Analog Devices AD737 f Datasheet

Low Cost, Low Power,

FEATURES

Computes:
True rms value Average rectified value Absolute value
Provides:
200 mV full-scale input range
(larger inputs with input attenuator) Direct interfacing with 3 1/2 digit CMOS ADCs High input impedance: 10 Low input bias current: 25 pA max High accuracy: ±0.2 mV ± 0.3% of reading RMS conversion with signal crest factors up to 5 Wide power supply range: ±2.5 V to ±16.5 V Low power: 160 µA max supply current No external trims needed for specified accuracy AD736—a general-purpose, buffered voltage output
version also available

GENERAL DESCRIPTION

The AD7371 is a low power, precision, monolithic true rms-to­dc converter. It is laser trimmed to provide a maximum error of ±0.2 mV ± 0.3% of reading with sine wave inputs. Furthermore, it maintains high accuracy while measuring a wide range of input waveforms, including variable duty-cycle pulses and triac (phase) controlled sine waves. The low cost and small physical size of this converter make it suitable for upgrading the performance of non-rms precision rectifiers in many applica­tions. Compared to these circuits, the AD737 offers higher accuracy at equal or lower cost.
The AD737 can compute the rms value of both ac and dc input voltages. It can also be operated ac-coupled by adding one external capacitor. In this mode, the AD737 can resolve input signal levels of 100 µV rms or less, despite variations in tem­perature or supply voltage. High accuracy is also maintained for input waveforms with crest factors of 1 to 3. In addition, crest factors as high as 5 can be measured (while introducing only
2.5% additional error) at the 200 mV full-scale input level.
The AD737 has no output buffer amplifier, thereby significantly reducing dc offset errors occurring at the output, which makes the device highly compatible with high input impedance ADCs.
______________________________________
1
Protected under U.S. Patent Number 5,495,245.
12
True RMS-to-DC Converter
AD737

FUNCTIONAL BLOCK DIAGRAM

8k
1
C
C
V
2
POWER
DOWN
–V
IN
3
4
S
INPUT
AMPLIFIER
BIAS
SECTION
Figure 1.
Requiring only 160 µA of power supply current, the AD737 is optimized for use in portable multimeters and other battery­powered applications. This converter also provides a power­down feature that reduces the power-supply standby current to less than 30 µA.
Two signal input terminals are provided in the AD737. A high
12
impedance (10
Ω) FET input interfaces directly with high R input attenuators, and a low impedance (8 kΩ) input accepts rms voltages to 0.9 V while operating from the minimum power supply voltage of ±2.5 V. The two inputs can be used either single-ended or differentially.
The AD737 achieves 1% of reading error bandwidth, exceeding 10 kHz for input amplitudes from 20 mV rms to 200 mV rms while consuming only 0.72 mW.
The AD737 is available in four performance grades. The AD737J and AD737K grades are rated over the commercial temperature range of 0°C to 70°C. The AD737JR-5 is tested with supply voltages of ±2.5 V dc. The AD737A and AD737B grades are rated over the industrial temperature range of −40°C to +85°C. The AD737 is available in three low cost, 8-lead packages: PDIP, SOIC, and CERDIP.

PRODUCT HIGHLIGHTS

1. The AD737 is capable of computing the average rectified
value, absolute value, or true rms value of various input signals.
2. Only one external component, an averaging capacitor, is
required for the AD737 to perform true rms measurement.
3. The low power consumption of 0.72 mW makes the
AD737 suitable for battery-powered applications.
AD737
FULL
WAVE
RECTIFIER
RMS CORE
8k
8
COM
+V
7
6
OUTPUT
C
5
S
AV
00828-001
Rev. F
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.326.8703 © 2005 Analog Devices, Inc. All rights reserved.
www.analog.com
AD737
TABLE OF CONTENTS
Specifications..................................................................................... 3
Absolute Maximum Ratings............................................................ 5
ESD Caution.................................................................................. 5
Pin Configurations and Function Descriptions ........................... 6
Typical Performance Characteristics ............................................. 7
Calculating Settling Time.......................................................... 10
Types of AC Measurement ........................................................ 10
Theory of Operation ...................................................................... 12
Rapid Settling Times via the Average Responding Connection
DC Error, Output Ripple, and Averaging Error ..................... 13
Ac Measurement Accuracy and Crest Factor ......................... 13
Selecting Practical Values for Capacitors................................ 13
Application Circuits....................................................................... 15
Outline Dimensions....................................................................... 17
Ordering Guide .......................................................................... 18
................................................................................. 12
RMS Measurement—Choosing Optimum Value For C
AV
.... 12
REVISION HISTORY
1/05—Rev. E to Rev. F
Updated Format..................................................................Universal
Added Functional Block Diagram.................................................. 1
Changes to General Description Section ...................................... 1
Changes to Pin Configurations and Function
Descriptions Section .................................................................... 6
Changes to Typical Performance Characteristics Section........... 7
Changes to Table 4.......................................................................... 11
Change to Figure 24 ....................................................................... 12
Change to Figure 27 ....................................................................... 15
Changes to Ordering Guide.......................................................... 18
6/03—Rev. D to Rev. E
Added AD737JR-5..............................................................Universal
Changes to FEATURES ................................................................... 1
Changes to GENERAL DESCRIPTION ....................................... 1
Changes to SPECIFICATIONS....................................................... 2
Changes to ABSOLUTE MAXIMUM RATINGS ........................ 4
Changes to ORDERING GUIDE ................................................... 4
Added TPCs 16 through 19............................................................. 6
Changes to Figures 1 and 2.............................................................. 8
Changes to Figure 8........................................................................ 11
Updated OUTLINE DIMENSIONS ............................................ 12
12/02—Rev. C to Rev. D
Changes to FUNCTIONAL BLOCK DIAGRAM ........................ 1
Changes to PIN CONFIGURATION .............................................4
Figure 1 replaced ...............................................................................8
Changes to Figure 2...........................................................................8
Figure 5 replaced ............................................................................ 10
Changes to Application Circuits Figures 4, 6–8 ......................... 10
OUTLINE DIMENSIONS updated............................................. 12
12/99—Rev. B to Rev. C
Rev. F | Page 2 of 20
AD737
(

SPECIFICATIONS

T = 25°C, ±5 V supplies, except AD737J-5, ±2.5 V, CAV = 33 µF, CC = 10 µF, f = 1 kHz, sine wave input applied to Pin 2, unless otherwise specified. Specifications shown in boldface are tested on all production units at final electrical test. Results from these tests are used to calculate outgoing quality levels.
Table 1.
AD737J/AD737A AD737K/AD737B AD737J-5
Parameter Conditions Min Typ Max Min Typ Max Min Typ Max Unit
TRANSFER FUNCTION
OUT
2
VAvgV =
IN
)
CONVERSION ACCURACY
Total Error EIN = 0 to 200 mV rms 0.2/0.3
0.4/0.5
±VS = ±2.5 V 0.2/0.3 ±VS = ±2.5 V, Input to
0.2/0.3
0.2/0.2
0.2/0.3
±mV/±POR
0.4/0.5
0.4/0.5
Pin 1
E
T
to T
MIN
MAX
A and B Grades EIN = 200 mV rms J and K Grades EIN = 200 mV rms,
= 200 mV − 1 V rms −1.2
IN
±2.0
−1.2
±2.0
POR
0.5/0.7
0.3/0.5
±mV/POR
0.007 0.007 0.02 ±POR/°C
±V
= ±2.5 V
S
vs. Supply Voltage EIN = 200 mV rms ±VS = ±2.5 V to ±5 V ±VS = ±5 V to ±16.5 V
DC Reversal Error,
VIN = 600 mV dc
0 0
−0.18
0.06
0.3 0
0.1 0
−0.18
0.06
0.3 0
0.1 0
−0.18
0.06
−0.3
0.1
1.3 2.5 1.3 2.5 POR
DC-Coupled
V
Nonlinearity
2
E Input to Pin 1,
AC-Coupled
3
Total Error, External
= 200 mV dc,
IN
±V
= ±2.5 V
S
EIN = 0 to 200 mV rms
= 100 mV rms
IN
EIN = 100 mV rms, after correction, ±V
= ±2.5 V
S
0
0.02 0.1 POR
1.7 2.5 POR
0.25
0.35
0 0.25
0.35
POR
EIN = 0 to 200 mV rms 0.1/0.2 0.1/0.2 0.1/0.2 ±mV/±POR
Trim
ADDITIONAL CREST FACTOR ERROR
4
Crest Factor = 1 to 3 CAV = CF = 100 µF 0.7 0.7 %
C
= 22 µF, CF =
AV
100 µF, ±V
= ±2.5 V,
S
1.7 %
input to Pin 1
Crest Factor = 5 CAV = CF = 100 µF 2.5 2.5 %
INPUT CHARACTERISTICS
High Z Input (Pin 2)
Signal Range
Continuous RMS
±VS = +2.5 V
200
Level
±VS = +2.8 V, −3.2 V
Peak Transient Input ±VS = +2.5 V, input to
±VS = ±5 V to ±16.5 V
200 1
200 1
mV rms V rms
V
±0.6
Pin 1
±VS = +2.8 V, −3.2 V
±0.9
±0.9
V ±VS = ±5 V ±2.7 ±2.7 V ±VS = ±16.5 V
±4.0
Input Resistance 10
12
10
±4.0
12
V
10
12
Input Bias Current ±VS = ±5 V 1 25 1 25 1 25 pA Low Z Input (Pin 1) Signal Range
Continuous RMS
±VS = +2.5 V 300 mV rms
Level ±VS = +2.8 V, −3.2 V 300 300 mV rms ±VS = ±5 V to ±16.5 V 1 1 V rms
1
POR POR
%/V %/V
mV rms
Rev. F | Page 3 of 20
AD737
AD737J/AD737A AD737K/AD737B AD737J-5
Parameter Conditions Min Typ Max Min Typ Max Min Typ Max Unit
Peak Transient Input ±VS = +2.5 V ±1.7 V ±VS = +2.8 V, −3.2 V ±1.7 ±1.7 V ±VS = ±5 V ±3.8 ±3.8 V ±VS = ±16.5 V ±11 ±11 V
Input Resistance 6.4 8 9.6 6.4 8 9.6 6.4 8 9.6 kΩ Maximum Continuous Nondestructive Input,
All Supply Voltages
Input Offset Voltage
vs. Temperature 8 30 8 30 8 30 µV/°C
vs. Supply VS = ±2.5 V to ±5 V 80 80 80 µV/V V OUTPUT CHARACTERISTICS—NO LOAD
Output Voltage Swing ±VS = +2.8 V, −3.2 V −1.6 −1.7 −1.6 −1.7 V ±VS = ±5 V −3.3 −3.4 −3.3 −3.4 V ±VS = ±16.5 V ±VS = ±2.5 V (Pin 1) −1.1 –0.9 V Output Resistance dc 6.4 8 9.6 6.4 8 9.6 6.4 8 9.6 kΩ
FREQUENCY RESPONSE
High Impedance Input
(Pin 2)
1% Additional Error VIN = 1 mV rms 1 1 1 kHz V V V
3 dB Bandwidth VIN = 1 mV rms 5 5 5 kHz V V V Low Z Input (Pin 1)
1% Additional Error VIN = 1 mV rms 1 1 1 kHz V V V V
3 dB Bandwidth VIN = 1 mV rms 5 5 5 kHz V V V POWER-DOWN
Disable Voltage 0 0 V Input Current, PD
Enabled POWER SUPPLY
Operating Voltage
Range
Current No input 120 Rated iInput 170 210 170 210 170 210 µA Power-down 25 40 25 40 25 40 µA TEMPERATURE RANGE See the Ordering Guide
1
POR = % of reading.
2
Nonlinearity is defined as the maximum deviation (in percent error) from a straight line connecting the readings at 0 V and 200 mV rms.
3
After fourth-order error correction using the equation y = − 0.31009x 4 − 0.21692x3 − 0.06939x2 + 0.99756x + 11.1 × 10−6, where y is the corrected result and x is the
device output between 0.01 V and 0.3 V.
4
Crest factor error is specified as the additional error resulting from the specific crest factor, using a 200 mV rms signal as a reference. The crest factor is defined as
/V rms.
V
PEAK
5
DC offset does not limit ac resolution.
±12 ±12 ±12 V p-p
5
AC-coupled
= ±5 V to ±16.5 V 50 150 50 150 µV/V
S
−4 −5
±3
−4 −5
±3
±3
mV
V
= 10 mV rms 6 6 6 kHz
IN
= 100 mV rms 37 37 37 kHz
IN
= 200 mV rms 33 33 33 kHz
IN
= 10 mV rms 55 55 55 kHz
IN
= 100 mV rms 170 170 170 kHz
IN
= 200 mV rms 190 190 190 kHz
IN
= 10 mV rms 6 6 6 kHz
IN
= 40 mV rms 25 kHz
IN
= 100 mV rms 90 90 90 kHz
IN
= 200 mV rms 90 90 90 kHz
IN
= 10 mV rms 55 55 55 kHz
IN
= 100 mV rms 350 350 350 kHz
IN
= 200 mV rms 460 460 460 kHz
IN
VPD = V
S
+2.8/
11 11 µA
−3.2
±5 ±16.5 +2.8/
−3.2
160
120
±5 ±16.5 ±2.5 ±5 ±16.5 V
160
120
160
µA
Rev. F | Page 4 of 20
AD737

ABSOLUTE MAXIMUM RATINGS

Table 2.
Parameter Rating
Supply Voltage ±16.5 V Internal Power Dissipation Input Voltage ±V
1
200 mW
S
Output Short-Circuit Duration Indefinite Differential Input Voltage +VS and −V
S
Storage Temperature Range (Q) −65°C to +150°C Storage Temperature Range (N, R) −65°C to +125°C Lead Temperature Range (Soldering 60 sec) 300°C ESD Rating 500 V
1
8-Lead PDIP package: θJA = 165°C/W.
8-Lead CERDIP package: θ 8-Lead SOIC: θ
= 155°C/W.
JA
= 110°C/W.
JA

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Rev. F | Page 5 of 20
AD737

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

1
C
C
AD737
2
V
IN
–V
3 4
S
TOP VIEW
(Not to Scale)
POWER DOWN
Figure 2. R-8 (SOIC) Pin Configuration
Table 3. Pin Function Descriptions
Pin No. Mnemonic Description
1 C 2 V
C
IN
3 POWER DOWN Disables the AD737. Low is enabled; high is powered-down. 4
5 C
V
S
AV
6 OUTPUT Output. 7 +V
S
8 COM Common.
8
COM
7
+V
6
OUTPUT
5
C
S
AV
00828-029
POWER DOWN
C
V
–V
1
C
2
IN
3 4
S
AD737
TOP VIEW
(Not to Scale)
Figure 3. Q-8 (CERDIP) Pin Configuration
Coupling Capacitor for Indirect DC Coupling. RMS Input.
Negative Power Supply.
Averaging Capacitor.
Positive Power Supply.
8
COM +V
7
S
6
OUTPUT C
5
AV
00828-030
1
C
C
AD737
2
V
IN
TOP VIEW
POWER DOWN
–V
3 4
S
(Not to Scale)
Figure 4. N-8 (PDIP) Pin Configuration
8
COM +V
7 6
OUTPUT C
5
S
AV
00828-031
Rev. F | Page 6 of 20
Loading...
+ 14 hidden pages