Complete, dual, 12-/14-/16-bit digital-to-analog converter (DAC)
Operates from single/dual supplies
Software programmable output range
+5 V, +10 V, +10.8 V, ±5 V, ±10 V, ±10.8 V
INL error: ±16 LSB maximum, DNL error: ±1 LSB maximum
Total unadjusted error (TUE): 0.1% FSR maximum
Settling time: 10 μs typical
Integrated reference: 5 ppm/°C maximum
Integrated reference buffers
Output control during power-up/brownout
Simultaneous updating via
Asynchronous
to zero scale or midscale
CLR
DSP-/microcontroller-compatible serial interface
24-lead TSSOP
Operating temperature range: −40°C to +85°C
iCMOS process technology
APPLICATIONS
Industrial automation
Closed-loop servo control, process control
Automotive test and measurement
Programmable logic controllers
GENERAL DESCRIPTION
The AD5722R/AD5732R/AD5752R are dual, 12-/14-/16-bit,
serial input, voltage output digital-to-analog converters. They
operate from single supply voltages of +4.5 V up to +16.5 V or
dual supply voltages from ±4.5 V up to ±16.5 V. Nominal fullscale output range is software selectable from +5 V, +10 V,
BIN/2sCOMP
LDAC
1
AV
AD5722R/AD5732R/AD5752R
DV
CC
CLR
SDIN
SCLK
SYNC
SDO
INPUTSHIFT
REGISTER
AND
CONTROL
LOGIC
FUNCTIONAL BLOCK DIAGRAM
V
DD
SS
n
REGISTER A
REGISTER B
Unipolar/Bipolar, Voltage Output DACs
AD5722R/AD5732R/AD5752R
+10.8 V, ±5 V, ±10 V, or ±10.8 V. Integrated output amplifiers,
reference buffers, and proprietary power-up/power-down
control circuitry are also provided.
The parts offer guaranteed monotonicity, integral nonlinearity
(INL) of ±16 LSB maximum, low noise, 10 μs maximum settling
time, and an on-chip +2.5 V reference.
The AD5722R/AD5732R/AD5752R use a serial interface that
operates at clock rates up to 30 MHz and are compatible with
DSP and microcontroller interface standards. Double buffering
allows the simultaneous updating of all DACs. The input coding
is user-selectable twos complement or offset binary for a bipolar
2sComp
V
A
OUT
B
V
OUT
), and
2.5V
REFERENCE
INPUT
INPUT
output (depending on the state of Pin BIN/
straight binary for a unipolar output. The asynchronous clear
function clears all DAC registers to a user-selectable zero-scale
or midscale output. The parts are available in a 24-lead TSSOP
and offer guaranteed specifications over the −40°C to +85°C
industrial temperature range.
Table 1. Pin Compatible Devices
Part Number Description
AD5722/AD5732/AD5752
AD5722R/AD5732R/AD5752R
without internal reference.
AD5724/AD5734/AD5754
Complete, quad, 12-/14-/16-bit,
serial input, unipolar/bipolar,
voltage output DACs.
AD5724R/AD5734R/AD5754R
AD5724/AD5734/AD5754 with
internal reference.
REFIN/REFOUT
REFERENCE
BUFFERS
DAC
REGIS TER A
DAC
REGIS TER B
n
DAC A
n
DAC B
AD5722: n = 12-BIT
AD5732: n = 14-BIT
AD5752: n = 16-BIT
1
For analog systems designers within industrial/instrumentation equipment OEMs who need high performance ICs at higher voltage levels, iCMOS® is a technology
platform that enables the development of analog ICs capable of 30 V and operating at ±15 V supplies while allowing dramatic reductions in power consumption and
package size, as well as increased ac and dc performance.
Rev. D
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
Output Voltage Range −10.8 +10.8 V AVDD/AVSS = ±11.7 V min, REFIN = 2.5 V
−12 +12 V AVDD/AVSS = ±12.9 V min, REFIN = 3 V
Headroom 0.5 0.9 V
Output Voltage TC ±4 ppm FSR/°C
Short-Circuit Current 20 mA
Load 2 kΩ For specified performance
Capacitive Load Stability 4000 pF
DC Output Impedance 0.5 Ω
Rev. D | Page 3 of 32
LOAD
= 2 kΩ;
AD5722R/AD5732R/AD5752R
Parameter Min Typ Max Unit Test Conditions/Comments
DIGITAL INPUTS3 DV
Input High Voltage, VIH 2 V
Input Low Voltage, VIL 0.8 V
Input Current ±1 μA Per pin
Pin Capacitance 5 pF Per pin
DIGITAL OUTPUTS (SDO) 3
Output Low Voltage, VOL 0.4 V DVCC = 5 V ± 10%, sinking 200 μA
Output High Voltage, VOH DVCC − 1 V DV
Output Low Voltage, VOL 0.4 V DVCC = 2.7 V to 3.6 V, sinking 200 μA
Output High Voltage, VOH DVCC − 0.5 V DVCC = 2.7 V to 3.6 V, sourcing 200 μA
High Impedance Leakage Current ±1 μA
High Impedance Output
5 pF
Capacitance
POWER REQUIREMENTS
AVDD 4.5 16.5 V
AVSS −4.5 −16.5 V
DVCC 2.7 5.5 V
Power Supply Sensitivity3
Output Noise Spectral Density 320 nV/√Hz Measured at 10 kHz, 0x8000 DAC code
1
For specified performance, the headroom requirement is 0.9 V.
2
Guaranteed by design and characterization; not production tested.
LOAD
= 2 kΩ;
Rev. D | Page 5 of 32
AD5722R/AD5732R/AD5752R
TIMING CHARACTERISTICS
AVDD = 4.5 V to 16.5 V; AVSS = −4.5 V to −16.5 V, or AVSS = 0 V; GND = 0 V; REFIN = 2.5 V external; DVCC = 2.7 V to 5.5 V; R
C
= 200 pF; all specifications T
LOAD
MIN
to T
, unless otherwise noted.
MAX
LOAD
= 2 kΩ;
Table 4.
Parameter
1, 2, 3
Limit at t
, t
Unit Description
MIN
MAX
t1 33 ns min SCLK cycle time
t2 13 ns min SCLK high time
t3 13 ns min SCLK low time
t4 13 ns min
t5 13 ns min
t6 100 ns min
falling edge to SCLK falling edge setup time
SYNC
SCLK falling edge to SYNC
Minimum SYNC
high time (write mode)
t7 7 ns min Data setup time
t8 2 ns min Data hold time
t9 20 ns min
t10 130 ns min
t11 20 ns min
falling edge to SYNC falling edge
LDAC
rising edge to LDAC falling edge
SYNC
pulse width low
LDAC
t12 10 μs typ DAC output settling time
t13 20 ns min
t14 2.5 μs max
4
t
13 ns min
15
4
t
40 ns max SCLK rising edge to SDO valid (C
16
t17 200 ns min
1
Guaranteed by characterization; not production tested.
2
All input signals are specified with tR = tF = 5 ns (10% to 90% of DVCC) and timed from a voltage level of 1.2 V.
3
See Figure 2, Figure 3, and Figure 4.
4
Daisy-chain and readback mode.
5
C
= capacitive load on SDO output.
L SDO
pulse width low
CLR
pulse activation time
CLR
rising edge to SCLK rising edge
SYNC
Minimum SYNC
high time (readback/daisy-chain mode)
rising edge
L SDO
5
= 15 pF)
Rev. D | Page 6 of 32
AD5722R/AD5732R/AD5752R
TIMING DIAGRAMS
t
1
SCLK
SYNC
SDIN
LDAC
V
OUT
V
OUT
CLR
V
OUT
t
6
t
4
t
7
DB23
t
9
x
x
x
t
3
t
8
t
13
t
14
4221
t
2
t
5
DB0
t
t
10
11
t
12
t
12
06466-002
Figure 2. Serial Interface Timing Diagram
t
1
SCLK
SYNC
SDIN
SDO
LDAC
t
17
t
4
t
7
t
3
t
8
t
2
INPUT WO RD FOR DAC N – 1INPUT WO RD F OR DAC N
t
16
DB23
INPUT WO RD FOR DAC NUNDEFINED
8442
t
5
t
15
D0BD32BD0BD32B
DB0
t
10
t
11
06466-003
Figure 3. Daisy-Chain Timing Diagram
Rev. D | Page 7 of 32
AD5722R/AD5732R/AD5752R
SCLK
SYNC
1
2424
t
1
17
SDIN
SDO
DB23DB0DB23DB0
REGISTE R T O BE READ
DB23DB0DB23DB0
UNDEFINED
NOP CONDITIONINPUT WORD SPECIFIES
SELECTED REGISTER DAT A
CLOCKED OUT
Figure 4. Readback Timing Diagram
06466-004
Rev. D | Page 8 of 32
AD5722R/AD5732R/AD5752R
ABSOLUTE MAXIMUM RATINGS
TA = 25°C unless otherwise noted. Transient currents of up to
100 mA do not cause SCR latch-up.
Table 5.
Parameter Rating
AVDD to GND −0.3 V to +17 V
AVSS to GND +0.3 V to −17 V
DVCC to GND −0.3 V to +7 V
Digital Inputs to GND
Digital Outputs to GND
REFIN/REFOUT to GND −0.3 V to +5 V
V
A or V
OUT
DAC_GND to GND −0.3 V to +0.3 V
SIG_GND to GND −0.3 V to +0.3 V
Operating Temperature Range, TA
Industrial −40°C to +85°C
Storage Temperature Range −65°C to +150°C
Junction Temperature, TJ max 150°C
24-Lead TSSOP Package
θJA Thermal Impedance 42°C/W
θJC Thermal Impedance 9°C/W
Power Dissipation (TJ max − TA)/θJA
Lead Temperature JEDEC industry standard
Soldering J-STD-020
ESD (Human Body Model) 3.5 kV
B to GND AVSS to AVDD
OUT
−0.3 V to DV
7 V (whichever is less)
−0.3 V to DV
7 V (whichever is less)
+ 0.3 V or to
CC
+ 0.3 V or to
CC
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
Rev. D | Page 9 of 32
AD5722R/AD5732R/AD5752R
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1
AV
SS
2
NC
3
V
A
OUT
4
NC
5
NC
CLR
NC
AD5722R/
AD5732R/
6
AD5752R
7
TOP VIEW
8
(Not to Scale)
9
10
11
12
BIN/2sCOMP
SYNC
SCLK
SDIN
LDAC
NOTES
1. NC = NO CONNECT
2. IT IS RECOMMENDED THAT THE EXPOSED PAD BE
THERMALLY CONNECTED TO A COPPER PLANE
FOR ENHANCED THERMAL PERFORMANCE.
AV
24
DD
23
V
B
OUT
22
NC
21
SIG_GND
SIG_GND
20
19
DAC_GND
18
DAC_GND
17
REFIN/REFOUT
16
SDO
15
GND
DV
14
CC
NC
13
06466-005
Figure 5. Pin Configuration
Table 6. Pin Function Descriptions
Pin No. Mnemonic Description
1 AVSS
Negative Analog Supply. Voltage ranges from −4.5 V to −16.5 V. This pin can be connected to 0 V if output
ranges are unipolar.
2, 4, 6, 12,
NC Do not connect to these pins.
13, 22
3 V
5
A Analog Output Voltage of DAC A. The output amplifier is capable of directly driving a 2 kΩ, 4000 pF load.
OUT
BIN/2sCOMP
Determines the DAC coding for a bipolar output range. This pin should be hardwired to either DVCC or GND.
When hardwired to DV
, input coding is offset binary. When hardwired to GND, input coding is twos
CC
complement. (For unipolar output ranges, coding is always straight binary.)
7
Active Low Input. This is the frame synchronization signal for the serial interface. While SYNC is low, data is
SYNC
transferred on the falling edge of SCLK. Data is latched on the rising edge of SYNC.
8 SCLK
Serial Clock Input. Data is clocked into the shift register on the falling edge of SCLK. This operates at clock
speeds up to 30 MHz.
9 SDIN Serial Data Input. Data must be valid on the falling edge of SCLK.
10
Load DAC, Logic Input. This is used to update the DAC registers and, consequently, the analog output. When
LDAC
this pin is tied permanently low, the addressed DAC register is updated on the rising edge of SYNC. If LDAC is
held high during the write cycle, the DAC input register is updated, but the output update is held off until the
11
CLR
falling edge of LDAC
LDAC
. The LDAC pin should not be left unconnected.
Active Low Input. Asserting this pin sets the DAC registers to zero-scale code or midscale code (user selectable).
. In this mode, all analog outputs can be updated simultaneously on the falling edge of
14 DVCC Digital Supply. Voltage ranges from 2.7 V to 5.5 V.
15 GND Ground Reference.
16 SDO
Serial Data Output. Used to clock data from the serial register in daisy-chain or readback mode. Data is
clocked out on the rising edge of SCLK and is valid on the falling edge of SCLK.
17 REFIN/REFOUT
External Reference Voltage Input and Internal Reference Voltage Output. Reference input range is 2 V to 3 V.
REFIN = 2.5 V for specified performance. REFOUT = 2.5 V ± 2 mV.
18, 19 DAC_GND Ground Reference for the Four Digital-to-Analog Converters.
20, 21 SIG_GND Ground Reference for the Four Output Amplifiers.
23 V
B Analog Output Voltage of DAC B. The output amplifier is capable of directly driving a 2 kΩ, 4000 pF load.
OUT
24 AVDD Positive Analog Supply. Voltage ranges from 4.5 V to 16.5 V.
Exposed
Paddle
This exposed paddle should be connected to the potential of the AV
unconnected. It is recommended that the paddle be thermally connected to a copper plane for enhanced thermal
performance.
pin, or alternatively, it can be left electrically
SS
Rev. D | Page 10 of 32
Loading...
+ 22 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.