ANALOG DEVICES AD8436 Service Manual

Low Cost, Low Power,
G

FEATURES

Computes true rms value instantly
Accuracy: ±10 μV ± 0.5% of reading Wide dynamic input range
100 μV rms to 3 V rms (8.5 V p-p) full-scale input range Larger inputs with external scaling
Wide bandwidth:
1 MHz for −3 dB (300 mV)
65 kHz for additional 1% error Zero converter dc output offset No residual switching products Specified at 300 mV rms input Accurate conversion with crest factors up to 10 Low power: 300 µA typical at ±2.4 V Fast settling at all input levels
High-Z FET separately powered input buffer
R
≥ 1012 Ω, CIN 2 pF
IN
Precision dc output buffer Wide supply range
Dual: ±2.4 V to ±18 V
Single: 4.8 V to 36 V Small size: 4 mm × 4 mm package ESD protected

GENERAL DESCRIPTION

The AD8436 is a new generation, translinear precision, low power, true rms-to-dc converter that is loaded with options. It computes a precise dc equivalent of the rms value of ac waveforms, including complex patterns such as those generated by switchmode power supplies and triacs. Its accuracy spans a wide range of input levels (see Figure 2) and temperatures. The ensured accuracy of ≤±0.5% and 10 µV output offset result from the latest Analog Devices, Inc., technology. The crest factor error is <0.5% for CF values between 1 and 10.
The AD8436 delivers instant true rms results at less cost than misleading peak, averaging, or digital solutions. There is no programming expense or processor overhead to consider, and the 4 mm × 4 mm package easily fits into those tight applications.
On-board buffer amplifiers enable the widest range of options for any rms-to-dc converter available, regardless of cost. For minimal applications, only a single external averaging capacitor is required. The built-in high impedance FET buffer provides an interface for external attenuators, frequency compensation, or driving low impedance loads. A matched pair of internal resistors enables an easily configurable gain-of-two or more, extending the usable input range even lower. The low power, precision input buffer makes the AD8436 attractive for use in portable multi-
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
True RMS-to-DC Converter
AD8436

FUNCTIONAL BLOCK DIAGRAM

CAV
CCF
VCC
SUM
RMS
IBUFGN
IBUFIN–
IBUFIN+
OBUFIN+
OBUFIN–
8k
10k 10k
16k
RMS CORE
10pF
+
+
Figure 1.
meters and other battery-powered applications. The precision dc output buffer offers extremely low offset voltages, thanks to bias current cancellation.
Unlike digital solutions, the AD8436 has no switching circuitry limiting performance at high or low amplitudes (see Figure 2). A usable response of <100 µV and >3 V extends the dynamic range with no external scaling, accommodating the most demanding low signal conditions.
GREATER INPUT DYNAMIC RANGE
AD8436
 SOLUTION
100µV 3V
1mV 10mV 1V100mV
Figure 2. Usable Dynamic Range of the AD8436 vs.
The AD8436 operates from single or dual supplies of ±2.4 V (4.8 V) to ±18 V (36 V). A and J grades are available in a compact 4 mm × 4 mm, 20-lead chip-scale package. The operating temperature ranges are −40°C to 125°C and 0°C to 70°C.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2011 Analog Devices, Inc. All rights reserved.
100k
100k
VEE
FET OP AMP
DC BUFFER
AD8436
16k
IGND
OGND
OUT
IBUFOUT
OBUFOUT
ΔΣ
10033-001
10033-002
AD8436
TABLE OF CONTENTS
Features.............................................................................................. 1
Functional Block Diagram .............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Absolute Maximum Ratings............................................................ 4
Thermal Resistance ...................................................................... 4
ESD Caution.................................................................................. 4
Pin Configuration and Function Descriptions............................. 5
Typical Performance Characteristics ............................................. 6

REVISION HISTORY

7/11—Revision 0: Initial Version
Test Circuits........................................................................................9
Theory of Operation ...................................................................... 10
Overview ..................................................................................... 10
Applications Information.............................................................. 12
Using the AD8436....................................................................... 12
AD8436 Evaluation Board......................................................... 16
Outline Dimensions....................................................................... 18
Ordering Guide .......................................................................... 18
Rev. 0 | Page 2 of 20
AD8436

SPECIFICATIONS

eIN = 300 mV ac (rms), frequency = 1 kHz sinusoidal, ac-coupled, ±VS = ±5 V, TA = 25°C, C
Table 1.
Parameter Test Conditions/Comments Min Typ Max Unit
RMS CORE
Conversion Error Default conditions ±10 − 0.5 ±0 ± 0 ±10 + 0.5 μV/% rdg
Vs. Temperature −40°C < T < 125 C 0.006 %/°C
Vs. Rail Voltage ±2.4 V to ±18 V ±0.013 ±%/V Input Offset Voltage DC-coupled −500 0 +500 μV Output Offset Voltage Default conditions, ac-coupled input 0 V
Vs. Temperature −40 C < T < 125°C 0.3 μV/°C DC Reversal Error DC-coupled, VIN = ±300 mV ±0.5 ±2 % Nonlinearity eIN = 10 mV to 300 mV ac (rms) 0.05 % Crest Factor Error Additional error
1 < CF < 10 CCF = 0.1 μF −0.5 +0.5 % Peak Input Voltage −VS − 0.7 +VS + 0.7 V Input Resistance 7.92 8 8.08 kΩ Frequency Response VIN = 300 mV rms
1% Additional Error 65 kHz
3 dB Bandwidth 1 MHz Settling Time
0.1% Rising/falling 148/341 ms
0.01% Rising/falling 158/350 ms Output Resistance 15.68 16 16.32 kΩ Supply Current No input 325 400 μA
INPUT BUFFER
Signal Voltage Swing G = 1
Input AC- or dc-coupled −VS +VS V
Output AC-coupled to Pin RMS −VS + 0.2 +VS − 0.2 mV Offset Voltage −1 0 +1 mV Input Bias Current 50 pA Input Resistance 1012 Ω Frequency Response
0.1 dB 950 kHz
3 dB Bandwidth 2.1 MHz Supply Current 100 160 200 μA Optional Gain Resistor −9.9 +10 +10.1 kΩ Gain Error G = ×1 0.05 %
OUTPUT BUFFER
Offset Voltage Connected to Pin OUT −200 0 +200 μV Input Current 3 nA Output Voltage Swing −VS + 0.0005 +VS − 1 V Gain Error 0.003 0.01 % Supply Current 40 70 μA
SUPPLY VOLTAGE
Dual ±2.4 ±18 V Single 4.8 36 V
= 10 µF, unless otherwise specified.
AVG
Rev. 0 | Page 3 of 20
AD8436

ABSOLUTE MAXIMUM RATINGS

Table 2.
Parameter Rating
Supply Voltage ±18 V Internal Power Dissipation 18 mW Input Voltage ±VS Output Short-Circuit Duration Indefinite Differential Input Voltage +VS and −VS Temperature
Operating Range −40°C to +125°C Storage Range −65°C to +125°C Lead Soldering (60 sec) 300°C
ESD Rating 2 kV
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.
Table 3. Thermal Resistance
Package Type θJA Unit
CP-20-10 LFCSP Without Thermal Pad 86 °C/W CP-20-10 LFCSP With Thermal Pad 48 °C/W

ESD CAUTION

Rev. 0 | Page 4 of 20
AD8436
VCC
2
M

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

SU
CAVG
CCF
1
DNC
PIN 1
RMS
IBUFOUT
IBUFIN–
IBUFIN+
5
IBUFGN
NOTES
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN. . THE EXPOSED PAD SHOULD NOT BE CONNECTED.
INDICATOR
AD8436
TOP VIEW
(Not to S cale)
OGND
Figure 3. Pin Configuration, Top View
Table 4. Pin Function Descriptions
Pin No. Mnemonic Description
1 DNC Do Not Connect. Used for factory test. 2 RMS AC Input to the RMS Core. 3 IBUFOUT Output Connection for the FET Input Buffer Amplifier. 4 IBUFIN– Inverting Input to the FET Input Buffer Amplifier. 5 IBUFIN+ Noninverting Input to the FET Input Buffer Amplifier. 6 IBUFGN Optional 10 kΩ Precision Gain Resistor. 7 DNC Do Not Connect. Used for factory test. 8 OGND
Internal 16 kΩ Current-to-Voltage Resistor. Connect to ground for voltage output at Pin 9; leave unconnected
for current output at Pin 9. 9 OUT Voltage or Current Output of the RMS Core. 10 VEE Negative Supply Rail. 11 IGND Half Supply Node. Leave open for single-supply operation. 12 OBUFIN+ Noninverting Input of the Optional Precision Output Buffer. OBUFIN+ is typically connected to OUT. 13 OBUFIN− Inverting Input of the Optional Precision Output Buffer. OBUFIN− is typically connected to OBUFOUT. 14 OBUFOUT Low Impedance Output for ADC or Other Loads. 15 OBUFV+ Power Pin for the Output Buffer. 16 IBUFV+ Power Pin for the Input Buffer. 17 VCC Positive Supply Rail for the RMS Core. 18 CCF Connection for Crest Factor Capacitor. 19 CAVG Connection for Averaging Capacitor. 20 SUM Summing Amplifier Input Node. An external resistor can be connected for custom scaling. EP DNC Exposed Pad. The exposed pad should not be connected.
IBUFV+
1620
15
OBUFV+
OBUFOUT
OBUFIN–
OBUFIN+
IGND
11
106
VEE
OUTDNC
10033-003
Rev. 0 | Page 5 of 20
AD8436
V

TYPICAL PERFORMANCE CHARACTERISTICS

TA = 25°C, ±VS = ±5 V, C
5V
= 10 µF, 1 kHz sine wave, unless otherwise indicated.
AVG
5
1V
100mV
10mV
INPUT LEVEL (V rms)
1mV
100µV
50µV
100 1k
FREQUENCY (Hz)
Figure 4. RMS Core Frequency Response (See Figure 20)
5V
1V
100mV
10mV
INPUT LEVEL (V rms)
1mV
100µV
50µV
100 1k
FREQUENCY ( Hz)
Figure 5. RMS Core Frequency Response with V
3dB BW
100k10k
3dB BW
VS = ±2.4V
100k10k
= ±2.4 V (See Figure 20)
S
5M1M50
1V
100mV
10mV
INPUT LEVEL (V rms)
1mV
100µV
50µV
5M1M50
10033-004
100 1k
FREQUENCY (Hz)
Figure 7. RMS Core Frequency Response with V
15
e
= 3.5mV rms
IN
12
9
6
3
0
GAIN (dB)
–3
–6
–9
–12
–15
100 1k
10033-005
FREQUENCY (Hz)
100k10k
3dB BW
VS = 4.8V
100k10k
= +4.8 V (See Figure 21)
S
5M1M50
5M1M
10033-007
10033-008
Figure 8. Input Buffer, Small Signal Bandwidth at 0 dB and 6 dB Gain
5V
1V
100mV
10mV
INPUT LEVEL (V rms)
1mV
100µV
50µV
100 1k
FREQUENCY ( Hz)
Figure 6. RMS Core Frequency Response with V
3dB BW
VS = ±15V
100k10k
= ±15 V (See Figure 20)
S
5M1M50
10033-006
15
e
= 300mV rms
IN
12
9
6
3
0
GAIN (dB)
–3
–6
–9
–12
–15
100 1k
FREQUENCY (Hz)
100k10k
5M1M
Figure 9. Input Buffer, Large Signal Bandwidth at 0 dB and 6 dB Gain
10033-009
Rev. 0 | Page 6 of 20
Loading...
+ 14 hidden pages