ALTERA MAX 7000 Service Manual

®
查询EPM7128SLC84-10供应商
June 2003, ver. 6.6 Data Sheet
MAX 7000
Programmable Logic
Device Family
High-performance, EEPROM-based programmable logic devices
(PLDs) based on second-generation MAX
5.0-V in-system programmability (ISP) through the built-in
®
architectu re
IEEE Std. 1149.1 Joint Test Action Group (JTAG) interface available in MAX 7000S devices – ISP circuitry compatible with IEEE Std. 1532
Includes 5.0-V MAX 7000 devices and 5.0-V ISP-based MAX 7000S
devices
Built-in JTAG boundary-scan test (BST) circuitry in MAX
7000S
devices with 128 or more macrocells
Complete EPLD family with logic densities ranging from 600 to
5,000 usable gates (see Tables 1 and 2)
5-ns pin-to-pin logic delays with up to 175.4-MHz counter
frequencies (including interconnect)
PCI-compliant devices available
f
For information on in-system programmable 3.3-V MAX 7000A or 2.5-V MAX 7000B devi ces, see th e MAX 7000 A Programma ble Logi c Device F amily
Data Sheet or the MAX 7000B Programmable Logic Device Family Data Sheet.
Table 1. MAX 7000 Device Features
Feature EPM7032 EPM7064 EPM7096 EPM7128E EPM7160E EPM7192E EPM7256E
Usable gates
Macrocells 32 64 96 128 160 192 256 Logic array
blocks Maximum
user I/O pins
(ns) 6 6 7. 5 7.5 10 12 12
t
PD
(ns)5566777
t
SU
t
(ns)2.5 2.533333
FSU
t
(ns)444.54.5566
CO1
f
(MHz) 151.5 151.5 125.0 125.0 100.0 90.9 90.9
CNT
600 1,250 1,800 2,500 3,200 3,750 5,000
2468101216
36 68 76 100 104 124 164
Altera Corporation 1
DS-MAX7000-6.6
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Table 2.MAX 7000S Device Features
Feature EPM7032S EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S
Usable gates 600 1,250 2,500 3,200 3,75 0 5,000 Macrocells 32 64 128 160 192 256 Logic array
blocks Maximum
user I/O pins
(ns)55667.57.5
t
PD
t
(ns) 2.9 2.9 3.4 3.4 4.1 3.9
SU
(ns) 2.5 2.5 2.5 2.5 3 3
t
FSU
t
(ns) 3.2 3.2 4 3.9 4.7 4.7
CO1
f
(MHz) 175.4 175.4 147.1 149.3 125.0 128.2
CNT
2 4 8 10 12 16
36 68 100 104 124 164
...and More Features
Open-drain output option in MAX 7000S devices
Programmable macrocell flipflops with individual clear, preset,
clock, and clock enable controls
Programmable power-saving mode for a reduction o f over 50% in
each macrocell
Configurable expander product-term distribution, allowing up to
32 product terms per macrocell
44 to 208 pins avail ab le in pla stic J-lead chip carr ier (P L CC), ceramic
pin-grid array (PGA), plastic quad flat pack (PQFP), p ower q uad flat pack (RQFP), and 1.0-mm thin quad flat pack (TQFP) packages
Programmable security bit for protection of proprietary designs
3.3-V or 5.0-V operation
MultiVolt
TM
I/O interface operation, allowing devices to interface with 3.3-V or 5.0-V devices (M ultiVolt I/O ope ration is not avai lable in 44-pin packages)
Pin compatible with low-voltage MAX 7000A and MAX 7000B
devices
Enhanc ed features availabl e in MAX 7000E and MAX 7000 S devices
Six pin- or logic-driven output enable signals – Two global clock signals with optional inversion – Enhanced interconnect resources for improved routability – Fast input setup times provided by a dedicated path from I/O
pin to macrocell registers
Programmable output slew-rate control
Software design s upport and au tomatic plac e-and-ro ute provided by
Altera’s development system for Windows-based PC s and Sun SPARCstation, and HP 9000 Series 700/800 workstations
2 Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Fam ily Data Sheet
Additional design entry and simula tion support pr ovide d by EDIF
2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfa ces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, and VeriBes t
Programming support
Altera’s Master Programming Unit (MPU) and programming
hardware from third-party manufacturers program all MAX 7000 devices
TM
–The BitBlaster
parallel port download cable, and MasterBlaster
serial download cable, By te Bl as terMVTM
TM
serial/universal serial bus (USB) download cable program MAX 7000S devices
General Description
The MAX 7000 family of high-density, high-performance PLDs is based on Altera’s second-generation MAX architecture. Fabricated with advanced CMOS technology, the EEPROM-based MAX7000 family provides 600 to 5,000 usable gates, ISP, pin-to-pin delays as fast as 5 ns, and counter speeds of up to 175.4 MHz. MAX 7000S devices in the -5, -6,
-7, and -10 spe ed g ra d es as we l l as MAX7000 and MAX7000E devices in
-5, -6, -7, -10P, and -12P speed grades comply with the PCI Special Interest Group (PCI SIG) PCI Local Bus Specification, Revision 2.2. See Table 3 for available speed grades.
Table 3.MAX 7000 Speed Grades
Device Speed Grade
-5 -6 -7 -10P -10 -12P -12 -15 -15T -20
EPM7032 EPM7032S EPM7064 EPM7064S EPM7096 EPM7128E EPM7128S EPM7160E EPM7160S EPM7192E EPM7192S EPM7256E EPM7256S
vvv v
vvv v
vv v vvv
vvvvv
vvvv vvvvvv
vv v v
vv vv v
vv v v
vv v
vv v
vvv v
vvv v
Altera Corporation 3
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
The MAX 7000E devices—including the EPM7128E, EPM7160E, EPM7192E, and EPM7256E de v ices —have several enhanced features: additional global clocking, additional output enable controls, enhanced interconnect resources, fast input registers, and a programmabl e slew rate.
In-system programmable MAX 7000 devices—called MAX7000S devices—include the EPM7032S, EPM7064S, EPM7 12 8S , EPM7160S, EPM7192S, and EPM7256S devices. MAX7000S devices have the enhanced fea tures of MAX7000E device s as well as JTAG BST circu itry in devices with 128 or more macrocells, ISP, and an open-drain output option. See Table 4.
Table 4. MAX 7000 Device Features
Feature EPM7032
EPM7064 EPM7096
ISP via JTAG interface JTAG BST circuitry Open-drain output option Fast input registers Six global output enables Two global clocks Slew-rate control MultiVolt interface (2) Programmable register Parallel expanders Shared expanders Power - saving mode Security bit PCI-compliant devices avai lable
Notes:
(1) Available only in EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices only. (2) The Mul t iVolt I/O interf ace is not available in 44-pin packages.
vvv vvv vvv vvv vvv vvv vvv
All
MAX 7000E
Devices
All
MAX 7000S
Devices
v v(1)
v vv vv vv vv
4 Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Fam ily Data Sheet
The MAX 7000 architecture supports 100% TTL emulation and high-density integration of SSI, MSI, and LSI logic functions. The MAX 7000 architecture easily integrates multiple devices ranging from PALs, GALs, and 22V10s to MACH and pLSI devices. MAX 7000 devices are available in a wide ran ge of packages, includin g P LCC, PGA, PQFP, RQFP, and TQFP packages. See Table 5.
Table 5. MAX 7000 Maximum User I/O Pins Note (1)
Device 44-
PLCC
EPM7032 36 36 36 EPM7032S 36 36 EPM7064 36 36 52 68 68 EPM7064S 36 36 68 68 EPM7096 52 64 76 EPM7128E 68 84 100 EPM7128S 68 84 84 (2) 100 EPM7160E 64 84 104 EPM7160S 64 84 (2) 104 EPM7192E 124 124 EPM7192S 124 EPM7256E 132 (2) 164 164 EPM7256S 164 (2) 164
Notes:
(1) When the JTAG inte r face in M AX 7000S devices is used for ei the r b ound ary-scan testing or for ISP, four I/O pins
become JTAG pins.
(2) Perform a complete thermal analysis before committing a design to this device package. For more information, see
the Operating Requirements for Altera Devices Data Sheet.
Pin
44­Pin
PQFP
44­Pin
TQFP
68­Pin
PLCC
84­Pin
PLCC
100-
Pin
PQFP
100-
Pin
TQFP
160-
Pin
PQFP
160-
Pin
PGA
192-
Pin
PGA
208-
Pin
PQFP
208-
Pin
RQFP
MAX 7000 devices use CMOS EEPROM cells to implement logic functions. The user-configurable MAX 7000 architecture accommodates a variety of independe nt c omb inat orial and se qu ent ial l ogic func tions . T he devices can be reprogrammed for quick and efficient iterations during design development and debug cycles, and can be programme d and erased up to 100 times.
Altera Corporation 5
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
MAX 700 0 d evices contain fro m 32 to 256 ma cr ocells th at are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with ind epend ently prog rammabl e clock, clock enable, cle ar, an d preset functions. To bu ild compl ex logic functions, each macrocell can be supplemented with both shareable expander product terms and high­speed parallel expand er product terms to provide up to 32 product terms per macrocell.
The MAX 7000 family provides programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate at 50% or lower power while adding only a nominal timing delay. MAX 7000E and MAX 7000S devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switc hing. The output drive rs of all M AX 7000 devices (except 44-pin devices) can be set for either 3.3-V or 5.0-V operation, allowing MAX 7000 devices to be used in mixed-voltage systems.
The MAX 7000 family is supported byAltera deve lopment systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Descr ipt i on Langu age (AHDL)— and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry­standard PC- and UNIX-workst ation-based EDA tools . The software run s on Windows-based PC s, as well a s Sun SPARCsta tion, and H P 9000 Series 700/800 workstations.
f
Functional Description
6 Altera Corporation
For more information on development tools, see the MAX+PLUS II
Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet.
The MAX 7000 architecture includes the following elements:
Logic array blo cks
Macrocells
Expander product terms (shareable and parallel)
Programmable interconnect arra y
I/O control blocks
MAX 7000 Programmabl e Log i c Dev ic e Fam ily Data Sheet
The MAX 7000 architecture includes four dedicated inputs that can be used as general-purpose inputs or as high-speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure1 shows the ar chite cture of EPM7032 , EPM7064, and EPM7096 devic es .
Figure 1. EPM7032, EPM7064 & EPM7096 Device Block Diagram
INPUT/GLCK1 INPUT/GCLRn INPUT/OE1 INPUT/OE2
LAB A LAB B
8 to 16 I/O pins
8 to 16 I/O pins
I/O
Control
Block
I/O
Control
Block
8 to 16
8 to 16
LAB C
Macrocells
1 to 16
Macrocells
33 to 48
16
8 to 16
16
8 to 16
LAB D
8 to 16
8 to 16
I/O
Control
Block
I/O
Control
Block
8 to 16 I/O pins
8 to 16 I/O pins
36
36
PIA
36
36
16
8 to 16
16
8 to 16
Macrocells
17 to 32
Macrocells
49 to 64
Altera Corporation 7
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
I
s
s
Figure2 shows the architecture of MAX 7000E and MAX 7000S devices.
Figure 2. MAX 7000E & MAX 7000S Device Block Diagram
INPUT/GCLK1
NPUT/OE2/GCLK2
INPUT/OE1
INPUT/GCLRn
6 Output Enables
6 Output Enables
Macrocells
17 to 32
Macrocells
49 to 64
LAB B
LAB D
6 to16
6 to16
6 to16
6 to16
I/O
Control
Block
I/O
Control
Block
6 to 16 I/O Pin
6
6 to 16 I/O Pin
6
LAB A
6 to16
6 to16
6 to 16 I/O Pins
6 to 16 I/O Pins
I/O
Control
Block
I/O
Control
Block
6
6 to16
6 to16
6
LAB C
Macrocells
1 to 16
Macrocells
33 to 48
36 36
16
6 to16
36 36
16
6 to16
PIA
16
6 to16
16
6 to16
Logic Array Blocks
The MAX 7000 device architecture is based on the linking of high­performance, flexible, logic array modules called logic array blocks (LABs). LABs consist of 16-macr ocell array s, as shown in Figures 1 and 2. Multiple LABs are linked together via the programmable interconnect array (PIA), a global bus that is fed by all dedicated inputs, I/O pins, and macrocells.
8 Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Fam ily Data Sheet
-
er
S
M
x
f
er
y
a
(
)
S
Each LAB is fed by the following signals:
36 signals from the PIA that are used for general logic inputs
Global controls that are used for secondary register functions
Direct input paths from I/O pins to the registers that are used
for fast setup times for MAX 7000E and MAX 7000S devices
Macrocells
The MAX 7000 macrocell can be individual ly configur ed for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. The macrocell of EPM7032, EPM7064, and EPM7096 devic es i s s hown in Figure 3.
Figure 3. EPM7032, EPM7064 & EPM7096 Device Macrocell
Logic Arra
Product
elect
atri
rallel Logic
Expanders
from other
macrocells
Global
Clear
Clear
Select
Global Clocks
2
VCC
Clock/
Enable
Select
Fast Input Select
PRN
D/T Q
ENA
CLRN
Programmable Register
Register
Bypass
From I/O pin
To I/O Control Block
to PIA
36 Signals
rom PIA
16 Expander
Product
hared Logic
Expanders
ms
Altera Corporation 9
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Figure4 shows a MAX 7000E and MAX 7000 S device macrocell.
Figure 4. MAX 7000E & MAX 7000S Device Macrocell
Logic Array
Product-
Term Select Matrix
Parallel Logic Expanders (from other macrocells)
Global
Clear
Clear Select
Global Clocks
2
VCC
Clock/
Enable
Select
Fast Input Select
PRN
D/T Q
ENA
CLRN
Programmable Register
Register
Bypass
from I/O pin
to I/O Control Block
36 Signals
from PIA
16 Expander
Product T erms
Shared Logic Expanders
to PIA
Combinatorial logic is implemented in the logic array, which provides five product terms per macroce ll. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the ma crocell’s register clear, preset, clock, and clock enable control functions. Two kinds of expander product terms (“expanders”) are available to supplement macrocell logic resources:
Sharea ble expanders, which a re inverted product ter ms that are fed
back into the logic array
Parallel expanders, which are product terms borrowed from adjacent
macrocells
The Altera developm en t sys te m aut omatically optimizes pro du ct-term allocation according to the logic requirements of the design.
For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with prog rammable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the Altera development software then selects the most efficient flipflop operation for each registered function to optimize resource utilization.
10 Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Fam ily Data Sheet
Each programmable regist er can be clock ed in th ree differe nt mo des:
By a global clock signal. This mode achieves th e fastest clock-to -
output performance.
By a glo b al clock signal and enabled by an act iv e-high cl ock
enable. This mode provides an enable on each flipflop while still achieving the fast clock-to-output performance of the global clock.
By an array clock implemented with a product term. In this
mode, the flipflop can be clocked by signals from buried macrocells or I/O pins.
In EPM7032, EPM7064, and EPM7096 devices, the global clock signal is available from a dedicated clock pin, GCLK1, as shown in Figure 1. In MAX 70 00E a n d M A X 7000S devices, two glob al cl ock signals ar e available. As show n in Figure 2, these global clock signals can be the true or the complement of either of the global clock pins, GCLK1 or GCLK2.
Each register also suppor ts asynchr onous prese t and clear functions. As shown in Figures 3 and 4, the product -term select matrix al locates product terms to control these operations. Although the product-term-driven preset and clear of the register are active high, active-low control c an be obta ined by inve rting t he signal within t he logic array. In addition, each regist er c l ea r function can be individually driven by the active-low dedica te d global clea r pin (GCLRn). Upon power-up, each register in the device will be set to a low state.
All MAX 7000E and MAX 70 00S I/O pins h ave a f a st input path to a macrocell registe r . T his ded ica te d pat h a llows a s ig nal to by pas s t he PIA and combinatorial logic and be driven t o an input D flipflop w ith an extremely fast (2.5 ns) input setup time.
Expander Product Terms
Although most logic functions can be implemented with the five product terms available in each macrocell, the more complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources; however, the MAX 7000 architecture also allows both shareable and parallel expander product terms (“expanders”) that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed.
Altera Corporation 11
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
m
m
Shareable Expanders
Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay (t shareable expanders are used. Figure 5 shows how shareable exp anders can feed multiple macrocells.
Figure 5. Shareable Expanders
Shareable expanders can be shared by any or all macrocells in an LAB.
) is incurred when
SEXP
Product-Term Select Matrix
Macrocell Product-Ter Logic
Macrocell Product-Ter Logic
36 Signals from PIA
16 Shared Expanders
Parallel Expanders
Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product te rms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB.
12 Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
From
The compile r can allocate up t o three sets of up to f iv e parallel expa nd ers automatically to the macrocells that require additional product terms. Each set of five parallel expanders incurs a small, incremental timing delay (t
). For example, if a macrocell requires 14 product terms, the
PEXP
Compiler use s the five dedicated pr oduct terms within the macroce ll a nd allocates two se ts of parallel expande rs; the first set includ e s fiv e p rodu ct terms and th e secon d set includ es fo ur product terms , inc reasing the to tal delay by 2 × t
PEXP
.
Two groups of 8 macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lower­numbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of 8, the lowest-numbered macrocell can only lend parallel expanders and the highest-numbered macrocell can only borrow them. Figure 6 shows how parallel ex pa nd er s ca n be borrowed from a neighboring macrocell.
Figure 6. Parallel Expanders
Unused product terms in a macrocell can be allocated to a neighboring macrocell.
Previous
Macrocell
Preset
36 Signals
from PIA
16 Shared
Expanders
Product-
Term
Select
Matrix
Product-
Term Select Matrix
Clock Clear
Preset
Clock Clear
To Next
Macrocell
Macrocell Product­Term Logic
Macrocell Product­Term Logic
Altera Corporation 13
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Programmable Int er co nnec t A rray
Logic is routed between LABs via the programmable interconnect array (PIA). This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 7000 dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available thro ugh out t he e ntire device. Only the sig nals required by eac h LAB are actually routed from the PIA into the LAB. Figure 7 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a 2-input AND gate, which selects a PIA signal to drive into the LAB.
Figure 7. PIA Ro ut ing
PIA
Signals
To LAB
While the routing dela ys of cha nne l-b ased r outi ng sche me s in ma sk ed or FPGAs are cumulativ e, vari able, and path-d epen dent, the MAX 7000 PI A has a fixed delay. The PIA thus eliminates skew between signals and makes timing performance easy to predict.
I/O Control Blocks
The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri-state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or V control block for the MAX 7000 family. The I/O control block of EPM7032, EPM7064, and EP M7096 device s has two global outp ut enable signal s that are driven by t wo dedicate d active-low ou tput ena ble pins ( OE1 and OE2). The I/O control block of MAX 7000E and MAX 7000S devices has six global output enab le signa ls that are d riven by the true or complemen t of two output enable sig na ls, a s ubse t of t he I /O pin s, o r a sub set of the I /O macrocells.
14 Altera Corporation
. Figure 8 shows the I/O
CC
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
E
M
F
Figure 8. I/O Control Block of MAX 7000 Devices
PM7032, EPM7064 & EPM7096 Devices
VCC
OE1 OE2
GND
rom Macrocell
To PIA
AX 7000E & MAX 7000S Devices
Six Global Output Enable Signals
PIA
VCC
To Other I/O Pins
From Macrocell
Fast Input to Macrocell Register
To PIA
GND
Open-Drain Output (1) Slew-Rate Control
Note:
(1) The open- d r ain o utput option is available only in MAX 7000S d ev i ces.
Altera Corporation 15
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
When the tri-state buffer control is connected to ground, the output is tri-stated (high impedance) and the I/O pin can be used as a dedicated input. When the tri-sta te buffer cont r ol is con ne cted to V enabled.
The MAX 7000 architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic.
, the output is
CC
In-System Programma­bility (ISP)
MAX 7000S devices are in-system programmable via an industry-standard 4-pin Joint Test Action Group (JTAG) interface (IEEE Std. 1149.1-1990). ISP allows quick, efficient iterations during design development and debugging cycles. The MAX 7000S architecture internally generates the high programming voltage required to program EEPROM cells, allowing in-syst em programming wit h only a sing le 5.0 V power supply. Du ring in-system pr ogramming, the I /O pins are tri- stated and pulled-up to eliminate boa rd conflicts. The pull-up value is nomi nally 50 k¾.
ISP simplifies the man ufacturing flow by allowi ng devices to be mou nted on a printed circuit board with standard in-circuit test equipment before they are programmed. MAX 7000S devices can be programmed by downloading the information via in-circuit teste rs (ICT), embedde d processors, or the Altera MasterBlaster, ByteBlasterMV, ByteBlaster, BitBlaster download cables. (The ByteBlaster cable is obsolete and is replaced by the ByteBlast erMV cable, which can program and configure
2.5-V, 3 .3-V, and 5.0-V devi ces.) Prog ramming the devices after they are placed on the board eliminates lead damage on high-p in-cou nt pa ck ages (e.g., QFP packages) due to device handling and allows devices to be reprogrammed after a system has already shipped to the field. For example, product upgrades can be performed in the field via software or modem.
In-system programming can be accomplished with either an adaptive or constant algorithm. An adaptive algorithm reads information from the unit and adapts subsequent programming steps to achieve the fastest possible programming time for that unit. Because some in-circuit testers cannot support a n adaptive alg or ithm, Altera o ff ers d evic es te sted with a constant algorithm. Devices tested to the constant algorithm have an “F” suffix in the ordering code.
TM
The Jam used to program MAX 7000S devices with in-circuit testers, PCs, or embedded processor.
16 Altera Corporation
Standard Test and Programming Lang uage (STAPL) can be
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
f
For more information on using the Jam language, see Application Note 88
(Using the Jam Language for ISP & ICR via an Embedded Processor).
The ISP circuitr y in MAX 7000S devices is compa tible wit h IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.
Programming Seque nce
During in-system programming, instructions, addresses, and data are shifted into the MAX 7000S device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.
Programming a pattern into the device requires the following six ISP stages. A stand-alon e verification of a programmed pa ttern invo lves only stages 1, 2, 5, and 6.
1. Enter ISP. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1ms.
2. Check ID. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
3. Bulk Erase. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
4. Program. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
5. Verify. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
6. Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1ms.
Altera Corporation 17
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
t
K
-- -
t
Cycle
---
Programming Times
The time required to implement each of the six programming stages can be broken into the following two elements:
A pulse time to erase, program, or read the EEPROM cells.
A shifting time based on the test clock (TCK) frequency and the
number of TCK cycles to shift instructions, address, and data into the device.
By combining the pulse and shift times for each of the programming stages, the prog ram or v erify t ime ca n be d er ived as a fu nct ion of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fix ed and total var iable tim es are unique for a si ngle d evice.
Programming a Single MAX 7000S Device
The time required to program a single MAX 7000S device in-system can be calculated from the following formula:
Cycle
PTC
+=
PROGtPPULSE
--------- --------------- -----
f
TCK
where: t
PROG
t
PPULSE
= Programming time = Sum of the fixed times to erase, program, and
verify the EEPROM cells
Cycle f
TCK
=Number of TCK cycles to program a device
PTCK
= TCK frequency
The ISP tim es for a stand-alone veri fica tion of a single M AX 7000S device can be calculated from the following formula:
VTCK
+=
VERtVPULSE
where: t
VER
t
VPULSE
Cycle
18 Altera Corporation
---------- --------------- ----
f
TCK
=Verify time = Sum of the fixed times to verify the EEPROM cells
=Number of TCK cycles to verify a device
VTCK
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
The programming times described in Tables 6 through 8 are ass o ciated with the worst-case method using the enhanced ISP algorithm.
Table 6.MAX 7000S t
PULSE
& Cycle
TCK
Values
Device Programming Stand-Alone Verification
(s) Cycle
t
PPULSE
EPM7032S 4.02 342,000 0.03 200,000 EPM7064S 4.50 504,000 0.03 308,000 EPM7128S 5.11 832,000 0.03 528,000 EPM7160S 5.35 1,001,000 0.03 640,000 EPM7192S 5.71 1,192,000 0.03 764,000 EPM7256S 6.43 1,603,000 0.03 1,024,000
PTCK
t
(s) Cycle
VPULSE
VTCK
Tables 7 and 8 show the in-system programming and stand alone
verification times for several common test clock frequencies.
Table 7. MAX 7000S In-Sy stem Programming Times for Different Test Clock Frequencies
Device f
TCK
10 MHz 5 MHz 2 MHz 1 MHz 500 kHz 200 kHz 100 kH z 50 kHz
EPM7032S 4.06 4.09 4.19 4.36 4.71 5.73 7.44 10.86 s EPM7064S 4.55 4.60 4.76 5.01 5.51 7.02 9.54 14.58 s EPM7128S 5.19 5.27 5.52 5.94 6.77 9.27 13.43 21.75 s EPM7160S 5.45 5.55 5.85 6.35 7.35 10.35 15.36 25.37 s EPM7192S 5.83 5.95 6.30 6.90 8.09 11.67 17.63 29.55 s EPM7256S 6.59 6.75 7.23 8.03 9.64 14.45 22.46 38.49 s
Units
Table 8.MAX 7000S Stand-Alone Verification Times for Different Test Clock Frequencies
Device f
TCK
Units
10 MHz 5 MHz 2 MHz 1 MHz 500 kHz 200 kHz 100 kHz 50 kHz
EPM7032S 0.05 0.07 0.13 0.23 0.43 1.03 2.03 4.03 s EPM7064S 0.06 0.09 0.18 0.34 0.64 1.57 3.11 6.19 s EPM7128S 0.08 0.14 0.29 0.56 1.09 2.67 5.31 10.59 s EPM7160S 0.09 0.16 0.35 0.67 1.31 3.23 6.43 12.83 s EPM7192S 0.11 0.18 0.41 0.79 1.56 3.85 7.67 15.31 s EPM7256S 0.13 0.24 0.54 1.06 2.08 5.15 10.27 20.51 s
Altera Corporation 19
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Programmable Speed/Power Control
Output Configuration
MAX 7000 devices offer a power-saving mode that supports low-power operatio n across user-define d signal paths or the ent ire device. This feature allows total power dissipation to be reduced by 50% or more, because most logic app lications requir e only a small fr action of all ga tes to operat e at maximum frequency.
The designer can program each individual macrocell in a MAX 7000
TM
device for either high-speed (i.e., with the Turbo Bit
option turned on) or low-power (i.e., with the Turbo Bit option turned off) operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths ca n operate at re duced power . Macrocells t hat run at low power incur a nominal timing delay adder (t
t
EN
, and t
SEXP
, t
ACL
, and t
parameters.
CPPW
) for the t
LPA
LAD
, t
, tIC,
LAC
MAX 7000 device outputs can be programmed to meet a variety of system-level requ ir eme nts.
MultiVolt I/O Interface
MAX 7000 devices—except 44-pin devices—support the MultiVolt I/O interface feature, which allo ws MAX 7000 devices to interfac e with systems that have differing supply voltages. The 5.0-V devices in all packages can be set for 3.3-V or 5.0-V I/O pin operation. These devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I /O output drivers (VCCIO).
The VCCINT pins must always be connected to a 5.0-V power supply. With a 5.0-V V are therefore compatible with both 3.3-V and 5.0-V inputs.
level, input voltage thre shold s are at TTL levels, and
CCINT
The VCCIO pins can be connected to either a 3.3-V or a 5.0-V power supply, depending on th e output require ments. When the VCCIO pins are connected to a 5.0-V supply, the output levels are compatible with 5.0-V systems. When V
is connected to a 3.3-V supply, the output high is
CCIO
3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with V timing delay of t
levels lower than 4.75 V incur a nominally greater
CCIO
instead of t
OD2
OD1
.
Open-Drain Output Option (MAX 7000S Devic es Only )
MAX 7000S devices provide an optional open-drain (functionally equivalent to open-collector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired-OR plane.
20 Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
By using an external 5.0-V pull-up resistor, output pins on MAX 7000S devices can be set to meet 5.0-V CMOS input vol tages. When
is 3.3 V, setting the open drain option will turn off the output
V
CCIO
pull-up transistor, allowing the external pull-up resistor to pull the output high enough to meet 5.0-V CMOS input voltages. When
is 5.0 V, setting the output drain option is not necessary
V
CCIO
because the pull-up transistor will already turn off when the pin exceeds appr oximately 3.8 V, allowing the external pull-up r esistor to pull the output high enough to meet 5.0-V CMOS input voltages.
Slew-Rate Control
The output buffer for each MAX 7000E and MAX 7000S I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew r ate provid es high-sp eed transit ions for high-performance sy stems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces s ystem noise, b ut adds a nominal de lay of 4 to 5 ns. In MAX 7000E devices, when the Turbo Bit is turned off, the slew rate is set for low noise performance. For MAX 7000S devices, each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis.
Programming wi th External Hardware
f
f
Altera Corporation 21
MAX 7000 devices can be programmed on Windows- based PCs with the Altera Logic Programmer card, the Master Pro gramming Unit (MPU), and the appropriate device adapter. The MPU performs a continuity check to ensure adequate electrical contact between the adapter and the dev ice.
For more information, see the Altera Programming Hardware Data
Sheet.
The Altera development system can use text- or waveform-format test vectors created with the Text Editor or Waveform Editor to test the programmed device. For added de sign verification, designers can perform functional te sting to compare the functional beha vior of a MAX 7000 device with the results of simulation. Moreover, Data I/O, BP Microsystems, and other programming hardware manufacturers also provide programming support for Altera devices.
For more information, see the Programming Hardware Manufacturers.
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
IEEE Std.
1149.1 (JTAG) Boundary-Scan Support
MAX 7000 devices support JTAG BST circuitry as specified by IEEE Std.
1149.1-1990. Table 9 describes the JTAG instructions supported by the MAX 7000 family. The pin-out tables (see the Altera web site (http://www.altera.com) or the Altera Digital Library for pin-out information) show the location of the JTAG control pins for each device. If the JTAG interface is not requir ed, the JTAG pins are available as us er I/O pins.
Table 9. MAX 7000 JTAG Inst ructions
JTAG Instruction Dev ice s Description
SAMPLE/PRELOAD EPM7128S
EPM7160S EPM7192S EPM7256S
EXTEST EPM7128S
EPM7160S EPM7192S EPM7256S
BYPASS EPM7032S
EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S
IDCODE EPM7032S
EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S
ISP Instructions EPM7032S
EPM7064S EPM7128S EPM7160S EPM7192S EPM7256S
Allows a snapshot of signals at the device pins to be captured and examined during normal dev ic e operation, and permits an initial data pattern output at the device pins.
Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the out put pins and c apt uring test results at the input pins.
Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through a selected device to adjacent devices during normal device operation.
Selects the IDCODE registe r and plac es it be tween TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.
These instructions are used whe n programming MAX 7000S devices via the JTAG ports with the MasterBlaster, ByteBlasterMV, BitBlaster download cable, or using a Jam File (.jam), Jam Byte -Co de f ile (.jbc), or Ser ial Vect or F ormat file (.svf) via an embedded proc es s or or te st equipment.
22 Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
The instruction r egist er len gt h of MAX 7000S d evices is 10 bits . Tables 10 and 11 show the boundary-scan register length and device IDCODE information for MAX 7000S devices.
Table 10. MAX 7000S Boundary-Scan R egister Length
Device Boundary-Scan Register Length
EPM7032S 1 (1) EPM7064S 1 (1) EPM7128S 288 EPM7160S 312 EPM7192S 360 EPM7256S 480
Note:
(1) This device does not support JTAG boundary-scan testing. Selecting either the
EXTEST or SAMPLE/PRELOAD instruction will select the one-bit bypass register.
Table 11.32-Bit MAX 7000 Device IDCODE Note (1)
Device IDCODE (32 Bits)
Version (4 Bits)
EPM7032S 0000 0111 0000 0011 0010 00001101110 1 EPM7064S 0000 0111 0000 0110 0100 00001101110 1 EPM7128S 0000 0111 0001 0010 1000 00001101110 1 EPM7160S 0000 0111 0001 0110 0000 00001101110 1 EPM7192S 0000 0111 0001 1001 0010 00001101110 1 EPM7256S 0000 0111 0010 0101 0110 00001101110 1
Notes:
(1) The most significant bit (MSB) is on the left. (2) The least si gnificant bi t (L SB) for all JTAG IDCODEs is 1.
Altera Corporation 23
Part Number (16 Bi t s) Manufacturer’s
Identity (11 Bits)
1 (1 Bit)
(2)
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Figure9 shows the timing requirements for the JTAG signals.
Figure 9. MAX 7000 JTAG Waveforms
TMS
TDI
t
JCP
JCH
t
JCL
t
TCK
t
JPSU
t
JPH
t
JPXZ
TDO
Signal
to Be
Captured
Signal
to Be
Driven
t
t
JPZX
JSZX
t
JSSU
t
JPCO
t
JSH
t
JSCO
t
JSXZ
Table12 shows the JTAG timing parameters and values for MAX 7000S
devices.
Table 12. JTAG Timing Parameters & Values for MA X 7000S Devices
Symbol Parameter Min Max Unit
t t t t t t t t t t t t t
TCK clock period 100 ns
JCP
TCK clock high time 50 ns
JCH
TCK clock low time 50 ns
JCL
JTAG port setup time 20 ns
JPSU
JTAG port hold time 45 ns
JPH
JTAG port clock to output 25 ns
JPCO
JTAG port high impedance t o val id out put 25 ns
JPZX
JTAG port valid output to high im pedance 25 ns
JPXZ
Capture register setup time 20 ns
JSSU
Capture register hold time 45 ns
JSH
Update register clock to output 25 ns
JSCO
Update register high impedance to valid output 25 ns
JSZX
Update register valid output to high impedance 25 ns
JSXZ
f
For more information, see Application Note 39 (IEEE 1149.1 (JTAG)
Boundary-Scan Testing in Altera Devices).
24 Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
VCC
Design Security
Generic Testing
All MAX 7000 devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a proprietary design implemented in the devi ce cannot be copied or retrieved. This feature provides a high level of design security because programmed data wit hin EEPROM cells is invisible . The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed.
Each MAX 7000 device is functionally tested. Complete testing of each programmable EEPROM bit a nd a ll in te rnal logi c e lements e nsur es 1 00 % programming yield . AC test measurements are taken under conditions equivalent to those sh own in Figure 10. Test patt erns c an be u sed an d the n erased during early stages of the production flow.
Figure 10 . MAX 7000 AC Test Conditions
Power supply transients can affect AC measurements. Simultaneous transitions of m ulti pl e out put s sh ould be avoided for accurate measurement. Threshold tes ts must not be performed under AC condit ions. Large-ampli tude, fast ground- current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance be tween the device grou nd pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V devices and outputs. Numbers without brackets are for 3.3-V devices and outputs.
464
[703 ]
Device Output
250
[8.06 ]
K
Device input rise and fall times < 3 ns
To Test System
C1 (includes JIG capacitance)
QFP Carrier & Development Socket
MAX 7000 and MAX 7000E de vices in QFP package s with 100 or more pins are shipped in special plastic carriers to protect the QFP leads. The carrier is used with a prototype development socket and special programming hardware available from Altera. This carrier technology makes it possible to prog ram, tes t, erase, a nd reprogra m a device without exposing the leads to mechanical stress.
f
For detailed information and carrier dimensions, refer to the QFP Carrier
& Development Socket Data Sheet.
1 MAX 7000S devices are not shipped in carriers.
Altera Corporation 25
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Operating Conditions
Tables 13 through 18 provide information about absolute maximum
ratings, recommended operating conditions, operating conditions, and capacitance for 5.0-V MAX 7000 devices.
Table 13. MAX 7000 5.0-V Device Absolute Maxi mum Ratings Note (1)
Symbol Parameter Conditions Min Max Unit
V
V I T T T
OUT
Supply voltage With respect to ground (2) –2.0 7.0 V
CC
DC input voltage –2.0 7.0 V
I
DC output current, per pin –25 25 mA Storage temperature N o bias –65 150 ° C
STG
Ambient temperature Under bias –65 135 ° C
AMB
Junction temperature C eramic packages, under bias 150 ° C
J
PQFP and RQFP packages, under bias 135 ° C
Table 14. MAX 7000 5.0-V Device Recommended Op erating Conditions
Symbol Parameter Conditions Min Max Unit
V
V
V V V T
T
t
R
t
F
Supply voltage for internal logic and
CCINT
input buffers Supply voltage for output drivers,
CCIO
5.0-V operation Supply voltage for output drivers,
3.3-V operation Supply voltage during ISP (7) 4.75 5.25 V
CCISP
Input voltage –0.5 (8) V
I
Output voltage 0V
O
Ambient temperature For commercial use 0 70 ° C
A
Junction temperature For commercial use 0 90 ° C
J
Input rise time 40 ns Input fall time 40 ns
(3), (4), (5) 4.75
(4.50)
(3), (4) 4.75
(4.50)
(3), (4), (6) 3.00
(3.00)
For industrial use –40 85 ° C
For industrial use –40 105 ° C
5.25
(5.50)
5.25
(5.50)
3.60
(3.60)
CCINT
CCIO
+ 0.5 V
V
V
V
V
26 Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Table 15.MAX 7000 5.0-V Device DC Operating Conditions Note (9)
Symbol Parameter Conditions Min Max Unit
V V V
V
I
I
I
OZ
High-level input voltage 2.0 V
IH
Low-level input voltage –0.5 (8) 0.8 V
IL
5.0-V high-level TTL output voltage IOH = –4 mA DC, V
OH
3.3-V high-level TTL output voltage I
3.3-V high-level CMOS output voltage
5.0-V low-level TTL output voltage IOL = 12 mA DC, V
OL
3.3-V low-level TTL output voltage I
3.3-V low-level CMOS output voltage
Leakage current of dedicated input
= –4 mA DC, V
OH
I
= –0.1 mA DC, V
OH
= 12 mA DC, V
OL
I
= 0.1 mA DC, V
OL
VI = –0.5 to 5.5 V (11) –10 10 µA
= 4.75 V (10) 2.4 V
CCIO
= 3.00 V (10) 2.4 V
CCIO
= 3.0 V (10) V
CCIO
= 4.75 V (11) 0.45 V
CCIO
= 3.00 V (11) 0.45 V
CCIO
= 3.0 V(11) 0.2 V
CCIO
– 0.2 V
CCIO
pins I/O pin tri-state output off-state
VI = –0.5 to 5.5 V (11), (12) –40 40 µA
current
CCINT
+ 0.5 V
Table 16.MAX 7000 5.0-V Device Capacitance: EPM7032, EPM7064 & EPM7096 Devices Note (13)
Symbol Parameter Conditions Min Max Unit
C C
Input pin capacitance VIN = 0 V, f = 1.0 MHz 12 pF
IN
I/O pin capacitance V
I/O
= 0 V, f = 1.0 MHz 12 pF
OUT
Table 17.MAX 7000 5.0-V Device Capacitance: MAX 7000E Devices No te (13)
Symbol Parameter Conditions Min Max Unit
C C
Input pin capacitance VIN = 0 V, f = 1.0 MHz 15 pF
IN
I/O pin capacitance V
I/O
= 0 V, f = 1.0 MHz 15 pF
OUT
Table 18.MAX 7000 5.0-V Device Capacitance: MAX 7000S Devices Note (13)
Symbol Parameter Conditions Min Max Unit
C C
Altera Corporation 27
Dedicated input pin capacitance VIN = 0 V, f = 1.0 MHz 10 pF
IN
I/O pin capacitance V
I/O
= 0 V, f = 1.0 MHz 10 pF
OUT
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
T O C
Notes to tables:
(1) See the Operating Requirements for Altera Devices Data Sheet. (2) Minimu m DC input volta ge on I/O pins is –0 . 5 V a n d on 4 dedicated input pins is –0 . 3 V. D ur ing transit ions, the
inputs may undershoot to –2.0 V or overshoot to 7.0 V for input currents less than 100 mA and periods shorter than
20 ns. (3) Numbers in parentheses are for industrial-te mperatur e-ra nge devices. (4) V (5) The POR time for all 7000S devices does not exceed 300 µs. The sufficient V
(6) 3.3-V I/O operation is n ot avail able for 44-pin packages. (7) The V (8) During in-system pro gr a mming, the minimum DC input voltage is –0.3 V.
must rise monotonically.
CC
device is fully initialized within the POR time after V
parameter applies only t o MA X 7000S devices.
CCISP
voltage level for POR is 4.5 V. The
reaches the sufficient POR voltage level.
CCINT
CCINT
(9) The se values are specified under the MAX 7000 recommended operating conditions in Table 14 on page 26. (10) The parameter is measured with 50% of the outputs each sourcing the specified current. The I
to high-level TTL or CMOS output current. (11) The parameter is measured with 50% of the outputs each sinking the specified current. The I
low-level T T L, PCI, or CM OS output current.
parameter refers
OH
parameter refers to
OL
(12) When the JTAG interface is enabled in MAX 7000S devices, the input leakage current on the JTAG pins is typically
–60 µA. (13) Capacitan c e is measured at 25° C and is sample-tested only. The
OE1 pin has a maximum capacitance of 20 pF.
Figure 11 shows the typical output drive characteristics of MAX 7000
devices.
Figure 11. Output Drive Characteristics of 5.0-V MAX 7000 Devices
150
120
90
I
ypical
O
utput
urrent (mA)
60
30
Timing Model
I
OL
Typical
V
= 5.0 V
CCIO
Room T emperature
I
OH
12345
Output Current (mA)
VO Output Voltage (V)
MAX 7000 de vice timi ng ca n be an aly zed wi th the Alt era so ftwa re, with a variety of popula r industry-standard EDA simulators and timing
150
120
90
I
O
60
30
12345
I
OL
V
= 3.3 V
CCIO
Room T emperature
I
OH
3.3
VO Output Voltage (V)
analyzers, or with the timing model shown in Figure 12. MAX 7000 devices have fixed internal delays that enable the designer to determine the worst-case ti ming of any design . The Alt era sof tware provid es timin g simulation, point-to-point delay prediction, and detailed timing analysis for a device-wide performance evaluation.
28 Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Figure 12 . MAX 7000 Timing Model
Internal Output
Enable Delay
t
(1)
IOE
Input
Delay
t
IN
PIA
Delay
t
PIA
Global Control
Delay
t
GLOB
Logic Array
Delay
t
LAD
Register
Control Delay
t
LAC
t
IC
t
EN
Shared
Expander Delay
t
SEXP
Notes:
(1) Only available in M A X 7000E and MAX 7000S devi ces. (2) Not available in 44-pin d evices.
The timing characteristics of any signal path can be derived from the timing model and parameters of a particular dev ice . Ex te rn al timing parameters, which represent pin-to-pin timing delays, can be calculated as the sum of internal parameters. Figure 13 shows the internal timing relationship of internal and external delay parameters.
Parallel
Expander Delay
t
PEXP
Input Delay
Fast
t
FIN
(1)
Register
Delay
t
SU
t
H
t
PRE
t
CLR
t
RD
t
COMB
t
FSU
t
FH
Output
Delay
t
OD1
t
OD2
t
OD3
t
XZ
t
X1
Z
t
ZX2
t
ZX3
(2)
(2) (1)
I/O
Delay
t
IO
f
For more infomration, see Application Note 94 (Understanding MAX 7000
Timing).
Altera Corporation 29
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Figure 13. Swi t ch i ng W aveforms
tR & tF < 3 ns. Inputs are driven at 3 V for a logic high and 0 V for a logic low. A ll timing characteristics are measured at 1.5 V.
Input Pin
I/O Pin
PIA Delay
Shared Expander
Parallel Expander
Delay
Logic Array
Input
Delay
Logic Array
Output
Output Pin
Global
Clock Pin
Global Clock
at Register
Data or Enable
(Logic Array Output)
Combinatorial Mode
t
IN
t
IO
Global Clock Mode
t
IN
tSUt
t
CH
t
GLOB
H
t
R
t
PIA
t
SEXP
t
, t
LAC
LAD
t
PEXP
t
COMB
t
OD
t
CL
t
F
Array Clock Mode
t
F
t
, t
CLR
PRE
t
PIA
t
OD
Input or I/O Pin
Clock into PIA
Clock into
Logic Array
Clock at
Register
Data from
Logic Array
Register to PIA
to Logic Array
Register Output
to Pin
t
R
t
ACH
t
IN
t
IO
t
PIA
t
ACL
t
IC
t
t
SU
H
t
RD
t
PIA
t
OD
30 Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Tables 19 through 26 show the MAX 7000 and MAX 7000E AC
operating conditions.
Table 19.MAX 7000 & MAX 7000E External Timing Parameters Note (1)
Symbol Parameter Conditions -6 Speed Grade -7 Speed Grade Unit
Min Max Min Max
t
PD1
t
PD2
t
SU
t
H
t
FSU
t
FH
t
CO1
t
CH
t
CL
t
ASU
t
AH
t
ACO1
t
ACH
t
ACL
t
CPPW
t
ODH
t
CNT
f
CNT
t
ACNT
f
ACNT
f
MAX
Input to non-registered output C1 = 35 pF 6.0 7.5 ns I/O input to non-registered output C1 = 35 pF 6.0 7.5 ns Global clock setup time 5.0 6.0 ns Global clock hold time 0.0 0.0 ns Global clock setup time of fast input (2) 2.5 3.0 ns Global clock hold time of fast input (2) 0.5 0.5 ns Global clock to output delay C1 = 35 pF 4.0 4.5 ns Global clock high time 2.5 3.0 ns Global clock low time 2.5 3.0 ns Array clock setup time 2.5 3.0 ns Array clock hold time 2.0 2.0 ns Array clock to output delay C 1 = 35 pF 6.5 7.5 ns Array clock high time 3.0 3.0 ns Array clock low time 3.0 3.0 ns Minimum pulse width for clear and
(3) 3.0 3.0 ns
preset Output data hold time after clock C1 = 35 pF (4) 1.0 1.0 ns Minimum global clock period 6.6 8.0 ns Maximum internal global clock
(5) 151.5 125.0 MHz
frequency Minimum array clock period 6.6 8.0 ns Maximum internal array clock
(5) 151.5 125.0 MHz
frequency Maximum clock frequency (6) 200 166.7 MHz
Altera Corporation 31
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Table 20. MAX 7000 & MAX 7000E Inter nal Timing Parameters Note (1)
Symbol Parameter Conditions Speed Grade -6 Speed Grade -7 Unit
Min Max Min Max
t
IN
t
IO
t
FIN
t
SEXP
t
PEXP
t
LAD
t
LAC
t
IOE
t
OD1
t
OD2
t
OD3
t
ZX1
t
ZX2
t
ZX3
t
XZ
t
SU
t
H
t
FSU
t
FH
t
RD
t
COMB
t
IC
t
EN
t
GLOB
t
PRE
t
CLR
t
PIA
t
LPA
Input pad and buffer delay 0.4 0.5 ns I/O input pad and buffer delay 0.4 0.5 ns Fast input delay (2) 0.8 1.0 ns Shared expander delay 3.5 4.0 ns Parallel expander delay 0.8 0.8 ns Logic array delay 2.0 3.0 ns Logic control array delay 2.0 3.0 ns Internal output enable delay (2) 2.0 ns Output buffer and pad delay
Slow slew rate = off, V
CCIO
Output buffer and pad delay Slow slew rate = off, V
CCIO
Output buffer and pad delay
= 5.0 V
= 3.3 V
C1 = 35 pF 2.0 2.0 ns
C1 = 35 pF (7) 2.5 2.5 ns
C1 = 35 pF (2) 7.0 7.0 ns
Slow slew rate = on,
= 5.0 V or 3.3 V
V
CCIO
Output buffer enable delay Slow slew rate = off, V
CCIO
Output buffer enable delay Slow slew rate = off, V
CCIO
Output buffer enable delay
= 5.0 V
= 3.3 V
C1 = 35 pF 4.0 4.0 ns
C1 = 35 pF (7) 4.5 4.5 ns
C1 = 35 pF (2) 9.0 9.0 ns
Slow slew rate = on
= 5.0 V or 3.3 V
V
CCIO
Output buffer disable delay C1 = 5 pF 4.0 4.0 ns Register setup time 3.0 3.0 ns Register hold time 1.5 2.0 ns Register setup time of fast input (2) 2.5 3.0 ns Register hold time of fast input (2) 0.5 0.5 ns Register delay 0.8 1.0 ns Combinatorial delay 0.8 1.0 ns Array clock delay 2.5 3.0 ns Register enable time 2.0 3.0 ns Global control delay 0.8 1.0 ns Register preset time 2.0 2.0 ns Register clear time 2.0 2.0 ns PIA delay 0.8 1.0 ns Low-power adder (8) 10.0 10.0 ns
32 Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Table 21.MAX 7000 & MAX 7000E External Timing Parameters Note (1)
Symbol Paramet er Conditi ons Speed G rade Unit
MAX 7000E (-10P) MAX 7000 (-10)
MAX 7000E (-10)
Min Max Min Max
t
PD1
t
PD2
t
SU
t
H
t
FSU
t
FH
t
CO1
t
CH
t
CL
t
ASU
t
AH
t
ACO1
t
ACH
t
ACL
t
CPPW
t
ODH
t
CNT
f
CNT
t
ACNT
f
ACNT
f
MAX
Input to non-registered output C1 = 35 pF 10.0 10.0 ns I/O input to non-registered output C1 = 35 pF 10.0 10.0 ns Global clock setup time 7.0 8.0 ns Global clock hold time 0.0 0.0 ns Global clock setup time of fast input (2) 3.0 3.0 ns Global clock hold time of fast input (2) 0.5 0.5 ns Global clock to output delay C1 = 35 pF 5.0 5 ns Global clock high time 4.0 4.0 ns Global clock low time 4.0 4.0 ns Array clock setup time 2.0 3.0 ns Array clock hold time 3.0 3.0 ns Array clock to output delay C1 = 35 pF 10.0 10.0 ns Array clock high time 4.0 4.0 ns Array clock low time 4.0 4.0 ns Minimum pulse width for clear and
(3) 4.0 4.0 ns
preset Output data hold time after clock C1 = 35 pF (4) 1.0 1.0 ns Minimum global clock period 10.0 10.0 ns Maximum internal global clock
(5) 100.0 100.0 MHz
frequency Minimum array clock period 10.0 10.0 ns Maximum internal array clock
(5) 100.0 100.0 MHz
frequency Maximum clock frequency (6) 125.0 125.0 MHz
Altera Corporation 33
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Table 22. MAX 7000 & MAX 7000E Inter nal Timing Parameters Note (1)
Symbol Parameter Conditio ns Speed Grade Unit
MAX 7000E ( -10P ) MAX 7000 (-10)
MAX 7000E (-10)
Min Max Min Max
t
IN
t
IO
t
FIN
t
SEXP
t
PEXP
t
LAD
t
LAC
t
IOE
t
OD1
t
OD2
t
OD3
t
ZX1
t
ZX2
t
ZX3
t
XZ
t
SU
t
H
t
FSU
t
FH
t
RD
t
COMB
t
IC
t
EN
t
GLOB
t
PRE
t
CLR
t
PIA
t
LPA
34 Altera Corporation
Input pad and buffer delay 0.5 1.0 ns I/O input pad and buffer delay 0.5 1.0 ns Fast input delay (2) 1.0 1 .0 ns Shared expander delay 5.0 5.0 ns Parallel expander delay 0.8 0.8 ns Logic array delay 5.0 5.0 ns Logic control array delay 5.0 5.0 ns Internal output enable delay (2) 2.0 2.0 ns Output buffer and pad delay
C1 = 35 pF 1.5 2.0 ns Slow slew rate = off V
= 5.0 V
CCIO
Output buffer and pad delay
C1 = 35 pF (7) 2.0 2.5 ns Slow slew rate = off V
= 3.3 V
CCIO
Output buffer and pad delay
C1 = 35 pF (2) 5.5 6.0 ns Slow slew rate = on V
= 5.0 V or 3.3 V
CCIO
Output buffer enable delay
C1 = 35 pF 5.0 5.0 ns Slow slew rate = off V
= 5.0 V
CCIO
Output buffer enable delay
C1 = 35 pF (7) 5.5 5.5 ns Slow slew rate = off V
= 3.3 V
CCIO
Output buffer enable delay
C1 = 35 pF (2) 9.0 9.0 ns Slow slew rate = on V
= 5.0 V or 3.3 V
CCIO
Output buffer disable delay C1 = 5 pF 5.0 5.0 ns Register setup time 2.0 3.0 ns Register hold time 3.0 3 .0 ns Register setup time of fast input (2) 3.0 3.0 ns Register hold time of fast input (2) 0.5 0.5 ns Register delay 2.0 1.0 ns Combinatorial delay 2.0 1.0 ns Array clock delay 5.0 5.0 ns Register enable time 5.0 5.0 ns Global control delay 1.0 1.0 ns Register preset time 3.0 3.0 ns Register clear time 3.0 3.0 ns PIA delay 1.0 1.0 ns Low-power adder (8) 11.0 11.0 ns
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Table 23.MAX 7000 & MAX 7000E External Timing Parameters Note (1)
Symbol Parameter Conditions Speed Grade Unit
MAX 7000E ( -12 P) MAX 7000 (-12)
MAX 7000E (-12)
Min Max Min Max
t
PD1
t
PD2
t
SU
t
H
t
FSU
t
FH
t
CO1
t
CH
t
CL
t
ASU
t
AH
t
ACO1
t
ACH
t
ACL
t
CPPW
t
ODH
t
CNT
f
CNT
t
ACNT
f
ACNT
f
MAX
Input to non-registered output C1 = 35 pF 12.0 12.0 ns I/O input to non-registered output C1 = 35 pF 12.0 12.0 ns Global clock setup time 7.0 10.0 ns Global clock hold time 0.0 0.0 ns Global clock setup time of fast input (2) 3.0 3.0 ns Global clock hold time of fast input (2) 0.0 0.0 ns Global clock to output delay C1 = 35 pF 6.0 6.0 ns Global clock high time 4.0 4.0 ns Global clock low time 4.0 4.0 ns Array clock setup time 3.0 4.0 ns Array clock hold time 4.0 4.0 ns Array clock to output delay C1 = 35 pF 12.0 12.0 ns Array clock high time 5.0 5.0 ns Array clock low time 5.0 5.0 ns Minimum pulse width for clear and
(3) 5.0 5.0 ns
preset Output data hold time after clock C1 = 35 pF (4) 1.0 1.0 ns Minimum global clock period 11.0 11.0 ns Maximum internal global clock
(5) 90.9 90.9 MHz
frequency Minimum array clock period 11.0 11.0 ns Maximum internal array clock
(5) 90.9 90.9 MHz
frequency Maximum clock frequency (6) 125.0 125.0 MHz
Altera Corporation 35
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Table 24.MAX 7000 & MAX 7000E Internal Timi ng Parameters Note (1)
Symbol Parameter Conditions Speed Grade Unit
MAX 7000E (-12P) MAX 7000 (-12)
MAX 7000E (-12)
Min Max Min Max
t
IN
t
IO
t
FIN
t
SEXP
t
PEXP
t
LAD
t
LAC
t
IOE
t
OD1
t
OD2
t
OD3
t
ZX1
t
ZX2
t
ZX3
t
XZ
t
SU
t
H
t
FSU
t
FH
t
RD
t
COMB
t
IC
t
EN
t
GLOB
t
PRE
t
CLR
t
PIA
t
LPA
36 Altera Corporation
Input pad and buffer delay 1.0 2.0 ns I/O input pad and buffer delay 1.0 2.0 ns Fast input delay (2) 1.0 1.0 ns Shared expander delay 7.0 7.0 ns Parallel expander delay 1 .0 1.0 ns Logic array delay 7.0 5.0 ns Logic control array delay 5.0 5.0 ns Internal output enable delay (2) 2.0 2.0 ns Output buffer and pad delay
C1 = 35 pF 1.0 3.0 ns
Slow slew rate = off
= 5.0 V
V
CCIO
Output buffer and pad delay
C1 = 35 pF (7) 2.0 4.0 ns
Slow slew rate = off
= 3.3 V
V
CCIO
Output buffer and pad delay
C1 = 35 pF (2) 5.0 7.0 ns
Slow slew rate = on
= 5.0 V or 3.3 V
V
CCIO
Output buffer enable delay
C1 = 35 pF 6.0 6.0 ns
Slow slew rate = off
= 5.0 V
V
CCIO
Output buffer enable delay
C1 = 35 pF (7) 7.0 7.0 ns
Slow slew rate = off
= 3.3 V
V
CCIO
Output buffer enable delay
C1 = 35 pF (2) 10.0 10.0 ns
Slow slew rate = on
= 5.0 V or 3.3 V
V
CCIO
Output buffer disable delay C1 = 5 pF 6.0 6.0 ns Register setup time 1.0 4.0 ns Register hold time 6.0 4.0 ns Register setup time of fast input (2) 4.0 2.0 ns Register hold time of fast input (2) 0.0 2.0 ns Register delay 2.0 1.0 ns Combinatorial delay 2.0 1.0 ns Array clock delay 5.0 5.0 ns Register enable time 7.0 5.0 ns Global control delay 2.0 0.0 ns Register preset time 4.0 3.0 ns Register clear time 4.0 3.0 ns PIA delay 1.0 1.0 ns Low-power adder (8) 12.0 12.0 ns
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Table 25. MAX 7000 & MAX 7000E External Timing Parameters Note (1)
Symbol Parameter Conditions Speed Grade Unit
-15 -15T -20
Min Max Min Max Min Max
t
PD1
t
PD2
t
SU
t
H
t
FSU
t
FH
t
CO1
t
CH
t
CL
t
ASU
t
AH
t
ACO1
t
ACH
t
ACL
t
CPPW
t
ODH
t
CNT
f
CNT
t
ACNT
f
ACNT
f
MAX
Input to non-registered output C1 = 35 pF 15.0 15.0 20.0 ns I/O input to non-registered
C1 = 35 pF 15.0 15.0 20.0 ns
output Global clock setup time 11.0 11.0 12.0 ns Global clock hold time 0.0 0.0 0.0 ns Global clock setup time of fast
(2) 3.0 5.0 ns
input Global clock hold time of fast
(2) 0.0 0.0 ns
input Global clock to output delay C1 = 35 pF 8.0 8.0 12.0 ns Global clock high time 5.0 6.0 6.0 ns Global clock low time 5.0 6.0 6.0 ns Array clock setup time 4.0 4.0 5.0 ns Array clock hold time 4.0 4.0 5.0 ns Array clock to output delay C1 = 35 pF 15.0 15.0 20.0 ns Array clock high time 6.0 6.5 8.0 ns Array clock low time 6.0 6.5 8.0 ns Minimum pulse width for clear
(3) 6.0 6.5 8.0 ns
and preset Output data hold time after
C1 = 35 pF (4) 1.0 1.0 1.0 ns
clock Minimum global clock period 13.0 13.0 16.0 n s Maximum internal global clock
(5) 76.9 76.9 62.5 MHz
frequency Minimum array clock period 13.0 13.0 16 .0 ns Maximum internal array clock
(5) 76.9 76.9 62.5 MHz
frequency Maximum clock frequency (6) 100 83.3 83.3 MHz
Altera Corporation 37
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Table 26.MAX 7000 & MAX 7000E Internal Timi ng Parameters Note (1)
Symbol Parameter Conditions Speed Grade Unit
-15 -15T -20
Min Max Min Max Min Max
t
IN
t
IO
t
FIN
t
SEXP
t
PEXP
t
LAD
t
LAC
t
IOE
t
OD1
t
OD2
t
OD3
t
ZX1
t
ZX2
t
ZX3
t
XZ
t
SU
t
H
t
FSU
t
FH
t
RD
t
COMB
t
IC
t
EN
t
GLOB
t
PRE
t
CLR
t
PIA
t
LPA
Input pad and buffer delay 2.0 2.0 3.0 ns I/O input pad and buffer delay 2.0 2.0 3.0 ns Fast input delay (2) 2.0 4.0 ns Shared expander delay 8.0 10.0 9.0 ns Parallel expander delay 1.0 1.0 2.0 ns Logic array delay 6.0 6.0 8.0 ns Logic control array delay 6.0 6.0 8.0 ns Internal output enable delay (2) 3.0 4.0 ns Output buffer and pad delay
C1 = 35 pF 4.0 4.0 5.0 ns
Slow slew rate = off
= 5.0 V
V
CCIO
Output buffer and pad delay
C1 = 35 pF (7) 5.0 6.0 ns
Slow slew rate = off
= 3.3 V
V
CCIO
Output buffer and pad delay
C1 = 35 pF (2) 8.0 9.0 ns
Slow slew rate = on
= 5.0 V or 3.3 V
V
CCIO
Output buffer enable delay
C1 = 35 pF 6.0 6.0 10.0 ns Slow slew rate = off V
= 5.0 V
CCIO
Output buffer enable delay
C1 = 35 pF (7) 7.0 11.0 ns Slow slew rate = off V
= 3.3 V
CCIO
Output buffer enable delay
C1 = 35 pF (2) 10.0 14.0 ns Slow slew rate = on V
= 5.0 V or 3.3 V
CCIO
Output buffer disable delay C1 = 5 pF 6.0 6.0 10.0 ns Register setup time 4.0 4.0 4.0 ns Register hold time 4.0 4.0 5.0 ns Register setup time of fast input (2) 2.0 4.0 ns Register hold time of fast input (2) 2.0 3.0 ns Register delay 1.0 1.0 1.0 ns Combinatorial delay 1.0 1.0 1.0 ns Array clock delay 6.0 6.0 8.0 ns Register enable time 6.0 6.0 8.0 ns Global control delay 1.0 1.0 3.0 ns Register preset time 4.0 4.0 4.0 ns Register clear time 4.0 4.0 4.0 ns PIA delay 2.0 2.0 3.0 ns Low-power adder (8) 13.0 15.0 15.0 ns
38 Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Notes to tables:
(1) These values are specified under the recommended operating conditions shown in Table 14 . See Figure 1 3 for more
information on switching waveforms. (2) This parameter applies to MAX 7000E devices only. (3) This minimum pulse width for preset and clear applies for both global clear and array controls. The t
must be added to this minimum width if the clear or reset signal incorporates the t
path.
parameter into the signal
LAD
parameter
LPA
(4) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This
parameter applies for both global and array clocking. (5) These parameter s ar e measured with a 16-bit loa d ab le, en abled, up/down counter programmed int o eac h L AB . (6) The f (7) Operati ng con d iti o ns : V (8) The t
running in the low-power mode.
values repr esent the highest fr eq uency for pi pelined data.
MAX
parameter must be added to the t
LPA
= 3.3 V ± 10% for commercial and industrial use.
CCIO
LAD
, t
LAC
, tIC, tEN, t
SEXP
, t
ACL
, and t
parameters for macrocells
CPPW
Tables 27 and 28 show the EPM7032S AC operating conditions.
Table 27.EPM7032S External Timing Parameters (Part 1 of 2) Note (1)
Symbol Parameter Conditions Speed Grade Unit
-5 -6 -7 -10
Min Max Min Max Min Max Min Max
t
PD1
t
PD2
t
SU
t
H
t
FSU
t
FH
t
CO1
t
CH
t
CL
t
ASU
t
AH
t
ACO1
t
ACH
t
ACL
t
CPPW
t
ODH
t
CNT
f
CNT
t
ACNT
Input to non-registered output C1 = 35 pF 5.0 6.0 7.5 10.0 ns I/O input to non-registered
C1 = 35 pF 5.0 6.0 7.5 10.0 ns
output Global clock setup time 2.9 4.0 5.0 7.0 ns Global clock hold time 0.0 0.0 0.0 0.0 ns Global clock setup time of fast
2.5 2.5 2.5 3.0 ns
input Global clock hold time of fast
0.0 0.0 0.0 0.5 ns
input Global clock to output delay C1 = 35 pF 3.2 3.5 4.3 5.0 ns Global clock high time 2.0 2.5 3.0 4.0 ns Global clock low time 2.0 2.5 3.0 4.0 ns Array clock setup time 0.7 0.9 1.1 2.0 ns Array clock hold time 1.8 2.1 2.7 3.0 ns Array clock to output delay C1 = 35 pF 5.4 6.6 8.2 10.0 ns Array clock high time 2.5 2.5 3.0 4.0 ns Array clock low time 2.5 2.5 3.0 4.0 ns Minimum pulse width for clear
(2) 2.5 2.5 3.0 4.0 ns
and preset Output data hold time after
C1 = 35 pF (3) 1.0 1.0 1.0 1.0 ns
clock Minimum global clock period 5.7 7.0 8.6 10.0 ns Maximum internal global clock
(4) 17 5.4 142.9 11 6.3 100.0 MHz
frequency Minimum array clock period 5.7 7.0 8.6 10.0 ns
Altera Corporation 39
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Table 27.EPM7032S External Timing Parameters (Part 2 of 2) Note (1)
Symbol Parameter Con di tions Speed Grade Unit
-5 -6 -7 -10
Min Max Min Max Min Max Min Max
f
ACNT
f
MAX
Maximum internal array clock
(4) 175.4 142.9 116.3 100.0 M Hz
frequency Maximum clock frequency (5) 250.0 200.0 166.7 125.0 MHz
Table 28. EPM 7032S Internal Timing Parameters Note (1)
Symbol Parameter Conditio ns Speed Grad e Unit
-5 -6 -7 -10
Min Max Min Max Min Max Min Max
t
IN
t
IO
t
FIN
t
SEXP
t
PEXP
t
LAD
t
LAC
t
IOE
t
OD1
t
OD2
t
OD3
t
ZX1
t
ZX2
t
ZX3
t
XZ
t
SU
t
H
t
FSU
t
FH
t
RD
t
COMB
t
IC
t
EN
t
GLOB
t
PRE
t
CLR
Input pad and buffer delay 0.2 0.2 0.3 0.5 ns I/O input pad and buffer delay 0.2 0.2 0.3 0.5 ns Fast input delay 2.2 2.1 2.5 1.0 ns Shared expander delay 3.1 3.8 4.6 5.0 ns Parallel expander delay 0.9 1.1 1.4 0.8 ns Logic array delay 2.6 3.3 4.0 5.0 ns Logic control array delay 2.5 3.3 4.0 5.0 ns Internal output enable delay 0.7 0.8 1.0 2.0 ns Output buffer and pad delay C1 = 35 pF 0.2 0.3 0.4 1.5 ns Output buffer and pad delay C1 = 35 pF (6) 0.7 0.8 0.9 2.0 ns Output buffer and pad delay C1 = 35 pF 5.2 5.3 5.4 5.5 ns Output buffer enable delay C1 = 35 pF 4.0 4.0 4.0 5.0 ns Output buffer enable delay C1 = 35 pF (6) 4.5 4.5 4.5 5.5 ns Output buffer enable delay C1 = 35 pF 9.0 9.0 9.0 9.0 ns Output buffer disable delay C1 = 5 pF 4.0 4.0 4.0 5.0 ns Register setup time 0.8 1.0 1.3 2.0 ns Register hold time 1.7 2.0 2.5 3.0 ns Register setup time of fast
1.9 1.8 1.7 3.0 ns
input Register hold time of fast
0.6 0.7 0.8 0.5 ns
input Register delay 1.2 1.6 1.9 2.0 ns Combinatorial delay 0.9 1.1 1.4 2.0 ns Array clock delay 2.7 3.4 4.2 5.0 ns Register enable time 2.6 3.3 4.0 5.0 ns Global control delay 1.6 1.4 1.7 1.0 ns Register preset time 2.0 2 .4 3.0 3.0 ns Register clear time 2.0 2.4 3.0 3.0 ns
40 Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Table 28. EPM7032S Int ernal Timing Parameters Note (1)
Symbol Paramet er Conditio ns Speed Grade Unit
-5 -6 -7 -10
MinMaxMinMaxMinMaxMinMax
t
PIA
t
LPA
Notes to tables:
(1) These values are specified under the recommended operating conditions shown in Table 14 . See Figure 1 3 for more
(2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t
(3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This
(4) These parameter s ar e measured with a 16-bit loa d ab le, en abled, up/down counter programmed int o eac h L AB . (5) The f (6) Operati ng con d iti o ns : V (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, E PM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices,
(8) The t
PIA delay (7) 1.1 1.1 1.4 1.0 ns Low-power adder (8) 12.0 10.0 10.0 11.0 ns
information on switching waveforms.
parameter must be added to this minimum width if the clear or reset signal incorporates the t path.
parameter into the signal
LAD
LPA
parameter applies for both global and array clocking.
values repr esent the highest fr eq uency for pi pelined data.
MAX
= 3.3 V ± 10% for commercial and industrial use.
CCIO
these values are spec i fied for a PIA fan-out of one LA B (16 macrocells). For eac h add it ional LAB fan-out in thes e devices, add an addition al 0. 1 n s to th e PI A ti mi ng v alu e.
parameter must be added to the t
LPA
running in the low-power mode.
LAD
, t
LAC
, tIC, tEN, t
SEXP
, t
ACL
, and t
parameters for macrocells
CPPW
Tables 29 and 30 show the EPM7064S AC operating conditions.
Table 29.EPM7064S External Timing Parameters (Part 1 of 2) Note (1)
Symbol Parameter Conditions Speed Grade Unit
-5 -6 -7 -10
MinMaxMinMaxMinMaxMinMax
t
PD1
t
PD2
t
SU
t
H
t
FSU
t
FH
t
CO1
t
CH
t
CL
t
ASU
t
AH
Altera Corporation 41
Input to non-registered output C1 = 35 pF 5.0 6.0 7.5 10.0 ns I/O input to non-registered
output Global clock setup time 2.9 3.6 6.0 7.0 ns Global clock hold time 0.0 0.0 0.0 0.0 ns Global clock setup time of fast
input Global clock hold time of fast
input Global clock to output delay C1 = 35 pF 3.2 4.0 4.5 5.0 ns Global clock high time 2.0 2.5 3.0 4.0 ns Global clock low time 2.0 2.5 3.0 4.0 ns Array clock setup time 0.7 0.9 3.0 2.0 ns Array clock hold time 1.8 2.1 2.0 3.0 ns
C1 = 35 pF 5.0 6.0 7.5 10.0 ns
2.5 2.5 3.0 3.0 ns
0.0 0.0 0.5 0.5 ns
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Table 29.EPM7064S External Timing Parameters (Part 2 of 2) Note (1)
Symbol Parameter Conditions Speed Grade Unit
-5 -6 -7 -10
MinMaxMinMaxMinMaxMinMax
t
ACO1
t
ACH
t
ACL
t
CPPW
t
ODH
t
CNT
f
CNT
t
ACNT
f
ACNT
f
MAX
Array clock to output delay C1 = 35 pF 5.4 6.7 7.5 10.0 ns Array clock high time 2.5 2.5 3.0 4.0 ns Array clock low time 2.5 2.5 3.0 4.0 ns Minimum pulse width for clear
(2) 2.5 2.5 3.0 4.0 ns
and preset Output data hold time after
C1 = 35 pF (3) 1.0 1.0 1.0 1.0 ns
clock Minimum global clock period 5.7 7.1 8.0 10.0 ns Maximum internal global clock
(4) 175.4 140.8 125.0 100.0 MHz
frequency Minimum array clock period 5.7 7.1 8.0 10.0 ns Maximum internal array clock
(4) 175.4 140.8 125.0 100.0 MHz
frequency Maximum clock frequency (5) 250.0 200.0 166.7 125.0 MHz
Table 30. EPM7064S Int ernal Timing Parameters (Part 1 of 2) Note (1)
Symbol P ara me ter Conditions Speed Grade Unit
-5 -6 -7 -10
Min Max Min Max Min Max Min Max
t
IN
t
IO
t
FIN
t
SEXP
t
PEXP
t
LAD
t
LAC
t
IOE
t
OD1
t
OD2
t
OD3
t
ZX1
t
ZX2
t
ZX3
t
XZ
t
SU
t
H
42 Altera Corporation
Input pad and buffer delay 0.2 0.2 0.5 0.5 ns I/O input pad and buffer delay 0.2 0.2 0.5 0.5 ns Fast input delay 2.2 2.6 1.0 1.0 ns Shared expander delay 3.1 3.8 4.0 5.0 ns Parallel expander delay 0.9 1.1 0.8 0.8 ns Logic array delay 2.6 3.2 3.0 5.0 ns Logic control array delay 2.5 3.2 3.0 5.0 ns Internal output enable delay 0.7 0.8 2.0 2.0 ns Output buffer and pad delay C1 = 35 pF 0.2 0.3 2.0 1.5 ns Output buffer and pad delay C1 = 35 pF (6) 0.7 0.8 2.5 2.0 ns Output buffer and pad delay C1 = 35 pF 5.2 5.3 7.0 5.5 ns Output buffer enable delay C1 = 35 pF 4.0 4.0 4.0 5.0 ns Output buffer enable delay C1 = 35 pF (6) 4.5 4.5 4.5 5.5 ns Output buffer enable delay C1 = 35 pF 9.0 9.0 9.0 9.0 ns Output buffer disable delay C1 = 5 pF 4.0 4.0 4.0 5.0 ns Register setup time 0.8 1.0 3.0 2.0 ns Register hold time 1.7 2.0 2.0 3.0 ns
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Table 30.EPM7064S Internal Timing Parameters (Part 2 of 2) Note (1)
Symbol Parame t er Conditio ns Speed Grade Unit
-5 -6 -7 -10
Min Max Min Max Min Max Min Max
t
FSU
t
FH
t
RD
t
COMB
t
IC
t
EN
t
GLOB
t
PRE
t
CLR
t
PIA
t
LPA
Notes to tables:
(1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more
(2) This minimum pulse width for p reset and cl ear applies fo r both global cle ar and arra y controls. The t
(3) This par a meter is a guideline that is s ample-teste d only and is ba s ed o n extensive de v ic e c haracteri za t ion. This
(4) These paramete rs are measu r ed with a 16-bit loadable, enab le d , up/ d own counter program med into each LAB. (5) The f (6) Operating conditions: V (7) For EPM7064S-5, E PM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, an d EPM7256S-7 devices,
(8) The t
Register setup time of fast input
Register hold time of fast input
Register delay 1.2 1.6 1.0 2.0 ns Combinatorial delay 0.9 1.0 1.0 2.0 ns Array clock delay 2.7 3.3 3.0 5.0 ns Register enable time 2.6 3.2 3.0 5.0 ns Global control delay 1.6 1.9 1.0 1.0 ns Register preset time 2.0 2.4 2.0 3.0 ns Register clear time 2.0 2.4 2.0 3.0 ns PIA delay (7) 1.1 1 .3 1.0 1.0 ns Low-power adder (8) 12.0 11.0 10.0 11.0 ns
1.9 1 .8 3.0 3.0 ns
0.6 0 .7 0.5 0.5 ns
information on switching waveforms.
parameter must be added to this minimum width if the clear or reset signal incorporates the t path.
parameter into the signal
LAD
LPA
parameter applies for both global and array clocking.
values repres en t th e highest frequency for pipeline d data.
MAX
= 3.3 V ± 10% for commercial and industrial use.
CCIO
these values ar e specified for a PIA fan-out of on e L A B (16 macrocells). For ea c h add itional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
parameter must be added to the t
LPA
running in th e low-power mod e.
LAD
, t
, tIC, tEN, t
LAC
SEXP
, t
ACL
, and t
parameters for macrocells
CPPW
Altera Corporation 43
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Tables 31 and 32 show the EPM7128S AC operating conditions.
Table 31.EPM7128S Exter na l Timi ng Parameters Note (1)
Symbol Parameter Conditions Speed Grade Unit
-6 -7 -10 -15
MinMaxMinMaxMinMaxMinMax
t
PD1
t
PD2
t
SU
t
H
t
FSU
t
FH
t
CO1
t
CH
t
CL
t
ASU
t
AH
t
ACO1
t
ACH
t
ACL
t
CPPW
t
ODH
t
CNT
f
CNT
t
ACNT
f
ACNT
f
MAX
Input to non-registered output C1 = 35 pF 6.0 7.5 10.0 15.0 ns I/O input to non-registered
C1 = 35 pF 6.0 7.5 10.0 15.0 ns
output Global clock setup time 3.4 6.0 7.0 11.0 ns Global clock hold time 0.0 0.0 0.0 0.0 ns Global clock setup time of fast
2.5 3.0 3.0 3.0 ns
input Global clock hold time of fast
0.0 0.5 0.5 0.0 ns
input Global clock to output delay C1 = 35 pF 4.0 4.5 5.0 8.0 ns Global clock high time 3.0 3.0 4.0 5.0 ns Global clock low time 3.0 3.0 4.0 5.0 ns Array clock setup time 0.9 3.0 2.0 4.0 ns Array clock hold time 1.8 2.0 5.0 4.0 ns Array clock to output delay C1 = 35 pF 6.5 7.5 10.0 15.0 ns Array clock high time 3.0 3.0 4.0 6.0 ns Array clock low time 3.0 3.0 4.0 6.0 ns Minimum pulse width for clear
(2) 3.0 3.0 4.0 6.0 ns
and preset Output data hold time after
C1 = 35 pF (3) 1.0 1.0 1.0 1.0 ns
clock Minimum global clock period 6.8 8.0 10.0 13.0 ns Maximum internal global clock
(4) 147.1 125.0 100.0 76.9 MHz
frequency Minimum array clock period 6.8 8.0 10.0 13.0 ns Maximum internal array clock
(4) 147.1 125.0 100.0 76.9 MHz
frequency Maximum clock frequency (5) 166.7 166.7 125.0 100.0 MHz
44 Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Table 32. EPM 7128S Internal Timing Parameters Note (1)
Symbol Parame t er Conditio ns Speed Grade Unit
-6 -7 -10 -15
Min Max Min Max Min Max Min Max
t
IN
t
IO
t
FIN
t
SEXP
t
PEXP
t
LAD
t
LAC
t
IOE
t
OD1
t
OD2
t
OD3
t
ZX1
t
ZX2
t
ZX3
t
XZ
t
SU
t
H
t
FSU
t
FH
t
RD
t
COMB
t
IC
t
EN
t
GLOB
t
PRE
t
CLR
t
PIA
t
LPA
Input pad and buffer delay 0.2 0.5 0.5 2.0 ns I/O input pad and buffer delay 0.2 0.5 0.5 2.0 ns Fast input delay 2.6 1.0 1.0 2.0 ns Shared expander delay 3.7 4.0 5.0 8.0 ns Parallel expander delay 1.1 0.8 0.8 1.0 ns Logic array delay 3.0 3.0 5.0 6.0 ns Logic control array delay 3.0 3.0 5.0 6.0 ns Internal output enable delay 0.7 2.0 2.0 3.0 ns Output buffer and pad delay C1 = 35 pF 0.4 2.0 1.5 4.0 ns Output buffer and pad delay C1 = 35 pF (6) 0.9 2.5 2.0 5.0 ns Output buffer and pad delay C1 = 35 pF 5.4 7.0 5.5 8.0 ns Output buffer enable delay C1 = 35 pF 4.0 4.0 5.0 6.0 ns Output buffer enable delay C1 = 35 pF (6) 4.5 4.5 5.5 7.0 ns Output buffer enable delay C1 = 35 pF 9.0 9.0 9.0 10.0 ns Output buffer disable delay C1 = 5 pF 4.0 4.0 5.0 6.0 ns Register setup time 1.0 3.0 2.0 4.0 ns Register hold time 1.7 2.0 5.0 4.0 ns Register setup time of fast
1.9 3.0 3.0 2.0 ns
input Register hold time of fast
0.6 0.5 0.5 1.0 ns
input Register delay 1.4 1.0 2.0 1.0 ns Combinatorial delay 1.0 1.0 2.0 1.0 ns Array clock delay 3.1 3.0 5.0 6.0 ns Register enable time 3.0 3.0 5.0 6.0 ns Global control delay 2.0 1.0 1.0 1.0 ns Register preset time 2.4 2.0 3.0 4.0 ns Register clear time 2.4 2.0 3.0 4.0 ns PIA delay (7) 1.4 1 .0 1.0 2.0 ns Low-power adder (8) 11.0 10.0 11.0 13.0 ns
Altera Corporation 45
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Notes to tables:
(1) These values are specified under the recommended operating conditions shown in Table 14 . See Figure 1 3 for more
information on switching waveforms.
(2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t
must be added to this minimum width if the clear or reset signal incorporates the t path.
parameter into the signal
LAD
parameter
LPA
(3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This
parameter applies for both global and array clocking.
(4) These parameter s ar e measured with a 16-bit loa d ab le, en abled, up/down counter programmed int o eac h L AB . (5) The f (6) Operati ng con d iti o ns : V (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, E PM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices,
values repr esent the highest fr eq uency for pi pelined data.
MAX
= 3.3 V ± 10% for commercial and industrial use.
CCIO
these values are spec i fied for a PIA fan-out of one LA B (16 macrocells). For eac h add it ional LAB fan-out in thes e devices, add an addition al 0. 1 n s to th e PI A ti mi ng v alu e.
(8) The t
parameter must be added to the t
LPA
running in the low-power mode.
LAD
, t
LAC
, tIC, tEN, t
SEXP
, t
ACL
, and t
parameters for macrocells
CPPW
Tables 33 and 34 show the EPM7160S AC operating conditions.
Table 33.EPM7160S External Timing Parameters (Part 1 of 2) Note (1)
Symbol Parameter Conditions Speed Grade Unit
-6 -7 -10 -15
MinMaxMinMaxMinMaxMinMax
t
PD1
t
PD2
t
SU
t
H
t
FSU
t
FH
t
CO1
t
CH
t
CL
t
ASU
t
AH
t
ACO1
t
ACH
t
ACL
t
CPPW
t
ODH
t
CNT
f
CNT
Input to non-registered output C1 = 35 pF 6.0 7.5 10.0 15.0 ns I/O input to non-registered
C1 = 35 pF 6.0 7.5 10.0 15.0 ns
output Global clock setup time 3.4 4.2 7.0 11.0 ns Global clock hold time 0.0 0.0 0.0 0.0 ns Global clock setup time of fast
2.5 3.0 3.0 3.0 ns
input Global clock hold time of fast
0.0 0.0 0.5 0.0 ns
input Global clock to output delay C1 = 35 pF 3.9 4.8 5 8 ns Global clock high time 3.0 3.0 4.0 5.0 ns Global clock low time 3.0 3.0 4.0 5.0 ns Array clock setup time 0.9 1.1 2.0 4.0 ns Array clock hold time 1.7 2.1 3.0 4.0 ns Array clock to output delay C1 = 35 pF 6.4 7.9 10.0 15.0 ns Array clock high time 3.0 3.0 4.0 6.0 ns Array clock low time 3.0 3.0 4.0 6.0 ns Minimum pulse width for clear
(2) 2.5 3.0 4.0 6.0 ns
and preset Output data hold time after
C1 = 35 pF (3) 1.0 1.0 1.0 1.0 ns
clock Minimum global clock period 6.7 8.2 10.0 13.0 ns Maximum internal global clock
(4) 149.3 122.0 100.0 76.9 MHz
frequency
46 Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Table 33.EPM7160S External Timing Parameters (Part 2 of 2) Note (1)
Symbol Parameter Conditions Speed Grade Unit
-6 -7 -10 -15
Min Max Min Max Min Max Min Max
t
ACNT
f
ACNT
f
MAX
Minimum array clock period 6.7 8.2 10.0 13.0 ns Maximum internal array clock
(4) 149.3 122.0 100.0 76.9 MHz
frequency Maximum clock frequency (5) 166.7 166.7 125.0 100.0 MHz
Table 34.EPM7160S Internal Timing Parameters (Part 1 of 2) Note (1)
Symbol Parame t er Conditio ns Speed Grade Unit
-6 -7 -10 -15
Min Max Min Max Min Max Min Max
t
IN
t
IO
t
FIN
t
SEXP
t
PEXP
t
LAD
t
LAC
t
IOE
t
OD1
t
OD2
t
OD3
t
ZX1
t
ZX2
t
ZX3
t
XZ
t
SU
t
H
t
FSU
t
FH
t
RD
t
COMB
t
IC
t
EN
t
GLOB
t
PRE
Input pad and buffer delay 0.2 0.3 0.5 2.0 ns I/O input pad and buffer delay 0.2 0.3 0.5 2.0 ns Fast input delay 2.6 3.2 1.0 2.0 ns Shared expander delay 3.6 4.3 5.0 8.0 ns Parallel expander delay 1.0 1.3 0.8 1.0 ns Logic array delay 2.8 3.4 5.0 6.0 ns Logic control array delay 2.8 3.4 5.0 6.0 ns Internal output enable delay 0.7 0.9 2.0 3.0 ns Output buffer and pad delay C1 = 35 pF 0.4 0.5 1.5 4.0 ns Output buffer and pad delay C1 = 35 pF (6) 0.9 1.0 2.0 5.0 ns Output buffer and pad delay C1 = 35 pF 5.4 5.5 5.5 8.0 ns Output buffer enable delay C1 = 35 pF 4.0 4.0 5.0 6.0 ns Output buffer enable delay C1 = 35 pF (6) 4.5 4.5 5.5 7.0 ns Output buffer enable delay C1 = 35 pF 9.0 9.0 9.0 10.0 ns Output buffer disable delay C1 = 5 pF 4.0 4.0 5.0 6.0 ns Register setup time 1.0 1.2 2.0 4.0 ns Register hold time 1.6 2.0 3.0 4.0 ns Register setup time of fast
1.9 2.2 3.0 2.0 ns
input Register hold time of fast
0.6 0.8 0.5 1.0 ns
input Register delay 1.3 1.6 2.0 1.0 ns Combinatorial delay 1.0 1.3 2.0 1.0 ns Array clock delay 2.9 3.5 5.0 6.0 ns Register enable time 2.8 3.4 5.0 6.0 ns Global control delay 2.0 2.4 1.0 1.0 ns Register preset time 2.4 3.0 3.0 4.0 ns
Altera Corporation 47
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Table 34. EPM7160S Int ernal Timing Parameters (Part 2 of 2) Note (1)
Symbol P ara me ter Conditions Speed Grade Unit
-6 -7 -10 -15
Min Max Min Max Min Max Min Max
t
CLR
t
PIA
t
LPA
Notes to tables:
(1) These values are specified under the recommended operating conditions shown in Table 14 . See Figure 1 3 for more
(2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t
(3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This
(4) These parameter s ar e measured with a 16-bit loa d ab le, en abled, up/down counter programmed int o eac h L AB . (5) The f (6) Operati ng con d iti o ns : V (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, E PM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices,
(8) The t
Register clear time 2.4 3.0 3.0 4.0 ns PIA delay (7) 1.6 2.0 1.0 2.0 ns Low-power adder (8) 11.0 10.0 11.0 13.0 ns
information on switching waveforms.
parameter must be added to this minimum width if the clear or reset signal incorporates the t path.
parameter into the signal
LAD
LPA
parameter applies for both global and array clocking.
values repr esent the highest fr eq uency for pi pelined data.
MAX
= 3.3 V ± 10% for commercial and industrial use.
CCIO
these values are spec i fied for a PIA fan-out of one LA B (16 macrocells). For eac h add it ional LAB fan-out in thes e devices, add an addition al 0. 1 n s to th e PI A ti mi ng v alu e.
parameter must be added to the t
LPA
running in the low-power mode.
LAD
, t
LAC
, tIC, tEN, t
SEXP
, t
ACL
, and t
parameters for macrocells
CPPW
Tables 35 and 36 show the EPM7192S AC operating conditions.
Table 35.EPM7192S External Timing Parameters (Part 1 of 2) Note (1)
Symbol Parameter Conditions Speed Grade Unit
-7 -10 -15
Min Max Min Max Min Max
t
PD1
t
PD2
t
SU
t
H
t
FSU
t
FH
t
CO1
t
CH
t
CL
t
ASU
48 Altera Corporation
Input to non-registered output C1 = 35 pF 7.5 10.0 15.0 ns I/O input to non-registered
output Global clock setup time 4.1 7.0 11.0 ns Global clock hold time 0.0 0.0 0.0 ns Global clock setup time of fast
input Global clock hold time of fast
input Global clock to output delay C1 = 35 pF 4.7 5.0 8.0 ns Global clock high time 3.0 4.0 5.0 ns Global clock low time 3.0 4.0 5.0 ns Array clock setup time 1.0 2.0 4.0 ns
C1 = 35 pF 7.5 10.0 15.0 ns
3.0 3.0 3.0 ns
0.0 0.5 0.0 ns
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Table 35.EPM7192S External Timing Parameters (Part 2 of 2) Note (1)
Symbol Parameter Conditions Speed Grade Unit
-7 -10 -15
MinMaxMinMaxMinMax
t
AH
t
ACO1
t
ACH
t
ACL
t
CPPW
t
ODH
t
CNT
f
CNT
t
ACNT
f
ACNT
f
MAX
Array clock hold time 1.8 3.0 4.0 ns Array clock to output delay C1 = 35 pF 7.8 10.0 15.0 ns Array clock high time 3.0 4.0 6.0 ns Array clock low time 3.0 4.0 6.0 ns Minimum pulse width for clear
(2) 3.0 4.0 6.0 ns
and preset Output data hold time after
C1 = 35 pF (3) 1.0 1.0 1.0 ns
clock Minimum global clock period 8.0 10.0 13.0 ns Maximum internal global clock
(4) 125.0 100.0 76.9 MHz
frequency Minimum array clock period 8.0 10.0 13.0 ns Maximum internal array clock
(4) 125.0 100.0 76.9 MHz
frequency Maximum clock frequency (5) 166.7 125.0 100.0 M Hz
Table 36.EPM7192S Internal Timing Parameters (Part 1 of 2) Note (1)
Symbol Parameter Conditions Speed Grade Unit
-7 -10 -15
Min Max Min Max Min Max
t
IN
t
IO
t
FIN
t
SEXP
t
PEXP
t
LAD
t
LAC
t
IOE
t
OD1
t
OD2
t
OD3
t
ZX1
t
ZX2
t
ZX3
t
XZ
t
SU
Altera Corporation 49
Input pad and buffer delay 0.3 0.5 2.0 ns I/O input pad and buffer delay 0.3 0.5 2.0 ns Fast input delay 3.2 1.0 2.0 ns Shared expander delay 4.2 5.0 8.0 ns Parallel expander delay 1.2 0.8 1.0 ns Logic array delay 3.1 5.0 6.0 ns Logic control array delay 3.1 5.0 6.0 ns Internal output enable delay 0.9 2.0 3.0 ns Output buffer and pad delay C1 = 35 pF 0.5 1.5 4.0 ns Output buffer and pad delay C1 = 35 pF (6) 1.0 2.0 5.0 ns Output buffer and pad delay C1 = 35 pF 5.5 5.5 7.0 ns Output buffer enable delay C1 = 35 pF 4.0 5 .0 6.0 ns Output buffer enable delay C1 = 35 pF (6) 4.5 5.5 7.0 ns Output buffer enable delay C1 = 35 pF 9.0 9.0 10.0 ns Output buffer disable delay C1 = 5 pF 4.0 5.0 6.0 ns Register setup time 1.1 2.0 4.0 n s
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Table 36. EPM7192S Int ernal Timing Parameters (Part 2 of 2) Note (1)
Symbol Parameter Conditions Speed Grade Unit
-7 -10 -15
Min Max Min Max Min Max
t
H
t
FSU
t
FH
t
RD
t
COMB
t
IC
t
EN
t
GLOB
t
PRE
t
CLR
t
PIA
t
LPA
Notes to tables:
(1) These values are specified under the recommended operating conditions shown in Table 14 . See Figure 1 3 for more
(2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t
(3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This
(4) These parameter s ar e measured with a 16-bit loa d ab le, en abled, up/down counter programmed int o eac h L AB . (5) The f (6) Operati ng con d iti o ns : V (7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, E PM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices,
(8) The t
Register hold time 1.7 3.0 4.0 ns Register setup time of fast
2.3 3.0 2.0 ns
input Register hold time of fast
0.7 0.5 1.0 ns
input Register delay 1.4 2.0 1.0 ns Combinatorial delay 1.2 2.0 1.0 ns Array clock delay 3.2 5.0 6.0 ns Register enable time 3.1 5.0 6.0 ns Global control delay 2.5 1.0 1.0 ns Register preset time 2.7 3.0 4.0 ns Register clear time 2.7 3.0 4.0 ns PIA delay (7) 2.4 1.0 2.0 ns Low-power adder (8) 10.0 11.0 13.0 ns
information on switching waveforms.
parameter must be added to this minimum width if the clear or reset signal incorporates the t path.
parameter into the signal
LAD
LPA
parameter applies for both global and array clocking.
values repr esent the highest fr eq uency for pi pelined data.
MAX
= 3.3 V ± 10% for commercial and industrial use.
CCIO
these values are spec i fied for a PIA fan-out of one LA B (16 macrocells). For eac h add it ional LAB fan-out in thes e devices, add an addition al 0. 1 n s to th e PI A ti mi ng v alu e.
parameter must be added to the t
LPA
running in the low-power mode.
LAD
, t
LAC
, tIC, tEN, t
SEXP
, t
ACL
, and t
parameters for macrocells
CPPW
50 Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Tables 37 and 38 show the EPM7256S AC oper ati ng condit ions .
Table 37. EPM7256S Exte rnal Timing Parameters Note (1)
Symbol Parameter Conditions Speed Grade Unit
-7 -10 -15
MinMaxMinMaxMinMax
t
PD1
t
PD2
t
SU
t
H
t
FSU
t
FH
t
CO1
t
CH
t
CL
t
ASU
t
AH
t
ACO1
t
ACH
t
ACL
t
CPPW
t
ODH
t
CNT
f
CNT
t
ACNT
f
ACNT
f
MAX
Input to non-registered output C1 = 35 pF 7.5 10.0 15.0 ns I/O input to non-registered
C1 = 35 pF 7.5 10.0 15.0 ns
output Global clock setup time 3.9 7.0 11.0 ns Global clock hold time 0.0 0.0 0.0 ns Global clock setup time of fast
3.0 3.0 3.0 ns
input Global clock hold time of fast
0.0 0.5 0.0 ns
input Global clock to output delay C1 = 35 pF 4.7 5.0 8.0 ns Global clock high time 3.0 4.0 5.0 ns Global clock low time 3.0 4.0 5.0 ns Array clock setup time 0.8 2.0 4.0 ns Array clock hold time 1.9 3.0 4.0 ns Array clock to output delay C1 = 35 pF 7.8 10.0 15.0 ns Array clock high time 3.0 4.0 6.0 ns Array clock low time 3.0 4.0 6.0 ns Minimum pulse width for clear
(2) 3.0 4.0 6.0 ns
and preset Output data hold time after
C1 = 35 pF (3) 1.0 1.0 1.0 ns
clock Minimum global clock period 7.8 10.0 13.0 ns Maximum internal global clock
(4) 128.2 100.0 76.9 MHz
frequency Minimum array clock period 7.8 10.0 13.0 ns Maximum internal array clock
(4) 128.2 100.0 76.9 MHz
frequency Maximum clock frequency (5) 166.7 125.0 100.0 M Hz
Altera Corporation 51
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Table 38. EPM7256S Int ernal Timing Parameters Note (1)
Symbol Parameter Conditions Speed Grade Unit
-7 -10 -15
Min Max Min Max Min Max
t
IN
t
IO
t
FIN
t
SEXP
t
PEXP
t
LAD
t
LAC
t
IOE
t
OD1
t
OD2
t
OD3
t
ZX1
t
ZX2
t
ZX3
t
XZ
t
SU
t
H
t
FSU
t
FH
t
RD
t
COMB
t
IC
t
EN
t
GLOB
t
PRE
t
CLR
t
PIA
t
LPA
Input pad and buffer delay 0.3 0.5 2.0 ns I/O input pad and buffer delay 0.3 0.5 2.0 ns Fast input delay 3.4 1.0 2.0 ns Shared expander delay 3.9 5.0 8.0 ns Parallel expander delay 1.1 0.8 1.0 ns Logic array delay 2.6 5.0 6.0 ns Logic control array delay 2.6 5.0 6.0 ns Internal output enable delay 0.8 2.0 3.0 ns Output buffer and pad delay C1 = 35 pF 0.5 1.5 4.0 ns Output buffer and pad delay C1 = 35 pF (6) 1.0 2.0 5.0 ns Output buffer and pad delay C1 = 35 pF 5.5 5.5 8.0 ns Output buffer enable delay C1 = 35 pF 4.0 5.0 6.0 ns Output buffer enable delay C1 = 35 pF (6) 4.5 5.5 7.0 ns Output buffer enable delay C1 = 35 pF 9.0 9.0 10.0 ns Output buffer disable delay C1 = 5 pF 4.0 5.0 6.0 ns Register setup time 1.1 2.0 4.0 ns Register hold time 1.6 3.0 4.0 ns Register setup time of fast
2.4 3.0 2.0 ns
input Register hold time of fast
0.6 0.5 1.0 ns
input Register delay 1.1 2.0 1.0 ns Combinatorial delay 1.1 2.0 1.0 ns Array clock delay 2.9 5.0 6.0 ns Register enable time 2.6 5.0 6.0 ns Global control delay 2.8 1.0 1.0 ns Register preset time 2.7 3.0 4.0 ns Register clear time 2.7 3.0 4.0 ns PIA delay (7) 3.0 1.0 2.0 ns Low-power adder (8) 10.0 11.0 13.0 ns
52 Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Notes to tables:
(1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more
information on switching waveforms.
(2) This minimum pulse width for p reset and cl ear applies fo r both global cle ar and arra y controls. The t
must be added to this minimum width if the clear or reset signal incorporates the t path.
(3) This par a meter is a guideline that is s ample-teste d only and is ba s ed o n extensive de v ic e c haracteri za t ion. This
parameter applies for both global and array clocking.
(4) These paramete rs are measu r ed with a 16-bit loadable, enab le d , up/ d own counter program med into each LAB. (5) The f (6) Operating conditions: V (7) For EPM7064S-5, E PM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, an d EPM7256S-7 devices,
these values ar e specified for a PIA fan-out of on e L A B (16 macrocells). For ea c h add itional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
(8) The t
running in th e low-power mod e.
values repres en t th e highest frequency for pipeline d data.
MAX
parameter must be added to the t
LPA
= 3.3 V ± 10% for commercial and industrial use.
CCIO
, t
LAD
, tIC, tEN, t
LAC
SEXP
, t
, and t
ACL
parameter into the signal
LAD
parameters for macrocells
CPPW
parameter
LPA
Power Consumption
Supply power (P) versus frequency (f
in MHz) for MAX 7000 dev ices
MAX
is calculated with the following equation:
P = P
INT
IO
= I
CC
× VCC + P
INT
IO
+ P
The PIO value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in
Application Note 74 (Evaluating Power for Altera Devices).
The I
value, which depends on the switching frequency and the
CCINT
application logic, is calculated with the following equation:
=
I
CCINT
A × MC
+ B × (MC
TON
DEV
– MC
) + C × MC
TON
USED
× f
MAX
× tog
LC
The parameters in this equation are shown below:
MC
= Number of ma crocells with the Turbo Bit op tion turned on,
TON
as reported in the MAX+PLUS II Report File (.rpt)
MC MC
= Number of macrocells in the device
DEV
= Total number of macrocells in the design, as reported
USED
in the MAX+PLUS II Report File (.rpt)
f
MAX
tog
= Highest clock frequency to the device = Average ratio of logic cells toggling at each clock
LC
(typicall y 0.125)
A, B, C = Constants, shown in Table 39
Altera Corporation 53
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Table 39. MAX 7000 I
Equation Constants
CC
Device A B C
EPM7032 1.87 0.52 0.144 EPM7064 1.63 0.74 0.144 EPM7096 1.63 0.74 0.144 EPM7128E 1.17 0.54 0.096 EPM7160E 1.17 0.54 0.096 EPM7192E 1.17 0.54 0.096 EPM7256E 1.17 0.54 0.096 EPM7032S 0.93 0.40 0.040 EPM7064S 0.93 0.40 0.040 EPM7128S 0.93 0.40 0.040 EPM7160S 0.93 0.40 0.040 EPM7192S 0.93 0.40 0.040 EPM7256S 0.93 0.40 0.040
This calculation provides an ICC estimate based on typical conditions using a pattern of a 16-bit, loadable, enabled, up/down counter in each LAB with no output load. Actual I
values should be verifie d during
CC
operation because this measurement is sensitive to the actual pattern in the device and the en vironmen tal operating conditions.
54 Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Figure 14 shows typical supply current versus frequency for
MAX 7000 devices.
Figure 14 . ICC vs. Frequency for MAX 7000 Devices (Part 1 of 2)
EPM7032
Typical I
CC
Active (mA)
EPM7096
Typical I
CC
Active (mA)
VCC = 5.0 V
180
Room T emperature
140
100
60
20
0
VCC = 5.0 V
4
50
Room T emperature
3
50
2
50
1
50
5
0
60.2 MHz
Low Power
50
Frequency (MHz)
55.5 MHz
Low Power
151.5 MHz
High Speed
200100 150
125 MHz
High Speed
EPM7064
Typical I
CC
Active (mA)
V
300
Room T emperature
200
100
0
= 5.0 V
CC
50
High Speed
60.2 MHz
Low Power
Frequency (MHz)
151.5 MHz
200100 150
1
05
0
00
1
50
Frequency (MHz)
Altera Corporation 55
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Figure 14. ICC vs. Frequency for MAX 7000 Devices (Part 2 of 2)
EPM7128E
Typical I
CC
Active (mA)
500
VCC = 5.0 V Room T emperature
400
300
200
100
125 MHz
High Speed
55.5 MHz
Low Power
EPM7160E
Typical I
CC
Active (mA)
500
VCC = 5.0 V Room T emperature
400
300
200
100
100 MHz
High Speed
47.6 MHz
Low Power
EPM7192E
Typical I
CC
Active (mA)
0
500
VCC = 5.0 V Room T emperature
400
300
200
100
0
25 50 100 125
50 100
Frequency (MHz)
43.5 MHz
Low Power
Frequency (MHz)
150 200
High Speed
75
90.9 MHz
EPM7256E
Typical I
CC
Active (mA)
0
750
VCC = 5.0 V Room T emperature
600
450
300
150
0
50 100
150 200
Frequency (MHz)
90.9 MHz
High Speed
43.4 MHz
Low Power
25 50 100
75
Frequency (MHz)
125
56 Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
EPM7032S
EPM7064S
E
T A
T A
Figure 15 shows typical supply current versus frequency for MAX 7000S
devices.
Figure 15 . ICC vs. Frequency for MAX 7000S Devices (Part 1 of 2)
ypical I
CC
ctive (mA)
PM7128S
ypical I
CC
ctive (mA)
60
50
40
30
20
10
0
280
240
200
160
1
20
80
40
0
VCC = 5.0 V Room T emperature
58.8 MHz
Low Power
50 100
Frequency (MHz)
VCC = 5.0 V Room T emperature
56.2 MHz
Low Power
50 100
Frequency (MHz)
142.9 MHz
High Speed
150
147.1 MHz
High Speed
150
200
200
Typical I Active (mA)
EPM7160S
Typical I
CC
Active (mA)
VCC = 5.0 V
120
Room T emperature
100
80
CC
60
40
20
0
56.5 MHz
Low Power
50 100
High Speed
150
175.4 MHz
200
Frequency (MHz)
VCC = 5.0 V Room T emperature
300
240
180
120
56.5 MHz
60
0
Low Power
50 100
149.3 MHz
High Speed
150
200
Frequency (MHz)
Altera Corporation 57
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Figure 15. ICC vs. Frequency for MAX 7000S Devices (Part 2 of 2)
EPM7192S
EPM7256S
Typical I
CC
Active (mA)
Device Pin-Outs
300
240
180
120
60
0
400
30
200
100
0
0
VCC = 5.0 V Room T emperature
56.2 MHz
Low Power
25
50 75
Frequency (MHz)
= 5.0 V
V
CC
Room T emperature
55.6 MHz
Low Power
25
50 75
Frequency (MHz)
High Speed
100
125.0 MHz
125
Typical I
CC
Active (mA)
See the Altera web site (http://www.altera.com) or the Altera Digital Library for pin-out information.
High Speed
100
128.2 MHz
125
58 Altera Corporation
Figures 16 through 22 show the package pin-out diagrams for MAX 7000
)
devices.
Figure 16 . 44-Pin Package Pin-Out Diagram
Package outlines not drawn to scale.
I/O
I/O
I/O
VCC
INPUT/OE2/(GCLK2) (1)INPUT/GCLRn
INPUT/OE1
INPUT//GCLK1
GND
I/O
I/O
Pin 1
(2) I/O/(TDI)
I/O I/O
GND
I/O I/O
(2) I/O/(TMS)
I/O
VCC
I/O I/O
Pin 12 Pin 23
I/O
EPM7032
I/O
I/O
I/O
I/O
I/O
VCC
GND
44-Pin PQFP
Pin 34
I/O
I/O
I/O
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
INPUT/OE2/(GCLK2) (1)
I/O
I/O
I/O
VCC
INPUT/GCLRn
INPUT/OE1
INPUT/GCLK1
GND
I/O
I/O
6 5 4 3 2 1 44 43 42 41 40
I/O I/O/(TDO) (2) I/O I/O VCC I/O I/O I/O/(TCK) (2) I/O GND I/O
(2) I/O/(TDI)
GND
(2) I/O/(TMS)
VCC
7 8
I/O
9
I/O
10 11
I/O
12
I/O
13 14
I/O
15 16
I/O
17
I/O
18 19 20 21 22 23 24 25 26 27 28
I/O
I/O
I/O
EPM7032 EPM7032S EPM7064 EPM7064S
I/O
I/O
VCC
GND
39 38 37 36 35 34 33 32 31 30 29
I/O
I/O
I/O
I/O
44-Pin PLCC
I/O I/O/(TDO) (2 I/O I/O VCC I/O I/O I/O/(TCK) (2) I/O GND I/O
I/O
I/O
I/O
VCC
INPUT/OE2/(GCLK2) (1)
INPUT/GCLRn
INPUT/OE1
INPUT/GCLK1
GND
I/O
I/O
Pin 1
(2) I/O/(TDI)
I/O I/O
GND
I/O I/O
(2) I/O/(TMS)
I/O
VCC
I/O I/O
Pin 12 Pin 23
I/O
EPM7032 EPM7032S EPM7064 EPM7064S
I/O
I/O
I/O
I/O
VCC
GND
I/O
Pin 34
I/O I/O/(TDO) (2) I/O I/O VCC I/O I/O I/O/(TCK) (2) I/O GND I/O
I/O
I/O
I/O
44-Pin TQFP
Notes:
(1) The pin functions shown in pare nth esi s ar e on ly avail ab le in M AX 7000E and MAX 7000S dev ices. (2) JTAG ports are availa ble in M AX 7000S devices only.
Altera Corporation 59
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Figure 17. 68-Pin Package Pin-Out Diagram
Package outlines not drawn to scale.
I/O
987654321
10
I/O
11
VCCIO
12
(2) I/O/(TDI)
13
I/O
14
I/O
15
I/O
16
GND
17
I/O
18
I/O
VCCIO
GND
19 20
I/O
21 22
I/O
23
I/O
24
I/O
25
I/O
26
2728293031323334353637383940414243
I/O
(2) I/O/(TMS)
Notes:
(1) The pin functions shown in parenthesis are only available in MAX 7000E and MAX
7000S devices.
(2) JTAG ports are av ail abl e in M A X 7000S devices only.
I/O
I/O
GND
I/O
I/O
VCCINT
EPM7064 EPM7096
I/O
I/O
I/O
I/O
I/O
VCCIO
68-Pin PLCC
INPUT/OE2/(GCLK2) (1)INPUT/GCLRn
INPUT/OE1
INPUT/GCLK1
GND
68676665646362
I/O
I/O
GND
GND
VCCINT
I/O
I/O
VCCIO
I/O
I/O
61
60
I/O
59
I/O
58
GND
57
I/O/(TDO) (2)
56
I/O
55
I/O
54
I/O
53
VCCIO
52
I/O
51
I/O
50
I/O/(TCK) (2)
49
I/O
48
GND
47
I/O
46
I/O
45
I/O
44
I/O
I/O
I/O
I/O
I/O
VCCIO
60 Altera Corporation
Figure 18 . 84-Pin Package Pin-Out Diagram
Package outline not drawn to scale.
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
(2)
(3)
(3)
VCCIO
I/O/(TDI)
GND
I/O/(TMS)
VCCIO
GND
(1)
I/O
I/O
I/O
I/O
GND
I/O
I/O
I/O
VCCINT
I/O
VCCIO
INPUT/OE2/(GCLK2)
EPM7064 EPM7064S EPM7096 EPM7128E EPM7128S EPM7160E EPM7160S
I/O
I/O
(1)
GND
I/O
987654321
11
10
I/O
12 13 14
I/O
15
I/O
16
I/O
17
I/O
18 19
I/O
20
I/O
21
I/O
22 23 24
I/O
25
I/O
26 27
I/O
28
I/O
29
I/O
30
I/O
31
I/O
32
333435363738394041424344454647484950515253
I/O
I/O
I/O
I/O
INPUT/GLCRn
VCCINT
(1)
VCCIO
INPUT/OE1
INPUT/GCLK1
848382818079787776
I/O
I/O
I/O
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
(1)
GND
I/O
I/O
I/O
75
I/O
74
I/O
73
GND
72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54
I/O
VCCIO
I/O/(TDO) I/O I/O I/O I/O VCCIO I/O I/O I/O I/O/(TCK) I/O I/O GND I/O I/O I/O I/O I/O
(3)
(3)
84-Pin PLCC
Notes:
(1) Pins 6, 39, 46, and 79 are no-con n ect (N. C. ) pins on EPM7096, EPM7160E, and EPM7160S devices. (2) The pin functions shown in pare nth esi s ar e on ly avail ab le in M AX 7000E and MAX 7000S dev ices. (3) JTAG ports are availa ble in M AX 7000S devices only.
Altera Corporation 61
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
6
1
Figure 19. 100-Pin Package Pin-Out Diagram
Package outline not drawn to scale.
Pin 1
Pin 81
Pin 1
Pin 7
EPM7064 EPM7096 EPM7128E EPM7128S EPM7160E
Pin 31
Pin 51
100-Pin PQFP
Figure 20. 160-Pin Package Pin-Out Diagram
Package outline not drawn to scale.
R P N M L K J H G F E D C B A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
EPM7192E
Bottom
View
160-Pin PGA 160-Pin PQFP
Pin 1
Pin 41
Pin 26
EPM7064S EPM7128S EPM7160S
Pin 51
100-Pin TQFP
Pin 12
EPM7128E EPM7128S EPM7160E EPM7160S EPM7192E EPM7192S EPM7256E
Pin 81
62 Altera Corporation
Figure 21. 192-Pin Package Pin-O ut Diagram
7
5
Package outline not drawn to scale.
U T R P N M L K J H G F E D C B A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Figure 22. 208-Pin Package Pin-O ut Diagram
Package outline not drawn to scale.
Pin 1 Pin 15
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
EPM7256E
Bottom
View
192-Pin PGA
EPM7256E EPM7256S
Pin 53
Pin 10
208-Pin PQFP/RQFP
Altera Corporation 63
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Revision History
The information contained in the MAX 7000 Programmable Logic Devic e Family Data Sheet version 6.6 supersedes information published in previous versions. The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.6:
Version 6.6
The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.6:
Added Tables 6 through 8.
Version 6.5
The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.5:
Updated text on page 16.
Version 6.4
The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.4:
Added Note (5) on page28.
Version 6.3
The following changes were made in the MAX 7000 Programmable Logic Device Family Data Sheet version 6.3:
Updated the “Open-Drain Output Opt io n (MA X 70 00 S Devices
Only)” section on page 20.
64 Altera Corporation
Notes:
Altera Corporation 65
e s a
ir
g o
1 S ( h
A
(
C
(
L
l
MAX 7000 Programmabl e Log ic Dev ice Fam ily Data Sheet
01 Innovation Drive
an Jose, CA 95134
408) 544-7000 ttp://www.altera.com
pplications Hotline:
800) 800-EPLD
ustomer Marketi ng:
408) 544-7104
iterature Services:
it_req@altera.com
Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, th stylized Altera logo, specific device designations, and all other words and logos that are identified a trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Alter Corporation in the U.S. and other countries. All other product or service names are the property of the respectiv e holders. Alte ra products are p rotected under numerous U.S. an d foreign paten ts and pendin applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products t current specifications in accordance with Alter a's standar d warr anty, but rese rv es the rig ht to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any inf ormation, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services
66 Altera Corporation
Loading...