Full −10 +10 μA
Input Resistance Full 30 kΩ
Input Capacitance Full 2 pF
LOGIC INPUTS (CSB)2
High Level Input Voltage Full 1.2 DRVDD + 0.3 V
Low Level Input Voltage Full 0 0.8 V
High Level Input Current Full −10 +10 μA
Low Level Input Current Full +40 +135 μA
Input Resistance Full 26 kΩ
Input Capacitance Full 2 pF
LOGIC INPUTS (SDIO/DCS)2
High Level Input Voltage Full 1.2 DRVDD + 0.3 V
Low Level Input Voltage Full 0 0.8 V
High Level Input Current Full −10 +10 μA
Low Level Input Current Full +40 +130 μA
Input Resistance Full 26 kΩ
Input Capacitance Full 5 pF
DIGITAL OUTPUTS
DRVDD = 3.3 V
High Level Output Voltage, IOH = 50 μA Full 3.29 V
High Level Output Voltage, IOH = 0.5 mA Full 3.25 V
Low Level Output Voltage, IOL = 1.6 mA Full 0.2 V
Low Level Output Voltage, IOL = 50 μA Full 0.05 V
DRVDD = 1.8 V
High Level Output Voltage, IOH = 50 μA Full 1.79 V
High Level Output Voltage, IOH = 0.5 mA Full 1.75 V
Low Level Output Voltage, IOL = 1.6 mA Full 0.2 V
Low Level Output Voltage, IOL = 50 μA Full 0.05 V
1
Internal 30 kΩ pull-down.
2
Internal 30 kΩ pull-up.
Unit Min Typ Max
V pp
Rev. 0 | Page 6 of 36
AD9204
SWITCHING SPECIFICATIONS
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS,
DCS disabled, unless otherwise noted.
Table 4.
AD9204-20/AD9204-40 AD9204-65 AD9204-80
Parameter Temp
CLOCK INPUT PARAMETERS
Input Clock Rate Full 625 625 625 MHz
Conversion Rate1 Full 3 20/40 3 65 3 80 MSPS
CLK Period—Divide-by-1 Mode (t
) Full
CLK
50/25
15.38 12.5 ns
CLK Pulse Width High (tCH) 25.0/12.5 7.69 6.25 ns
Aperture Delay (tA) Full 1.0 1.0 1.0 ns
Aperture Uncertainty (Jitter, tJ) Full 0.1 0.1 0.1 ps rms
DATA OUTPUT PARAMETERS
Data Propagation Delay (tPD) Full
DCO Propagation Delay (t
DCO to Data Skew (t
SKEW
) Full 3
DCO
) Full 0.1
3
3
3
0.1
3 ns
3 ns
0.1 ns
Pipeline Delay (Latency) Full 9 9 9 Cycles
Wake-Up Time2 Full 350 350 350 μs
Standby Full 600/400 300 260 ns
OUT-OF-RANGE RECOVERY TIME Full 2 2 2 Cycles
1
Conversion rate is the clock rate after the CLK divider.
2
Wake-up time is dependent on the value of the decoupling capacitors.
Unit Min Typ Max Min Typ Max Min Typ Max
VIN
CLK+
CLK–
DCOA/DCOB
CH A/CH B DATA
N – 1
t
A
N
N + 1
t
CH
t
CLK
t
DCO
t
SKEW
N – 9
t
PD
N + 2
N – 8N – 7N – 6N – 5
N + 3
N + 4
N + 5
08122-002
Figure 2. CMOS Output Data Timing
VIN
CLK+
CLK–
DCOA/DCOB
CH A/CH B DATA
N – 1
t
A
N
N + 1
t
CH
t
CLK
t
DCO
t
SKEW
CH A
CH B
N – 9
N – 9
t
PD
Figure 3. CMOS Interleaved Output Timing
Rev. 0 | Page 7 of 36
CH A
N – 8
N + 2
CH B
N – 8
CH A
N – 7
N + 3
CH B
N – 7
CH A
N – 6
N + 4
CH B
N – 6
CH A
N – 5
N + 5
08122-003
AD9204
TIMING SPECIFICATIONS
Table 5.
Parameter Conditions Min Typ Max Unit
SYNC TIMING REQUIREMENTS
t
SYNC to rising edge of CLK setup time 0.24 ns
SSYNC
t
SYNC to rising edge of CLK hold time 0.40 ns
HSYNC
SPI TIMING REQUIREMENTS
tDS Setup time between the data and the rising edge of SCLK 2 ns
tDH Hold time between the data and the rising edge of SCLK 2 ns
t
Period of the SCLK 40 ns
CLK
tS Setup time between CSB and SCLK 2 ns
tH Hold time between CSB and SCLK 2 ns
t
SCLK pulse width high 10 ns
HIGH
t
SCLK pulse width low 10 ns
LOW
t
EN_SDIO
t
DIS_SDIO
Time required for the SDIO pin to switch from an input to an
output relative to the SCLK falling edge
Time required for the SDIO pin to switch from an output to an
input relative to the SCLK rising edge
CLK+
10 ns
10 ns
t
SSYNC
SYNC
Figure 4. SYNC Input Timing Requirements
t
HSYNC
08122-004
Rev. 0 | Page 8 of 36
AD9204
ABSOLUTE MAXIMUM RATINGS
Table 6.
Parameter Rating
AVDD to AGND −0.3 V to +2.0 V
DRVDD to AGND −0.3 V to +3.9 V
VIN+A, VIN+B, VIN−A, VIN−B to AGND −0.3 V to AVDD + 0.2 V
CLK+, CLK− to AGND −0.3 V to AVDD + 0.2 V
SYNC to AGND −0.3 V to DRVDD + 0.3 V
VREF to AGND −0.3 V to AVDD + 0.2 V
SENSE to AGND −0.3 V to AVDD + 0.2 V
VCM to AGND −0.3 V to AVDD + 0.2 V
RBIAS to AGND −0.3 V to AVDD + 0.2 V
CSB to AGND −0.3 V to DRVDD + 0.3 V
SCLK/DFS to AGND −0.3 V to DRVDD + 0.3 V
SDIO/DCS to AGND −0.3 V to DRVDD + 0.3 V
OEB to AGND −0.3 V to DRVDD + 0.3 V
PDWN to AGND −0.3 V to DRVDD + 0.3 V
D0A/D0B Th rough D13A/D13B to AGND −0.3 V to DRVDD + 0.3 V
DCOA/DCOB to AGND
Operating Temperature Range (Ambient) −40°C to +85°C
Maximum Junction Temperature
Under Bias
Storage Temperature Range (Ambient) −65°C to +150°C
−0.3 V to DRVDD + 0.3 V
150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
THERMAL CHARACTERISTICS
The exposed paddle is the only ground connection for the chip.
The exposed paddle must be soldered to the AGND plane of the
user’s circuit board. Soldering the exposed paddle to the user’s
board also increases the reliability of the solder joints and
maximizes the thermal capability of the package.
Table 7. Thermal Resistance
Airflow
Veloc ity
Packa ge Type
64-Lead LFCSP
9 mm × 9 mm
(CP-64-4)
1
Per JEDEC 51-7, plus JEDEC 25-5 2S2P test board.
2
Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).
3
Per MIL-Std 883, Method 1012.1.
4
Per JEDEC JESD51-8 (still air).
(m/sec)
0 23 2.0 °C/W
1.0 20 12 °C/W
2.5 18 °C/W
1, 2
θ
JA
1, 3
θ
JC
1, 4
θ
Unit
JB
Typical θJA is specified for a 4-layer PCB with a solid ground
plane. As shown in Ta b l e 7 , airflow improves heat dissipation,
which reduces θ
. In addition, metal in direct contact with the
JA
package leads from metal traces, through holes, ground, and
power planes reduces the θ
.
JA
ESD CAUTION
Rev. 0 | Page 9 of 36
AD9204
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
AVD D
AVD D
VIN+B
VIN–B
AVD D
AVD D
RBIAS
VCM
SENSE
VREF
AVD D
AVD D
VIN–A
VIN+A
AVD D
646362616059585756555453525150
AVD D
49
CLK+
CLK–
SYNC
NC
NC
NC
NC
NC
NC
DRVDD
D1B
D2B
D3B
D4B
D5B
10
11
12
13
14
15
16
D0B (LSB)
NOTES
1. NC = NO CONNECT
2. THE EXPOSED PADDLE MUST BE SOLDERED TO T HE PCB GROUND
TO ENSURE PRO PER HEAT DISSIPATIO N, NOISE, AND MECHANICAL
STRENGTH BENE FITS.
PIN 1
1
INDICATOR
2
3
4
5
6
7
8
9
171819202122232425262728293031
D6B
D7B
D8B
DRVDD
AD9204
TOP VIEW
(Not to Scale)
ORB
DCOA
DCOB
D9B (MSB)
NCNCNC
NCNCNC
DRVDD
48
PDWN
47
OEB
46
CSB
45
SCLK/DFS
44
SDIO/DCS
43
ORA
42
D9A (MSB)
41
D8A
40
D7A
39
D6A
38
D5A
37
DRVDD
36
D4A
35
D3A
34
D2A
33
D1A
32
D0A (LSB)
08122-005
Figure 5. Pin Configuration
Table 8. Pin Function Description
Pin No. Mnemonic Description
0 GND Exposed paddle is the only ground connection for the chip. Must be connected to PCB AGND.
1, 2 CLK+, CLK− Differential Encode Clock. PECL, LVDS, or 1.8 V CMOS inputs.
3 SYNC Digital Input. SYNC input to clock divider. 30 kΩ internal pull-down.
4, 5, 6, 7, 8, 9, 25, 26, 27,
NC Do Not Connect.
29, 30, 31
10, 19, 28, 37 DRVDD Digital Output Driver Supply (1.8 V to 3.3 V).
11 to 18, 20, 21 D0B to D9B Channel B Digital Outputs. D9B = MSB.
22 ORB Channel B Out-of-Range Digital Output.
23 DCOB Channel B Data Clock Digital Output.
24 DCOA Channel A Data Clock Digital Output.
32 to 36, 38 to 42 D0A to D9A Channel A Digital Outputs. D9A = MSB.
43 ORA Channel A Out-of-Range Digital Output.
44 SDIO/DCS
SPI Data Input/Output (SDIO). Bidirectional SPI Data I/O in SPI mode. 30 kΩ internal pulldown in SPI mode.
Duty Cycle Stabilizer (DCS). Static enable input for duty cycle stabilizer in non-SPI mode.
30 kΩ internal pull-up in non-SPI (DCS) mode.
49, 50, 53, 54, 59, 60, 63, 64 AVDD 1.8 V Analog Supply Pins.
51, 52 VIN+A, VIN−A Channel A Analog Inputs.
55 VREF Voltage Reference Input/Output.
56 SENSE Reference Mode Selection.
57 VCM Analog output voltage at midsupply to set common mode of the analog inputs.
58 RBIAS Sets Analog Current Bias. Connect to 10 kΩ (1% tolerance) resistor to ground.
61, 62 VIN−B, VIN+B Channel B Analog Inputs.
Rev. 0 | Page 11 of 36
Loading...
+ 25 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.