ANALOG DEVICES AD8310 Service Manual

www.BDTIC.com/ADI
Fast, Voltage-Out DC–440 MHz,

FEATURES

Multistage demodulating logarithmic amplifier Voltage output, rise time <15 ns High current capacity: 25 mA into grounded R 95 dB dynamic range: −91 dBV to +4 dBV Single supply of 2.7 V min at 8 mA typ DC–440 MHz operation, ±0.4 dB linearity Slope of +24 mV/dB, intercept of −108 dBV Highly stable scaling over temperature Fully differential dc-coupled signal path 100 ns power-up time, 1 mA sleep current

APPLICATIONS

Conversion of signal level to decibel form Transmitter antenna power measurement Receiver signal strength indication (RSSI) Low cost radar and sonar signal processing Network and spectrum analyzers Signal-level determination down to 20 Hz True-decibel ac mode for multimeters

GENERAL DESCRIPTION

The AD8310 is a complete, dc−440 MHz demodulating logarithmic amplifier (log amp) with a very fast voltage mode output, capable of driving up to 25 mA into a grounded load in under 15 ns. It uses the progressive compression (successive detection) technique to provide a dynamic range of up to 95 dB to ±3 dB law conformance or 90 dB to a ±1 dB error bound up to 100 MHz. It is extremely stable and easy to use, requiring no significant external components. A single-supply voltage of
2.7 V to 5.5 V at 8 mA is needed, corresponding to a power consumption of only 24 mW at 3 V. A fast-acting CMOS­compatible enable pin is provided.
Each of the six cascaded amplif signal gain of 14.3 dB, with a −3 dB bandwidth of 900 MHz. A total of nine detector cells are used to provide a dynamic range that extends from −91 dBV (where 0 dBV is defined as the amplitude of a 1 V rms sine wave), an amplitude of about ±40 μV, up to +4 dBV (or ±2.2 V). The demodulated output is accurately scaled, with a log slope of 24 mV/dB and an intercept of −108 dBV. The scaling parameters are supply­and temperature-independent.
Rev. E
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
ier/limiter cells has a small-
L
95 dB Logarithmic Amplifier
AD8310

FUNCTIONAL BLOCK DIAGRAM

MIRROR
2μA
/
dB
2
3kΩ
AD8310
COMM
1kΩ
COMM
+ –
3kΩ
COMM
SUPPLY
+INPUT –INPUT
COMMON
5
8 1
2
VPOS
INHI
1.0kΩ INLO
COMM
BAND GAP REFERENCE
8mA
3
NINE DETECTOR CELLS
AND BIASING
SIX 14.3dB 900MHz AMPLIFIER STAGES
SPACED 14.3dB
INPUT-OFFSET
COMPENSATION LOOP
Figure 1.
The fully differential input offers a moderately high impedance (1 kΩ in p
arallel with about 1 pF). A simple network can match the input to 50 Ω and provide a power sensitivity of −78 dBm to +17 dBm. The logarithmic linearity is typically within ±0.4 dB up to 100 MHz over the central portion of the range, but it is somewhat greater at 440 MHz. There is no minimum frequency limit; the AD8310 can be used down to low audio frequencies. Special filtering features are provided to support this wide range.
The output voltage runs from a noise-limited lower boundary of 400 mV t
o an upper limit within 200 mV of the supply voltage for light loads. The slope and intercept can be readily altered using external resistors. The output is tolerant of a wide variety of load conditions and is stable with capacitive loads of 100 pF.
The AD8310 provides a unique combination of low cost, small
ow power consumption, high accuracy and stability, high
size, l dynamic range, a frequency range encompassing audio to UHF, fast response time, and good load-driving capabilities, making this product useful in numerous applications that require the reduction of a signal to its decibel equivalent.
The AD8310 is available in the industrial temperature range of
o +85°C in an 8-lead MSOP package.
−40°C t
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 © 2005 Analog Devices, Inc. All rights reserved.
ENBL
BFIN
VOUT
OFLT
33pF
ENABLE
7
BUFFER
6
INPUT
4
OUTPUT
OFFSET
3
FILTER
01084-001
AD8310
www.BDTIC.com/ADI
TABLE OF CONTENTS
Specifications..................................................................................... 3
Absolute Maximum Ratings............................................................ 4
ESD Caution.................................................................................. 4
Pin Configuration and Function Descriptions............................. 5
Typical Performance Characteristics .............................................6
Theory of Operation ........................................................................ 9
Progressive Compression ............................................................ 9
Slope and Intercept Calibration................................................ 10
Offset Control............................................................................. 10
Product Overview........................................................................... 11
Enable Interface.......................................................................... 11
Input Interface ............................................................................ 11
Offset Interface ...........................................................................12
Output Interface......................................................................... 12
Using the AD8310 .......................................................................... 14
dBV vs. dBm ............................................................................... 15
Input Matching ........................................................................... 15
Narrow-Band Matching ............................................................ 16
General Matching Procedure.................................................... 16
Slope and Intercept Adjustments ............................................. 17
Increasing the Slope to a Fixed Value...................................... 17
Output Filtering.......................................................................... 18
Lowering the High-Pass Corner Frequency of the Offset
Compensation Loop .................................................................. 18
Applications..................................................................................... 19
Cable-Driving............................................................................. 19
DC-Coupled Input..................................................................... 19
Evaluation Board ............................................................................ 20
Outline Dimensions .......................................................................22
Ordering Guide .......................................................................... 22
Basic Connections...................................................................... 14
Transfer Function in Terms of Slope and Intercept ...............15
REVISION HISTORY
6/05—Rev. D to Rev. E
Changes to Figure 6.......................................................................... 6
Change to Basic Connections Section .........................................14
Changes to Equation 10................................................................. 17
Changes to Ordering Guide.......................................................... 22
10/04—Rev. C to Rev. D
ormat Updated..................................................................Universal
F
Typical Performance Characteristics Reordered.......................... 6
Changes to Figures 41 and 42....................................................... 20
7/03—Rev. B to Rev. C Repl
aced TPC 12............................................................................... 5
Change to DC-Coupled Input Section ........................................14
Replaced Figure 20 .........................................................................15
Updated Outline Dimensions....................................................... 16
2/03—Rev. A to Rev. B C
hange to Evaluation Board Section ........................................... 15
Change to Table III......................................................................... 16
Updated Outline Dimensions....................................................... 16
1/00—Rev. 0 to Rev. A
10/99—Revision 0: Initial Version
Rev. E | Page 2 of 24
AD8310
www.BDTIC.com/ADI

SPECIFICATIONS

TA = 25°C, VS = 5 V, unless otherwise noted.
Table 1.
Parameter Conditions Min Typ Max Unit
INPUT STAGE Inputs INHI, INLO
Maximum Input1 Single-ended, p-p ±2.0 ±2.2 V 4 dBV Equivalent Power in 50 Ω Termination resistor of 52.3 Ω 17 dBm Differential drive, p-p 20 dBm Noise Floor Terminated 50 Ω source 1.28 nV/√Hz Equivalent Power in 50 Ω 440 MHz bandwidth
Input Resistance From INHI to INLO 800 1000 1200 Ω Input Capacitance From INHI to INLO 1.4 pF DC Bias Voltage Either input 3.2 V
LOGARITHMIC AMPLIFIER Output VOUT
±3 dB Error Dynamic Range From noise floor to maximum input 95 dB Transfer Slope 10 MHz ≤ f ≤ 200 MHz 22 24 26 mV/dB Overtemperature, –40°C < TA < +85°C 20 26 mV/dB Intercept (Log Offset)
Equivalent dBm (re 50 Ω) −102 −95 −86 dBm Overtemperature, −40°C ≤ TA ≤ +85°C −120 −96 dBV Equivalent dBm (re 50 Ω) −107 −83 dBm Temperature sensitivity −0.04 dB/°C Linearity Error (Ripple) Input from –88 dBV (–75 dBm) to +2 dBV (+15 dBm) ±0.4 dB Output Voltage Input = –91 dBV (–78 dBm) 0.4 V Input = 9 dBV (22 dBm) 2.6 V Minimum Load Resistance, RL 100 Ω Maximum Sink Current 0.5 mA Output Resistance 0.05 Ω Video Bandwidth 25 MHz Rise Time (10% to 90%) Input Level = −43 dBV (−30 dBm), RL ≥ 402 Ω, CL ≤ 68 pF 15 ns Input Level = −3 dBV (+10 dBm), RL ≥ 402 Ω, CL ≤ 68 pF 20 ns Fall Time (90% to 10%) Input Level = −43 dBV (−30 dBm), RL ≥ 402 Ω, CL ≤ 68 pF 30 ns Input Level = −3 dBV (+10 dBm), RL ≥ 402 Ω, CL ≤ 68 pF 40 ns Output Settling Time to 1% Input Level = −13 dBV (0 dBm), RL ≥ 402 Ω, CL ≤ 68 pF 40 ns
POWER INTERFACES
Supply Voltage, VPOS 2.7 5.5 V Quiescent Current Zero-signal 6.5 8.0 9.5 mA Overtemperature −40°C < TA < +85°C 5.5 8.5 10 mA Disable Current 0.05 μA Logic Level to Enable Power High condition, −40°C < TA < +85°C 2.3 V Input Current when High 3 V at ENBL 35 μA Logic Level to Disable Power Low condition, −40°C < TA < +85°C 0.8 V
1
The input level is specified in dBV, because logarithmic amplifiers respond strictly to voltage, not power. 0 dBV corresponds to a sinusoidal single-frequency input of
1 V rms. A power level of 0 dBm (1 mW) in a 50 Ω termination corresponds to an input of 0.2236 V rms. Therefore, the relationship between dBV and dBm is a fixed offset of 13 dBm in the special case of a 50 Ω termination.
2
Guaranteed but not tested; limits are specified at six sigma levels.
2
10 MHz ≤ f ≤ 200 MHz
115
78
−108 −99 dBV
dBm
Rev. E | Page 3 of 24
AD8310
www.BDTIC.com/ADI

ABSOLUTE MAXIMUM RATINGS

Table 2.
Parameter Value
Supply Voltage, VS 7.5 V Input Power (re 50 Ω), Single-Ended 18 dBm Differential Drive 22 dBm Internal Power Dissipation 200 mW θ
JA
Maximum Junction Temperature 125°C Operating Temperature Range 40°C to +85°C Storage Temperature Range 65°C to +150°C Lead Temperature (Soldering 60 sec) 300°C

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
200°C/W
Stresses above those listed under Absolute Maximum Ratings
y cause permanent damage to the device. This is a stress
ma rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Rev. E | Page 4 of 24
AD8310
www.BDTIC.com/ADI

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

INLO
1
COMM
OFLT
VOUT
AD8310
2
TOP VIEW
3
(Not to Scale)
4
Figure 2. Pin Configuration
Table 3. Pin Function Descriptions
Pin No. Mnemonic Function
1 INLO One of Two Balanced Inputs. Biased roughly to VPOS/2. 2 COMM Common Pin. Usually grounded. 3 OFLT Offset Filter Access. Nominally at about 1.75 V. 4 VOUT Low Impedance Output Voltage. Carries a 25 mA maximum load. 5 VPOS Positive Supply. 2.7 V to 5.5 V at 8 mA quiescent current. 6 BFIN Buffer Input. Used to lower post-detection bandwidth. 7 ENBL CMOS Compatible Chip Enable. Active when high. 8 INHI Second of Two Balanced Inputs.
8 7 6 5
INHI ENBL BFIN VPOS
01084-002
Rev. E | Page 5 of 24
AD8310
www.BDTIC.com/ADI

TYPICAL PERFORMANCE CHARACTERISTICS

3.0
2.5
2.0
1.5
T
= –40°C
RSSI OUTPUT (V)
1.0
0.5
A
T
= +25°C
A
0 –120 20–100
(–87dBm)
= +85°C
T
A
–80 –60 –40 –20 0
INPUT LEVEL (dBV)
(+13dBm)
Figure 3. RSSI Output vs. Input Level, 100 MHz Sine Input at T
+25°C, and +85°C, Single-Ended Input
3.0
2.5
2.0
1.5
RSSI OUTPUT (V)
1.0
0.5
0
–120 –100
(–87dBm)
–80 –60 –40 –20 0
INPUT LEVEL (dBV)
Figure 4. RSSI Output vs. Input Level at T
10MHz
= 25°C
A
100MHz
(+13dBm)
for Frequencies of 10 MHz, 50 MHz, and 100 MHz
= −40°C,
A
50MHz
20
01084-011
01084-012
3.0
2.5
PIN (dBm)
–40°C
85°C
25°C
2.0
1.5
–40°C
RSSI OUTPUT (V)
1.0
0.5
0
–90 –80 –70 –60 –50 –40 –30 –20 –10 0 10 20
25°C
85°C
Figure 6. Log Linearity of RSSI Output vs. Input Level, 10
0 MHz Sine Input at T
= −40°C, +25°C, and +85°C
A
5
4
3
2
1 0
–1
ERROR (dB)
–2
–3
–4 –5
–120 20–100
(–87dBm)
–80 –60 –40 –20 0
INPUT LEVEL (dBV)
50MHz
100MHz
(+13dBm)
Figure 7. Log Linearity of RSSI Output vs. Input Level, = 25°C, for Frequencies of 10 MHz, 50 MHz, and 100 MHz
at
T
A
10MHz
3
2
1
0
–1
–2
–3
01084-015
ERROR (dB)
01084-043
3.0
2.5
2.0
1.5
RSSI OUTPUT (V)
1.0
0.5
0 –120 20–100
(–87dBm)
–80 –60 –40 –20 0
INPUT LEVEL (dBV)
Figure 5. RSSI Output vs. Input Level at T
for Frequencies of 200 MHz, 300 MHz, and 440 MHz
300MHz
440MHz
(+13dBm)
= 25°C
A
200MHz
01084-013
5 4
3 2
1
0
–1
ERROR (dB)
–2 –3
–4 –5
–120 20–100
(–87dBm)
–80 –60 –40 –20 0
INPUT LEVEL (dBV)
Figure 8. Log Linearity of RSSI Output vs. Input Level at T
for Frequencies of 200 MHz, 300 MHz, and 440 MHz
Rev. E | Page 6 of 24
300MHz
440MHz
200MHz
(+13dBm)
= 25°C
A
01084-016
AD8310
www.BDTIC.com/ADI
100pF
3300pF
50μs PER HORIZONTAL DIVISION
V
OUT
0.01μF
GROUND REFERENCE
Figure 9. Small-Signal AC Response of RSSI Output with External BFIN
C
apacitance of 100 pF, 3300 pF, and 0.01 μF
500mV PER VERTICAL DIVISION
01084-009
500mV PER VERTICAL DIVISION
10mV PER VERTICAL DIVISION
INPUT
GROUND REFERENCE
V
OUT
25ns PER HORIZONTAL DIVISION
01084-010
Figure 12. Small-Signal RSSI Pulse Response
= 402 Ω and CL = 68 pF
with R
L
V
OUT
100Ω
500mV PER VERTICAL DIVISION
GND REFERENCE
INPUT
500mV PER VERTICAL DIVISION
154Ω
Figure 10. Large-Signal RSSI Pulse Response with C
= 100 Ω, 154 Ω, and 200 Ω
and R
L
200Ω
100ns PER HORIZONTAL DIVISION
L
= 100 pF
01084-005
V
OUT
500mV PER VERTICAL DIVISION
GND REFERENCE
INPUT
–3dBV INPUT
LEVEL SHOWN
HERE
Figure 11. RSSI Pulse Response with R
100ns PER HORIZONTAL DIVISION
500mV PER VERTICAL DIVISION
= 402 Ω and CL = 68 pF,
L
01084-006
for Inputs Stepped from 0 dBV to −33 dBV, −23 dBV, −13 dBV, and −3 dBV
V
OUT
500mV PER VERTICAL DIVISION
GND REFERENCE
INPUT
500mV PER VERTICAL DIVISION
CURVES OVERLAP
100ns PER HORIZONTAL DIVISION
Figure 13. Large-Signal RSSI Pulse Response with R
= 33 pF, 68 pF, and 100 pF
and C
L
V
OUT
200mV PER VERTICAL DIVISION
GND REFERENCE
INPUT
100ns PER HORIZONTAL DIVISION
20mV PER VERTICAL DIVISION
Figure 14. Small-Signal RSSI Pulse Response with R
and Back Termination of 50 Ω (Total Load = 100 Ω)
= 100 Ω
L
= 50 Ω
L
01084-007
01084-008
Rev. E | Page 7 of 24
AD8310
www.BDTIC.com/ADI
100
10
1
0.1
0.01
0.001
SUPPLY CURRENT (mA)
T
= +85°C
A
T
= +25°C
A
V
OUT
500mV PER VERTICAL DIVISION
–3dBV
–23dBV
–43dBV
–63dBV
–83dBV
0.0001
0.00001
0.5 2.50.7
T
= –40°C
A
0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 ENABLE VOLTAGE (V)
Figure 15. Supply Current vs. Enable Voltage at T
30
29
28
27
26
25
24
RSSI SLOPE (mV/dB)
23
22
21 20
1 100010
FREQUENCY (MHz)
Figure 16. RSSI S lope vs. Frequency
= −40°C, +25°C, and +85°C
A
100
01084-003
01084-017
5V PER VERTICAL DIVISION
200ns PER HORIZONTAL DIVISION
ENABLE
Figure 18. Power-On/Off Response Time wi
–99
–101
–103
–105
–107
–109
–111
–113
RSSI INTERCEPT (dBV)
–115
–117 –119
1 100010
FREQUENCY (MHz)
Figure 19. RSSI Intercept vs. Frequency
01084-004
th RF Input of −83 dBV to −3 dBV
100
01084-018
40
35
30
25
20
COUNT
15
10
5
0
21.5 22.0
NORMAL
(23.6584,
0.308728)
22.5 23.0 23.5 24.0 24.5 SLOPE (mV/dB)
Figure 17. Transfer Slope Distribution, V
01084-019
= 5 V, Frequency = 100 MHz, 25°C
S
24 22 20 18 16 14 12
COUNT
10
8 6 4 2 0
–115 –113
–111 –109 –107 –105 –103 –101 –99 –97
INTERCEPT (dBV)
Figure 20. Intercept Distribution V
Rev. E | Page 8 of 24
NORMAL (–107.6338,
2.36064)
= 5 V, Frequency = 100 MHz, 25°C
S
01084-020
Loading...
+ 16 hidden pages