■Programmable security bit for protection of proprietary designs
■3.3-V or 5.0-V operation
–MultiVolt
TM
I/O interface operation, allowing devices to
interface with 3.3-V or 5.0-V devices (M ultiVolt I/O ope ration is
not avai lable in 44-pin packages)
–Pin compatible with low-voltage MAX 7000A and MAX 7000B
devices
■Enhanc ed features availabl e in MAX 7000E and MAX 7000 S devices
–Six pin- or logic-driven output enable signals
–Two global clock signals with optional inversion
–Enhanced interconnect resources for improved routability
–Fast input setup times provided by a dedicated path from I/O
pin to macrocell registers
–Programmable output slew-rate control
■Software design s upport and au tomatic plac e-and-ro ute provided by
Altera’s development system for Windows-based PC s and Sun
SPARCstation, and HP 9000 Series 700/800 workstations
2Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Fam ily Data Sheet
■Additional design entry and simula tion support pr ovide d by EDIF
2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM),
Verilog HDL, VHDL, and other interfa ces to popular EDA tools from
manufacturers such as Cadence, Exemplar Logic, Mentor Graphics,
OrCAD, Synopsys, and VeriBes t
■Programming support
–Altera’s Master Programming Unit (MPU) and programming
hardware from third-party manufacturers program all
MAX 7000 devices
TM
–The BitBlaster
parallel port download cable, and MasterBlaster
serial download cable, By te Bl as terMVTM
TM
serial/universal serial bus (USB) download cable program MAX
7000S devices
General
Description
The MAX 7000 family of high-density, high-performance PLDs is based
on Altera’s second-generation MAX architecture. Fabricated with
advanced CMOS technology, the EEPROM-based MAX7000 family
provides 600 to 5,000 usable gates, ISP, pin-to-pin delays as fast as 5 ns,
and counter speeds of up to 175.4 MHz. MAX 7000S devices in the -5, -6,
-7, and -10 spe ed g ra d es as we l l as MAX7000 and MAX7000E devices in
-5, -6, -7, -10P, and -12P speed grades comply with the PCI Special Interest
Group (PCI SIG) PCI Local Bus Specification, Revision 2.2. See Table 3
for available speed grades.
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
The MAX 7000E devices—including the EPM7128E, EPM7160E,
EPM7192E, and EPM7256E de v ices —have several enhanced features:
additional global clocking, additional output enable controls, enhanced
interconnect resources, fast input registers, and a programmabl e slew
rate.
In-system programmable MAX 7000 devices—called MAX7000S
devices—include the EPM7032S, EPM7064S, EPM7 12 8S , EPM7160S,
EPM7192S, and EPM7256S devices. MAX7000S devices have the
enhanced fea tures of MAX7000E device s as well as JTAG BST circu itry in
devices with 128 or more macrocells, ISP, and an open-drain output
option. See Table 4.
Table 4. MAX 7000 Device Features
FeatureEPM7032
EPM7064
EPM7096
ISP via JTAG interface
JTAG BST circuitry
Open-drain output option
Fast input registers
Six global output enables
Two global clocks
Slew-rate control
MultiVolt interface (2)
Programmable register
Parallel expanders
Shared expanders
Power - saving mode
Security bit
PCI-compliant devices avai lable
Notes:
(1) Available only in EPM7128S, EPM7160S, EPM7192S, and EPM7256S devices only.
(2) The Mul t iVolt I/O interf ace is not available in 44-pin packages.
vvv
vvv
vvv
vvv
vvv
vvv
vvv
All
MAX 7000E
Devices
All
MAX 7000S
Devices
v
v(1)
v
vv
vv
vv
vv
4Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Fam ily Data Sheet
The MAX 7000 architecture supports 100% TTL emulation and
high-density integration of SSI, MSI, and LSI logic functions. The
MAX 7000 architecture easily integrates multiple devices ranging from
PALs, GALs, and 22V10s to MACH and pLSI devices. MAX 7000 devices
are available in a wide ran ge of packages, includin g P LCC, PGA, PQFP,
RQFP, and TQFP packages. See Table 5.
(1) When the JTAG inte r face in M AX 7000S devices is used for ei the r b ound ary-scan testing or for ISP, four I/O pins
become JTAG pins.
(2) Perform a complete thermal analysis before committing a design to this device package. For more information, see
the Operating Requirements for Altera Devices Data Sheet.
Pin
44Pin
PQFP
44Pin
TQFP
68Pin
PLCC
84Pin
PLCC
100-
Pin
PQFP
100-
Pin
TQFP
160-
Pin
PQFP
160-
Pin
PGA
192-
Pin
PGA
208-
Pin
PQFP
208-
Pin
RQFP
MAX 7000 devices use CMOS EEPROM cells to implement logic
functions. The user-configurable MAX 7000 architecture accommodates a
variety of independe nt c omb inat orial and se qu ent ial l ogic func tions . T he
devices can be reprogrammed for quick and efficient iterations during
design development and debug cycles, and can be programme d and
erased up to 100 times.
Altera Corporation 5
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
MAX 700 0 d evices contain fro m 32 to 256 ma cr ocells th at are combined
into groups of 16 macrocells, called logic array blocks (LABs). Each
macrocell has a programmable-AND/fixed-OR array and a configurable
register with ind epend ently prog rammabl e clock, clock enable, cle ar, an d
preset functions. To bu ild compl ex logic functions, each macrocell can be
supplemented with both shareable expander product terms and highspeed parallel expand er product terms to provide up to 32 product terms
per macrocell.
The MAX 7000 family provides programmable speed/power
optimization. Speed-critical portions of a design can run at high
speed/full power, while the remaining portions run at reduced
speed/low power. This speed/power optimization feature enables the
designer to configure one or more macrocells to operate at 50% or lower
power while adding only a nominal timing delay. MAX 7000E and
MAX 7000S devices also provide an option that reduces the slew rate of
the output buffers, minimizing noise transients when non-speed-critical
signals are switc hing. The output drive rs of all M AX 7000 devices (except
44-pin devices) can be set for either 3.3-V or 5.0-V operation, allowing
MAX 7000 devices to be used in mixed-voltage systems.
The MAX 7000 family is supported byAltera deve lopment systems, which
are integrated packages that offer schematic, text—including VHDL,
Verilog HDL, and the Altera Hardware Descr ipt i on Langu age (AHDL)—
and waveform design entry, compilation and logic synthesis, simulation
and timing analysis, and device programming. The software provides
EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for
additional design entry and simulation support from other industrystandard PC- and UNIX-workst ation-based EDA tools . The software run s
on Windows-based PC s, as well a s Sun SPARCsta tion, and H P 9000 Series
700/800 workstations.
f
Functional
Description
6Altera Corporation
For more information on development tools, see the MAX+PLUS II
Programmable Logic Development System & Software Data Sheet and the
Quartus Programmable Logic Development System & Software Data Sheet.
The MAX 7000 architecture includes the following elements:
■Logic array blo cks
■Macrocells
■Expander product terms (shareable and parallel)
■Programmable interconnect arra y
■I/O control blocks
MAX 7000 Programmabl e Log i c Dev ic e Fam ily Data Sheet
The MAX 7000 architecture includes four dedicated inputs that can
be used as general-purpose inputs or as high-speed, global control
signals (clock, clear, and two output enable signals) for each
macrocell and I/O pin. Figure1 shows the ar chite cture of EPM7032 ,
EPM7064, and EPM7096 devic es .
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
I
s
s
Figure2 shows the architecture of MAX 7000E and MAX 7000S devices.
Figure 2. MAX 7000E & MAX 7000S Device Block Diagram
INPUT/GCLK1
NPUT/OE2/GCLK2
INPUT/OE1
INPUT/GCLRn
6 Output Enables
6 Output Enables
Macrocells
17 to 32
Macrocells
49 to 64
LAB B
LAB D
6 to16
6 to16
6 to16
6 to16
I/O
Control
Block
I/O
Control
Block
6 to 16 I/O Pin
6
6 to 16 I/O Pin
6
LAB A
6 to16
6 to16
6 to 16 I/O Pins
6 to 16 I/O Pins
I/O
Control
Block
I/O
Control
Block
6
6 to16
6 to16
6
LAB C
Macrocells
1 to 16
Macrocells
33 to 48
3636
16
6 to16
3636
16
6 to16
PIA
16
6 to16
16
6 to16
Logic Array Blocks
The MAX 7000 device architecture is based on the linking of highperformance, flexible, logic array modules called logic array blocks
(LABs). LABs consist of 16-macr ocell array s, as shown in Figures 1 and 2.
Multiple LABs are linked together via the programmable interconnect
array (PIA), a global bus that is fed by all dedicated inputs, I/O pins, and
macrocells.
8Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Fam ily Data Sheet
-
er
S
M
x
f
er
y
a
(
)
S
Each LAB is fed by the following signals:
■36 signals from the PIA that are used for general logic inputs
■Global controls that are used for secondary register functions
■Direct input paths from I/O pins to the registers that are used
for fast setup times for MAX 7000E and MAX 7000S devices
Macrocells
The MAX 7000 macrocell can be individual ly configur ed for either
sequential or combinatorial logic operation. The macrocell consists
of three functional blocks: the logic array, the product-term select
matrix, and the programmable register. The macrocell of EPM7032,
EPM7064, and EPM7096 devic es i s s hown in Figure 3.
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Figure4 shows a MAX 7000E and MAX 7000 S device macrocell.
Figure 4. MAX 7000E & MAX 7000S Device Macrocell
Logic Array
Product-
Term
Select
Matrix
Parallel Logic
Expanders
(from other
macrocells)
Global
Clear
Clear
Select
Global
Clocks
2
VCC
Clock/
Enable
Select
Fast Input
Select
PRN
D/T Q
ENA
CLRN
Programmable
Register
Register
Bypass
from
I/O pin
to I/O
Control
Block
36 Signals
from PIA
16 Expander
Product T erms
Shared Logic
Expanders
to PIA
Combinatorial logic is implemented in the logic array, which provides
five product terms per macroce ll. The product-term select matrix allocates
these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs
to the ma crocell’s register clear, preset, clock, and clock enable control
functions. Two kinds of expander product terms (“expanders”) are
available to supplement macrocell logic resources:
■Sharea ble expanders, which a re inverted product ter ms that are fed
back into the logic array
■Parallel expanders, which are product terms borrowed from adjacent
macrocells
The Altera developm en t sys te m aut omatically optimizes pro du ct-term
allocation according to the logic requirements of the design.
For registered functions, each macrocell flipflop can be individually
programmed to implement D, T, JK, or SR operation with prog rammable
clock control. The flipflop can be bypassed for combinatorial operation.
During design entry, the designer specifies the desired flipflop type; the
Altera development software then selects the most efficient flipflop
operation for each registered function to optimize resource utilization.
10Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Fam ily Data Sheet
Each programmable regist er can be clock ed in th ree differe nt mo des:
■By a global clock signal. This mode achieves th e fastest clock-to -
output performance.
■By a glo b al clock signal and enabled by an act iv e-high cl ock
enable. This mode provides an enable on each flipflop while still
achieving the fast clock-to-output performance of the global
clock.
■By an array clock implemented with a product term. In this
mode, the flipflop can be clocked by signals from buried
macrocells or I/O pins.
In EPM7032, EPM7064, and EPM7096 devices, the global clock signal
is available from a dedicated clock pin, GCLK1, as shown in Figure 1.
In MAX 70 00E a n d M A X 7000S devices, two glob al cl ock signals ar e
available. As show n in Figure 2, these global clock signals can be the
true or the complement of either of the global clock pins, GCLK1 or
GCLK2.
Each register also suppor ts asynchr onous prese t and clear functions.
As shown in Figures 3 and 4, the product -term select matrix al locates
product terms to control these operations. Although the
product-term-driven preset and clear of the register are active high,
active-low control c an be obta ined by inve rting t he signal within t he
logic array. In addition, each regist er c l ea r function can be
individually driven by the active-low dedica te d global clea r pin
(GCLRn). Upon power-up, each register in the device will be set to a
low state.
All MAX 7000E and MAX 70 00S I/O pins h ave a f a st input path to a
macrocell registe r . T his ded ica te d pat h a llows a s ig nal to by pas s t he
PIA and combinatorial logic and be driven t o an input D flipflop w ith
an extremely fast (2.5 ns) input setup time.
Expander Product Terms
Although most logic functions can be implemented with the five
product terms available in each macrocell, the more complex logic
functions require additional product terms. Another macrocell can
be used to supply the required logic resources; however, the
MAX 7000 architecture also allows both shareable and parallel
expander product terms (“expanders”) that provide additional
product terms directly to any macrocell in the same LAB. These
expanders help ensure that logic is synthesized with the fewest
possible logic resources to obtain the fastest possible speed.
Altera Corporation 11
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
m
m
Shareable Expanders
Each LAB has 16 shareable expanders that can be viewed as a pool of
uncommitted single product terms (one from each macrocell) with
inverted outputs that feed back into the logic array. Each shareable
expander can be used and shared by any or all macrocells in the LAB to
build complex logic functions. A small delay (t
shareable expanders are used. Figure 5 shows how shareable exp anders
can feed multiple macrocells.
Figure 5. Shareable Expanders
Shareable expanders can be shared by any or all macrocells in an LAB.
) is incurred when
SEXP
Product-Term Select Matrix
Macrocell
Product-Ter
Logic
Macrocell
Product-Ter
Logic
36 Signals
from PIA
16 Shared
Expanders
Parallel Expanders
Parallel expanders are unused product terms that can be allocated to a
neighboring macrocell to implement fast, complex logic functions.
Parallel expanders allow up to 20 product terms to directly feed the
macrocell OR logic, with five product te rms provided by the macrocell and
15 parallel expanders provided by neighboring macrocells in the LAB.
12Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
From
The compile r can allocate up t o three sets of up to f iv e parallel expa nd ers
automatically to the macrocells that require additional product terms.
Each set of five parallel expanders incurs a small, incremental timing
delay (t
). For example, if a macrocell requires 14 product terms, the
PEXP
Compiler use s the five dedicated pr oduct terms within the macroce ll a nd
allocates two se ts of parallel expande rs; the first set includ e s fiv e p rodu ct
terms and th e secon d set includ es fo ur product terms , inc reasing the to tal
delay by 2 × t
PEXP
.
Two groups of 8 macrocells within each LAB (e.g., macrocells
1 through 8 and 9 through 16) form two chains to lend or borrow parallel
expanders. A macrocell borrows parallel expanders from lowernumbered macrocells. For example, macrocell 8 can borrow parallel
expanders from macrocell 7, from macrocells 7 and 6, or from macrocells
7, 6, and 5. Within each group of 8, the lowest-numbered macrocell can
only lend parallel expanders and the highest-numbered macrocell can
only borrow them. Figure 6 shows how parallel ex pa nd er s ca n be
borrowed from a neighboring macrocell.
Figure 6. Parallel Expanders
Unused product terms in a macrocell can be allocated to a neighboring macrocell.
Previous
Macrocell
Preset
36 Signals
from PIA
16 Shared
Expanders
Product-
Term
Select
Matrix
Product-
Term
Select
Matrix
Clock
Clear
Preset
Clock
Clear
To Next
Macrocell
Macrocell
ProductTerm Logic
Macrocell
ProductTerm Logic
Altera Corporation 13
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Programmable Int er co nnec t A rray
Logic is routed between LABs via the programmable interconnect array
(PIA). This global bus is a programmable path that connects any signal
source to any destination on the device. All MAX 7000 dedicated inputs,
I/O pins, and macrocell outputs feed the PIA, which makes the signals
available thro ugh out t he e ntire device. Only the sig nals required by eac h
LAB are actually routed from the PIA into the LAB. Figure 7 shows how
the PIA signals are routed into the LAB. An EEPROM cell controls one
input to a 2-input AND gate, which selects a PIA signal to drive into the
LAB.
Figure 7. PIA Ro ut ing
PIA
Signals
To LAB
While the routing dela ys of cha nne l-b ased r outi ng sche me s in ma sk ed or
FPGAs are cumulativ e, vari able, and path-d epen dent, the MAX 7000 PI A
has a fixed delay. The PIA thus eliminates skew between signals and
makes timing performance easy to predict.
I/O Control Blocks
The I/O control block allows each I/O pin to be individually configured
for input, output, or bidirectional operation. All I/O pins have a tri-state
buffer that is individually controlled by one of the global output enable
signals or directly connected to ground or V
control block for the MAX 7000 family. The I/O control block of EPM7032,
EPM7064, and EP M7096 device s has two global outp ut enable signal s that
are driven by t wo dedicate d active-low ou tput ena ble pins ( OE1 and OE2).
The I/O control block of MAX 7000E and MAX 7000S devices has six
global output enab le signa ls that are d riven by the true or complemen t of
two output enable sig na ls, a s ubse t of t he I /O pin s, o r a sub set of the I /O
macrocells.
14Altera Corporation
. Figure 8 shows the I/O
CC
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
E
M
F
Figure 8. I/O Control Block of MAX 7000 Devices
PM7032, EPM7064 & EPM7096 Devices
VCC
OE1
OE2
GND
rom Macrocell
To PIA
AX 7000E & MAX 7000S Devices
Six Global Output Enable Signals
PIA
VCC
To Other I/O Pins
From
Macrocell
Fast Input to
Macrocell
Register
To PIA
GND
Open-Drain Output (1)
Slew-Rate Control
Note:
(1) The open- d r ain o utput option is available only in MAX 7000S d ev i ces.
Altera Corporation 15
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
When the tri-state buffer control is connected to ground, the output is
tri-stated (high impedance) and the I/O pin can be used as a dedicated
input. When the tri-sta te buffer cont r ol is con ne cted to V
enabled.
The MAX 7000 architecture provides dual I/O feedback, in which
macrocell and pin feedbacks are independent. When an I/O pin is
configured as an input, the associated macrocell can be used for buried
logic.
, the output is
CC
In-System
Programmability (ISP)
MAX 7000S devices are in-system programmable via an
industry-standard 4-pin Joint Test Action Group (JTAG) interface (IEEE
Std. 1149.1-1990). ISP allows quick, efficient iterations during design
development and debugging cycles. The MAX 7000S architecture
internally generates the high programming voltage required to program
EEPROM cells, allowing in-syst em programming wit h only a sing le 5.0 V
power supply. Du ring in-system pr ogramming, the I /O pins are tri- stated
and pulled-up to eliminate boa rd conflicts. The pull-up value is nomi nally
50 k¾.
ISP simplifies the man ufacturing flow by allowi ng devices to be mou nted
on a printed circuit board with standard in-circuit test equipment before
they are programmed. MAX 7000S devices can be programmed by
downloading the information via in-circuit teste rs (ICT), embedde d
processors, or the Altera MasterBlaster, ByteBlasterMV, ByteBlaster,
BitBlaster download cables. (The ByteBlaster cable is obsolete and is
replaced by the ByteBlast erMV cable, which can program and configure
2.5-V, 3 .3-V, and 5.0-V devi ces.) Prog ramming the devices after they are
placed on the board eliminates lead damage on high-p in-cou nt pa ck ages
(e.g., QFP packages) due to device handling and allows devices to be
reprogrammed after a system has already shipped to the field. For
example, product upgrades can be performed in the field via software or
modem.
In-system programming can be accomplished with either an adaptive or
constant algorithm. An adaptive algorithm reads information from the
unit and adapts subsequent programming steps to achieve the fastest
possible programming time for that unit. Because some in-circuit testers
cannot support a n adaptive alg or ithm, Altera o ff ers d evic es te sted with a
constant algorithm. Devices tested to the constant algorithm have an “F”
suffix in the ordering code.
TM
The Jam
used to program MAX 7000S devices with in-circuit testers, PCs, or
embedded processor.
16Altera Corporation
Standard Test and Programming Lang uage (STAPL) can be
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
f
For more information on using the Jam language, see Application Note 88
(Using the Jam Language for ISP & ICR via an Embedded Processor).
The ISP circuitr y in MAX 7000S devices is compa tible wit h IEEE Std. 1532
specification. The IEEE Std. 1532 is a standard developed to allow
concurrent ISP between multiple PLD vendors.
Programming Seque nce
During in-system programming, instructions, addresses, and data are
shifted into the MAX 7000S device through the TDI input pin. Data is
shifted out through the TDO output pin and compared against the
expected data.
Programming a pattern into the device requires the following six ISP
stages. A stand-alon e verification of a programmed pa ttern invo lves only
stages 1, 2, 5, and 6.
1.Enter ISP. The enter ISP stage ensures that the I/O pins transition
smoothly from user mode to ISP mode. The enter ISP stage requires
1ms.
2.Check ID. Before any program or verify process, the silicon ID is
checked. The time required to read this silicon ID is relatively small
compared to the overall programming time.
3.Bulk Erase. Erasing the device in-system involves shifting in the
instructions to erase the device and applying one erase pulse of
100 ms.
4.Program. Programming the device in-system involves shifting in the
address and data and then applying the programming pulse to
program the EEPROM cells. This process is repeated for each
EEPROM address.
5.Verify. Verifying an Altera device in-system involves shifting in
addresses, applying the read pulse to verify the EEPROM cells, and
shifting out the data for comparison. This process is repeated for
each EEPROM address.
6.Exit ISP. An exit ISP stage ensures that the I/O pins transition
smoothly from ISP mode to user mode. The exit ISP stage requires
1ms.
Altera Corporation 17
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
t
K
-- -
t
Cycle
---
Programming Times
The time required to implement each of the six programming stages can
be broken into the following two elements:
■A pulse time to erase, program, or read the EEPROM cells.
■A shifting time based on the test clock (TCK) frequency and the
number of TCK cycles to shift instructions, address, and data into the
device.
By combining the pulse and shift times for each of the programming
stages, the prog ram or v erify t ime ca n be d er ived as a fu nct ion of the TCK
frequency, the number of devices, and specific target device(s). Because
different ISP-capable devices have a different number of EEPROM cells,
both the total fix ed and total var iable tim es are unique for a si ngle d evice.
Programming a Single MAX 7000S Device
The time required to program a single MAX 7000S device in-system can
be calculated from the following formula:
Cycle
PTC
+=
PROGtPPULSE
--------- --------------- -----
f
TCK
where: t
PROG
t
PPULSE
= Programming time
= Sum of the fixed times to erase, program, and
verify the EEPROM cells
Cycle
f
TCK
=Number of TCK cycles to program a device
PTCK
= TCK frequency
The ISP tim es for a stand-alone veri fica tion of a single M AX 7000S device
can be calculated from the following formula:
VTCK
+=
VERtVPULSE
where: t
VER
t
VPULSE
Cycle
18Altera Corporation
---------- --------------- ----
f
TCK
=Verify time
= Sum of the fixed times to verify the EEPROM cells
=Number of TCK cycles to verify a device
VTCK
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
The programming times described in Tables 6 through 8 are ass o ciated
with the worst-case method using the enhanced ISP algorithm.
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Programmable
Speed/Power
Control
Output
Configuration
MAX 7000 devices offer a power-saving mode that supports low-power
operatio n across user-define d signal paths or the ent ire device. This
feature allows total power dissipation to be reduced by 50% or more,
because most logic app lications requir e only a small fr action of all ga tes to
operat e at maximum frequency.
The designer can program each individual macrocell in a MAX 7000
TM
device for either high-speed (i.e., with the Turbo Bit
option turned on)
or low-power (i.e., with the Turbo Bit option turned off) operation. As a
result, speed-critical paths in the design can run at high speed, while the
remaining paths ca n operate at re duced power . Macrocells t hat run at low
power incur a nominal timing delay adder (t
t
EN
, and t
SEXP
, t
ACL
, and t
parameters.
CPPW
) for the t
LPA
LAD
, t
, tIC,
LAC
MAX 7000 device outputs can be programmed to meet a variety of
system-level requ ir eme nts.
MultiVolt I/O Interface
MAX 7000 devices—except 44-pin devices—support the MultiVolt I/O
interface feature, which allo ws MAX 7000 devices to interfac e with
systems that have differing supply voltages. The 5.0-V devices in all
packages can be set for 3.3-V or 5.0-V I/O pin operation. These devices
have one set of VCC pins for internal operation and input buffers
(VCCINT), and another set for I /O output drivers (VCCIO).
The VCCINT pins must always be connected to a 5.0-V power supply.
With a 5.0-V V
are therefore compatible with both 3.3-V and 5.0-V inputs.
level, input voltage thre shold s are at TTL levels, and
CCINT
The VCCIO pins can be connected to either a 3.3-V or a 5.0-V power
supply, depending on th e output require ments. When the VCCIO pins are
connected to a 5.0-V supply, the output levels are compatible with 5.0-V
systems. When V
is connected to a 3.3-V supply, the output high is
CCIO
3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices
operating with V
timing delay of t
levels lower than 4.75 V incur a nominally greater
CCIO
instead of t
OD2
OD1
.
Open-Drain Output Option (MAX 7000S Devic es Only )
MAX 7000S devices provide an optional open-drain (functionally
equivalent to open-collector) output for each I/O pin. This open-drain
output enables the device to provide system-level control signals (e.g.,
interrupt and write enable signals) that can be asserted by any of several
devices. It can also provide an additional wired-OR plane.
20Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
By using an external 5.0-V pull-up resistor, output pins on MAX
7000S devices can be set to meet 5.0-V CMOS input vol tages. When
is 3.3 V, setting the open drain option will turn off the output
V
CCIO
pull-up transistor, allowing the external pull-up resistor to pull the
output high enough to meet 5.0-V CMOS input voltages. When
is 5.0 V, setting the output drain option is not necessary
V
CCIO
because the pull-up transistor will already turn off when the pin
exceeds appr oximately 3.8 V, allowing the external pull-up r esistor to
pull the output high enough to meet 5.0-V CMOS input voltages.
Slew-Rate Control
The output buffer for each MAX 7000E and MAX 7000S I/O pin has
an adjustable output slew rate that can be configured for low-noise
or high-speed performance. A faster slew r ate provid es high-sp eed
transit ions for high-performance sy stems. However, these fast
transitions may introduce noise transients into the system. A slow
slew rate reduces s ystem noise, b ut adds a nominal de lay of 4 to 5 ns.
In MAX 7000E devices, when the Turbo Bit is turned off, the slew
rate is set for low noise performance. For MAX 7000S devices, each
I/O pin has an individual EEPROM bit that controls the slew rate,
allowing designers to specify the slew rate on a pin-by-pin basis.
Programming wi th
External Hardware
f
f
Altera Corporation 21
MAX 7000 devices can be programmed on Windows- based PCs with
the Altera Logic Programmer card, the Master Pro gramming Unit
(MPU), and the appropriate device adapter. The MPU performs a
continuity check to ensure adequate electrical contact between the
adapter and the dev ice.
For more information, see the Altera Programming Hardware Data
Sheet.
The Altera development system can use text- or waveform-format
test vectors created with the Text Editor or Waveform Editor to test
the programmed device. For added de sign verification, designers
can perform functional te sting to compare the functional beha vior of
a MAX 7000 device with the results of simulation. Moreover, Data
I/O, BP Microsystems, and other programming hardware
manufacturers also provide programming support for Altera
devices.
For more information, see the Programming Hardware Manufacturers.
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
IEEE Std.
1149.1 (JTAG)
Boundary-Scan
Support
MAX 7000 devices support JTAG BST circuitry as specified by IEEE Std.
1149.1-1990. Table 9 describes the JTAG instructions supported by the
MAX 7000 family. The pin-out tables (see the Altera web site
(http://www.altera.com) or the Altera Digital Library for pin-out
information) show the location of the JTAG control pins for each device.
If the JTAG interface is not requir ed, the JTAG pins are available as us er
I/O pins.
Table 9. MAX 7000 JTAG Inst ructions
JTAG InstructionDev ice sDescription
SAMPLE/PRELOADEPM7128S
EPM7160S
EPM7192S
EPM7256S
EXTESTEPM7128S
EPM7160S
EPM7192S
EPM7256S
BYPASSEPM7032S
EPM7064S
EPM7128S
EPM7160S
EPM7192S
EPM7256S
IDCODEEPM7032S
EPM7064S
EPM7128S
EPM7160S
EPM7192S
EPM7256S
ISP InstructionsEPM7032S
EPM7064S
EPM7128S
EPM7160S
EPM7192S
EPM7256S
Allows a snapshot of signals at the device pins to be captured and
examined during normal dev ic e operation, and permits an initial data
pattern output at the device pins.
Allows the external circuitry and board-level interconnections to be
tested by forcing a test pattern at the out put pins and c apt uring test
results at the input pins.
Places the 1-bit bypass register between the TDI and TDO pins, which
allows the BST data to pass synchronously through a selected device
to adjacent devices during normal device operation.
Selects the IDCODE registe r and plac es it be tween TDI and TDO,
allowing the IDCODE to be serially shifted out of TDO.
These instructions are used whe n programming MAX 7000S devices
via the JTAG ports with the MasterBlaster, ByteBlasterMV, BitBlaster
download cable, or using a Jam File (.jam), Jam Byte -Co de f ile (.jbc),
or Ser ial Vect or F ormat file (.svf) via an embedded proc es s or or te st
equipment.
22Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
The instruction r egist er len gt h of MAX 7000S d evices is 10 bits . Tables 10
and 11 show the boundary-scan register length and device IDCODE
information for MAX 7000S devices.
Table 10. MAX 7000S Boundary-Scan R egister Length
(1) The most significant bit (MSB) is on the left.
(2) The least si gnificant bi t (L SB) for all JTAG IDCODEs is 1.
Altera Corporation 23
Part Number (16 Bi t s)Manufacturer’s
Identity (11 Bits)
1 (1 Bit)
(2)
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Figure9 shows the timing requirements for the JTAG signals.
Figure 9. MAX 7000 JTAG Waveforms
TMS
TDI
t
JCP
JCH
t
JCL
t
TCK
t
JPSU
t
JPH
t
JPXZ
TDO
Signal
to Be
Captured
Signal
to Be
Driven
t
t
JPZX
JSZX
t
JSSU
t
JPCO
t
JSH
t
JSCO
t
JSXZ
Table12 shows the JTAG timing parameters and values for MAX 7000S
devices.
Table 12. JTAG Timing Parameters & Values for MA X 7000S Devices
SymbolParameterMinMaxUnit
t
t
t
t
t
t
t
t
t
t
t
t
t
TCK clock period 100ns
JCP
TCK clock high time 50ns
JCH
TCK clock low time 50ns
JCL
JTAG port setup time 20ns
JPSU
JTAG port hold time 45ns
JPH
JTAG port clock to output25ns
JPCO
JTAG port high impedance t o val id out put25ns
JPZX
JTAG port valid output to high im pedance25ns
JPXZ
Capture register setup time20ns
JSSU
Capture register hold time45ns
JSH
Update register clock to output25ns
JSCO
Update register high impedance to valid output25ns
JSZX
Update register valid output to high impedance25ns
JSXZ
f
For more information, see Application Note 39 (IEEE 1149.1 (JTAG)
Boundary-Scan Testing in Altera Devices).
24Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
VCC
Design Security
Generic Testing
All MAX 7000 devices contain a programmable security bit that controls
access to the data programmed into the device. When this bit is
programmed, a proprietary design implemented in the devi ce cannot be
copied or retrieved. This feature provides a high level of design security
because programmed data wit hin EEPROM cells is invisible . The security
bit that controls this function, as well as all other programmed data, is
reset only when the device is reprogrammed.
Each MAX 7000 device is functionally tested. Complete testing of each
programmable EEPROM bit a nd a ll in te rnal logi c e lements e nsur es 1 00 %
programming yield . AC test measurements are taken under conditions
equivalent to those sh own in Figure 10. Test patt erns c an be u sed an d the n
erased during early stages of the production flow.
Figure 10 . MAX 7000 AC Test Conditions
Power supply transients can affect AC
measurements. Simultaneous
transitions of m ulti pl e out put s sh ould be
avoided for accurate measurement.
Threshold tes ts must not be performed
under AC condit ions. Large-ampli tude,
fast ground- current transients normally
occur as the device outputs discharge
the load capacitances. When these
transients flow through the parasitic
inductance be tween the device grou nd
pin and the test system ground,
significant reductions in observable
noise immunity can result. Numbers in
brackets are for 2.5-V devices and
outputs. Numbers without brackets are
for 3.3-V devices and outputs.
464 Ω
[703 Ω]
Device
Output
250
[8.06 ]
KΩ
Device input
rise and fall
times < 3 ns
To Test
System
Ω
C1 (includes JIG
capacitance)
QFP Carrier &
Development
Socket
MAX 7000 and MAX 7000E de vices in QFP package s with 100 or more
pins are shipped in special plastic carriers to protect the QFP leads. The
carrier is used with a prototype development socket and special
programming hardware available from Altera. This carrier technology
makes it possible to prog ram, tes t, erase, a nd reprogra m a device without
exposing the leads to mechanical stress.
f
For detailed information and carrier dimensions, refer to theQFP Carrier
& Development Socket Data Sheet.
1MAX 7000S devices are not shipped in carriers.
Altera Corporation 25
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Operating
Conditions
Tables 13 through 18 provide information about absolute maximum
ratings, recommended operating conditions, operating conditions, and
capacitance for 5.0-V MAX 7000 devices.
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
T
O
C
Notes to tables:
(1) See the Operating Requirements for Altera Devices Data Sheet.
(2) Minimu m DC input volta ge on I/O pins is –0 . 5 V a n d on 4 dedicated input pins is –0 . 3 V. D ur ing transit ions, the
inputs may undershoot to –2.0 V or overshoot to 7.0 V for input currents less than 100 mA and periods shorter than
20 ns.
(3) Numbers in parentheses are for industrial-te mperatur e-ra nge devices.
(4) V
(5) The POR time for all 7000S devices does not exceed 300 µs. The sufficient V
(6) 3.3-V I/O operation is n ot avail able for 44-pin packages.
(7) The V
(8) During in-system pro gr a mming, the minimum DC input voltage is –0.3 V.
must rise monotonically.
CC
device is fully initialized within the POR time after V
parameter applies only t o MA X 7000S devices.
CCISP
voltage level for POR is 4.5 V. The
reaches the sufficient POR voltage level.
CCINT
CCINT
(9) The se values are specified under the MAX 7000 recommended operating conditions in Table 14 on page 26.
(10) The parameter is measured with 50% of the outputs each sourcing the specified current. The I
to high-level TTL or CMOS output current.
(11) The parameter is measured with 50% of the outputs each sinking the specified current. The I
low-level T T L, PCI, or CM OS output current.
parameter refers
OH
parameter refers to
OL
(12) When the JTAG interface is enabled in MAX 7000S devices, the input leakage current on the JTAG pins is typically
–60 µA.
(13) Capacitan c e is measured at 25° C and is sample-tested only. The
OE1 pin has a maximum capacitance of 20 pF.
Figure 11 shows the typical output drive characteristics of MAX 7000
devices.
Figure 11. Output Drive Characteristics of 5.0-V MAX 7000 Devices
150
120
90
I
ypical
O
utput
urrent (mA)
60
30
Timing Model
I
OL
Typical
V
= 5.0 V
CCIO
Room T emperature
I
OH
12345
Output
Current (mA)
VO Output Voltage (V)
MAX 7000 de vice timi ng ca n be an aly zed wi th the Alt era so ftwa re, with a
variety of popula r industry-standard EDA simulators and timing
150
120
90
I
O
60
30
12345
I
OL
V
= 3.3 V
CCIO
Room T emperature
I
OH
3.3
VO Output Voltage (V)
analyzers, or with the timing model shown in Figure 12. MAX 7000
devices have fixed internal delays that enable the designer to determine
the worst-case ti ming of any design . The Alt era sof tware provid es timin g
simulation, point-to-point delay prediction, and detailed timing analysis
for a device-wide performance evaluation.
28Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Figure 12 . MAX 7000 Timing Model
Internal Output
Enable Delay
t
(1)
IOE
Input
Delay
t
IN
PIA
Delay
t
PIA
Global Control
Delay
t
GLOB
Logic Array
Delay
t
LAD
Register
Control Delay
t
LAC
t
IC
t
EN
Shared
Expander Delay
t
SEXP
Notes:
(1) Only available in M A X 7000E and MAX 7000S devi ces.
(2) Not available in 44-pin d evices.
The timing characteristics of any signal path can be derived from the
timing model and parameters of a particular dev ice . Ex te rn al timing
parameters, which represent pin-to-pin timing delays, can be calculated
as the sum of internal parameters. Figure 13 shows the internal timing
relationship of internal and external delay parameters.
Parallel
Expander Delay
t
PEXP
Input Delay
Fast
t
FIN
(1)
Register
Delay
t
SU
t
H
t
PRE
t
CLR
t
RD
t
COMB
t
FSU
t
FH
Output
Delay
t
OD1
t
OD2
t
OD3
t
XZ
t
X1
Z
t
ZX2
t
ZX3
(2)
(2)
(1)
I/O
Delay
t
IO
f
For more infomration, see Application Note 94 (Understanding MAX 7000
Timing).
Altera Corporation 29
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Figure 13. Swi t ch i ng W aveforms
tR & tF < 3 ns.
Inputs are driven at 3 V
for a logic high and 0 V
for a logic low. A ll timing
characteristics are
measured at 1.5 V.
Input Pin
I/O Pin
PIA Delay
Shared Expander
Parallel Expander
Delay
Logic Array
Input
Delay
Logic Array
Output
Output Pin
Global
Clock Pin
Global Clock
at Register
Data or Enable
(Logic Array Output)
Combinatorial Mode
t
IN
t
IO
Global Clock Mode
t
IN
tSUt
t
CH
t
GLOB
H
t
R
t
PIA
t
SEXP
t
, t
LAC
LAD
t
PEXP
t
COMB
t
OD
t
CL
t
F
Array Clock Mode
t
F
t
, t
CLR
PRE
t
PIA
t
OD
Input or I/O Pin
Clock into PIA
Clock into
Logic Array
Clock at
Register
Data from
Logic Array
Register to PIA
to Logic Array
Register Output
to Pin
t
R
t
ACH
t
IN
t
IO
t
PIA
t
ACL
t
IC
t
t
SU
H
t
RD
t
PIA
t
OD
30Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Tables 19 through 26 show the MAX 7000 and MAX 7000E AC
operating conditions.
Table 19.MAX 7000 & MAX 7000E External Timing ParametersNote (1)
Input to non-registered outputC1 = 35 pF6.07.5ns
I/O input to non-registered outputC1 = 35 pF6.07.5ns
Global clock setup time5.06.0ns
Global clock hold time0.00.0ns
Global clock setup time of fast input (2)2.53.0ns
Global clock hold time of fast input(2)0.50.5ns
Global clock to output delayC1 = 35 pF4.04.5ns
Global clock high time2.53.0ns
Global clock low time2.53.0ns
Array clock setup time2.53.0ns
Array clock hold time2.02.0ns
Array clock to output delayC 1 = 35 pF6.57.5ns
Array clock high time3.03.0ns
Array clock low time3.03.0ns
Minimum pulse width for clear and
(3)3.03.0ns
preset
Output data hold time after clockC1 = 35 pF (4)1.01.0ns
Minimum global clock period6.68.0ns
Maximum internal global clock
(5)151.5125.0MHz
frequency
Minimum array clock period6.68.0ns
Maximum internal array clock
(5)151.5125.0MHz
frequency
Maximum clock frequency(6)200166.7MHz
Altera Corporation 31
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Table 20. MAX 7000 & MAX 7000E Inter nal Timing ParametersNote (1)
Input pad and buffer delay0.40.5ns
I/O input pad and buffer delay0.40.5ns
Fast input delay(2)0.81.0ns
Shared expander delay3.54.0ns
Parallel expander delay0.80.8ns
Logic array delay2.03.0ns
Logic control array delay2.03.0ns
Internal output enable delay(2)2.0ns
Output buffer and pad delay
Slow slew rate = off, V
CCIO
Output buffer and pad delay
Slow slew rate = off, V
CCIO
Output buffer and pad delay
= 5.0 V
= 3.3 V
C1 = 35 pF 2.02.0ns
C1 = 35 pF (7)2.52.5ns
C1 = 35 pF (2)7.07.0ns
Slow slew rate = on,
= 5.0 V or 3.3 V
V
CCIO
Output buffer enable delay
Slow slew rate = off, V
CCIO
Output buffer enable delay
Slow slew rate = off, V
CCIO
Output buffer enable delay
= 5.0 V
= 3.3 V
C1 = 35 pF 4.04.0ns
C1 = 35 pF (7)4.54.5ns
C1 = 35 pF (2)9.09.0ns
Slow slew rate = on
= 5.0 V or 3.3 V
V
CCIO
Output buffer disable delayC1 = 5 pF4.04.0ns
Register setup time3.03.0ns
Register hold time1.52.0ns
Register setup time of fast input(2)2.53.0ns
Register hold time of fast input(2)0.50.5ns
Register delay0.81.0ns
Combinatorial delay0.81.0ns
Array clock delay2.53.0ns
Register enable time2.03.0ns
Global control delay0.81.0ns
Register preset time2.02.0ns
Register clear time2.02.0ns
PIA delay0.81.0ns
Low-power adder(8)10.010.0ns
32Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Table 21.MAX 7000 & MAX 7000E External Timing ParametersNote (1)
SymbolParamet erConditi onsSpeed G radeUnit
MAX 7000E (-10P) MAX 7000 (-10)
MAX 7000E (-10)
MinMaxMinMax
t
PD1
t
PD2
t
SU
t
H
t
FSU
t
FH
t
CO1
t
CH
t
CL
t
ASU
t
AH
t
ACO1
t
ACH
t
ACL
t
CPPW
t
ODH
t
CNT
f
CNT
t
ACNT
f
ACNT
f
MAX
Input to non-registered outputC1 = 35 pF10.010.0ns
I/O input to non-registered outputC1 = 35 pF10.010.0ns
Global clock setup time7.08.0ns
Global clock hold time0.00.0ns
Global clock setup time of fast input (2)3.03.0ns
Global clock hold time of fast input (2)0.50.5ns
Global clock to output delayC1 = 35 pF5.05ns
Global clock high time4.04.0ns
Global clock low time4.04.0ns
Array clock setup time2.03.0ns
Array clock hold time3.03.0ns
Array clock to output delayC1 = 35 pF10.010.0ns
Array clock high time4.04.0ns
Array clock low time4.04.0ns
Minimum pulse width for clear and
(3)4.04.0ns
preset
Output data hold time after clockC1 = 35 pF (4)1.01.0ns
Minimum global clock period10.010.0ns
Maximum internal global clock
(5)100.0100.0MHz
frequency
Minimum array clock period10.010.0ns
Maximum internal array clock
(5)100.0100.0MHz
frequency
Maximum clock frequency(6)125.0125.0MHz
Altera Corporation 33
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Table 22. MAX 7000 & MAX 7000E Inter nal Timing ParametersNote (1)
SymbolParameterConditio nsSpeed GradeUnit
MAX 7000E ( -10P ) MAX 7000 (-10)
MAX 7000E (-10)
MinMaxMinMax
t
IN
t
IO
t
FIN
t
SEXP
t
PEXP
t
LAD
t
LAC
t
IOE
t
OD1
t
OD2
t
OD3
t
ZX1
t
ZX2
t
ZX3
t
XZ
t
SU
t
H
t
FSU
t
FH
t
RD
t
COMB
t
IC
t
EN
t
GLOB
t
PRE
t
CLR
t
PIA
t
LPA
34Altera Corporation
Input pad and buffer delay0.51.0ns
I/O input pad and buffer delay0.51.0ns
Fast input delay(2)1.01 .0ns
Shared expander delay5.05.0ns
Parallel expander delay0.80.8ns
Logic array delay5.05.0ns
Logic control array delay5.05.0ns
Internal output enable delay(2)2.02.0ns
Output buffer and pad delay
C1 = 35 pF1.52.0ns
Slow slew rate = off
V
= 5.0 V
CCIO
Output buffer and pad delay
C1 = 35 pF (7)2.02.5ns
Slow slew rate = off
V
= 3.3 V
CCIO
Output buffer and pad delay
C1 = 35 pF (2)5.56.0ns
Slow slew rate = on
V
= 5.0 V or 3.3 V
CCIO
Output buffer enable delay
C1 = 35 pF5.05.0ns
Slow slew rate = off
V
= 5.0 V
CCIO
Output buffer enable delay
C1 = 35 pF (7)5.55.5ns
Slow slew rate = off
V
= 3.3 V
CCIO
Output buffer enable delay
C1 = 35 pF (2)9.09.0ns
Slow slew rate = on
V
= 5.0 V or 3.3 V
CCIO
Output buffer disable delayC1 = 5 pF5.05.0ns
Register setup time2.03.0ns
Register hold time3.03 .0ns
Register setup time of fast input(2)3.03.0ns
Register hold time of fast input(2)0.50.5ns
Register delay2.01.0ns
Combinatorial delay2.01.0ns
Array clock delay5.05.0ns
Register enable time5.05.0ns
Global control delay1.01.0ns
Register preset time3.03.0ns
Register clear time3.03.0ns
PIA delay1.01.0ns
Low-power adder(8)11.011.0ns
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Table 23.MAX 7000 & MAX 7000E External Timing ParametersNote (1)
SymbolParameterConditionsSpeed GradeUnit
MAX 7000E ( -12 P) MAX 7000 (-12)
MAX 7000E (-12)
MinMaxMinMax
t
PD1
t
PD2
t
SU
t
H
t
FSU
t
FH
t
CO1
t
CH
t
CL
t
ASU
t
AH
t
ACO1
t
ACH
t
ACL
t
CPPW
t
ODH
t
CNT
f
CNT
t
ACNT
f
ACNT
f
MAX
Input to non-registered outputC1 = 35 pF12.012.0ns
I/O input to non-registered outputC1 = 35 pF12.012.0ns
Global clock setup time7.010.0ns
Global clock hold time0.00.0ns
Global clock setup time of fast input (2)3.03.0ns
Global clock hold time of fast input (2)0.00.0ns
Global clock to output delayC1 = 35 pF6.06.0ns
Global clock high time4.04.0ns
Global clock low time4.04.0ns
Array clock setup time3.04.0ns
Array clock hold time4.04.0ns
Array clock to output delayC1 = 35 pF12.012.0ns
Array clock high time5.05.0ns
Array clock low time5.05.0ns
Minimum pulse width for clear and
(3)5.05.0ns
preset
Output data hold time after clockC1 = 35 pF (4)1.01.0ns
Minimum global clock period11.011.0ns
Maximum internal global clock
(5)90.990.9MHz
frequency
Minimum array clock period11.011.0ns
Maximum internal array clock
(5)90.990.9MHz
frequency
Maximum clock frequency(6)125.0125.0MHz
Altera Corporation 35
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Table 24.MAX 7000 & MAX 7000E Internal Timi ng ParametersNote (1)
SymbolParameterConditionsSpeed GradeUnit
MAX 7000E (-12P) MAX 7000 (-12)
MAX 7000E (-12)
MinMaxMinMax
t
IN
t
IO
t
FIN
t
SEXP
t
PEXP
t
LAD
t
LAC
t
IOE
t
OD1
t
OD2
t
OD3
t
ZX1
t
ZX2
t
ZX3
t
XZ
t
SU
t
H
t
FSU
t
FH
t
RD
t
COMB
t
IC
t
EN
t
GLOB
t
PRE
t
CLR
t
PIA
t
LPA
36Altera Corporation
Input pad and buffer delay1.02.0ns
I/O input pad and buffer delay1.02.0ns
Fast input delay(2)1.01.0ns
Shared expander delay7.07.0ns
Parallel expander delay1 .01.0ns
Logic array delay7.05.0ns
Logic control array delay5.05.0ns
Internal output enable delay(2)2.02.0ns
Output buffer and pad delay
C1 = 35 pF1.03.0ns
Slow slew rate = off
= 5.0 V
V
CCIO
Output buffer and pad delay
C1 = 35 pF (7)2.04.0ns
Slow slew rate = off
= 3.3 V
V
CCIO
Output buffer and pad delay
C1 = 35 pF (2)5.07.0ns
Slow slew rate = on
= 5.0 V or 3.3 V
V
CCIO
Output buffer enable delay
C1 = 35 pF6.06.0ns
Slow slew rate = off
= 5.0 V
V
CCIO
Output buffer enable delay
C1 = 35 pF (7)7.07.0ns
Slow slew rate = off
= 3.3 V
V
CCIO
Output buffer enable delay
C1 = 35 pF (2)10.010.0ns
Slow slew rate = on
= 5.0 V or 3.3 V
V
CCIO
Output buffer disable delayC1 = 5 pF6.06.0ns
Register setup time1.04.0ns
Register hold time6.04.0ns
Register setup time of fast input(2)4.02.0ns
Register hold time of fast input(2)0.02.0ns
Register delay2.01.0ns
Combinatorial delay2.01.0ns
Array clock delay5.05.0ns
Register enable time7.05.0ns
Global control delay2.00.0ns
Register preset time4.03.0ns
Register clear time4.03.0ns
PIA delay1.01.0ns
Low-power adder(8)12.012.0ns
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Table 25. MAX 7000 & MAX 7000E External Timing ParametersNote (1)
SymbolParameterConditionsSpeed GradeUnit
-15-15T-20
MinMaxMinMaxMinMax
t
PD1
t
PD2
t
SU
t
H
t
FSU
t
FH
t
CO1
t
CH
t
CL
t
ASU
t
AH
t
ACO1
t
ACH
t
ACL
t
CPPW
t
ODH
t
CNT
f
CNT
t
ACNT
f
ACNT
f
MAX
Input to non-registered output C1 = 35 pF15.015.020.0ns
I/O input to non-registered
C1 = 35 pF15.015.020.0ns
output
Global clock setup time11.011.012.0ns
Global clock hold time0.00.00.0ns
Global clock setup time of fast
(2)3.0–5.0ns
input
Global clock hold time of fast
(2)0.0–0.0ns
input
Global clock to output delayC1 = 35 pF8.08.012.0ns
Global clock high time5.06.06.0ns
Global clock low time5.06.06.0ns
Array clock setup time4.04.05.0ns
Array clock hold time4.04.05.0ns
Array clock to output delayC1 = 35 pF15.015.020.0ns
Array clock high time6.06.58.0ns
Array clock low time6.06.58.0ns
Minimum pulse width for clear
(3)6.06.58.0ns
and preset
Output data hold time after
C1 = 35 pF (4)1.01.01.0ns
clock
Minimum global clock period13.013.016.0n s
Maximum internal global clock
(5)76.976.962.5MHz
frequency
Minimum array clock period13.013.016 .0ns
Maximum internal array clock
(5)76.976.962.5MHz
frequency
Maximum clock frequency(6)10083.383.3MHz
Altera Corporation 37
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Table 26.MAX 7000 & MAX 7000E Internal Timi ng ParametersNote (1)
SymbolParameterConditionsSpeed GradeUnit
-15-15T-20
MinMaxMinMaxMinMax
t
IN
t
IO
t
FIN
t
SEXP
t
PEXP
t
LAD
t
LAC
t
IOE
t
OD1
t
OD2
t
OD3
t
ZX1
t
ZX2
t
ZX3
t
XZ
t
SU
t
H
t
FSU
t
FH
t
RD
t
COMB
t
IC
t
EN
t
GLOB
t
PRE
t
CLR
t
PIA
t
LPA
Input pad and buffer delay2.02.03.0ns
I/O input pad and buffer delay2.02.03.0ns
Fast input delay(2)2.0–4.0ns
Shared expander delay8.010.09.0ns
Parallel expander delay1.01.02.0ns
Logic array delay6.06.08.0ns
Logic control array delay6.06.08.0ns
Internal output enable delay(2)3.0–4.0ns
Output buffer and pad delay
C1 = 35 pF4.04.05.0ns
Slow slew rate = off
= 5.0 V
V
CCIO
Output buffer and pad delay
C1 = 35 pF (7)5.0–6.0ns
Slow slew rate = off
= 3.3 V
V
CCIO
Output buffer and pad delay
C1 = 35 pF (2)8.0–9.0ns
Slow slew rate = on
= 5.0 V or 3.3 V
V
CCIO
Output buffer enable delay
C1 = 35 pF6.06.010.0ns
Slow slew rate = off
V
= 5.0 V
CCIO
Output buffer enable delay
C1 = 35 pF (7)7.0–11.0ns
Slow slew rate = off
V
= 3.3 V
CCIO
Output buffer enable delay
C1 = 35 pF (2)10.0–14.0ns
Slow slew rate = on
V
= 5.0 V or 3.3 V
CCIO
Output buffer disable delayC1 = 5 pF6.06.010.0ns
Register setup time4.04.04.0ns
Register hold time4.04.05.0ns
Register setup time of fast input (2)2.0–4.0ns
Register hold time of fast input (2)2.0–3.0ns
Register delay1.01.01.0ns
Combinatorial delay1.01.01.0ns
Array clock delay6.06.08.0ns
Register enable time6.06.08.0ns
Global control delay1.01.03.0ns
Register preset time4.04.04.0ns
Register clear time4.04.04.0ns
PIA delay2.02.03.0ns
Low-power adder(8)13.015.015.0ns
38Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Notes to tables:
(1) These values are specified under the recommended operating conditions shown in Table 14 . See Figure 1 3 for more
information on switching waveforms.
(2) This parameter applies to MAX 7000E devices only.
(3) This minimum pulse width for preset and clear applies for both global clear and array controls. The t
must be added to this minimum width if the clear or reset signal incorporates the t
path.
parameter into the signal
LAD
parameter
LPA
(4) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This
parameter applies for both global and array clocking.
(5) These parameter s ar e measured with a 16-bit loa d ab le, en abled, up/down counter programmed int o eac h L AB .
(6) The f
(7) Operati ng con d iti o ns : V
(8) The t
running in the low-power mode.
values repr esent the highest fr eq uency for pi pelined data.
MAX
parameter must be added to the t
LPA
= 3.3 V ± 10% for commercial and industrial use.
CCIO
LAD
, t
LAC
, tIC, tEN, t
SEXP
, t
ACL
, and t
parameters for macrocells
CPPW
Tables 27 and 28 show the EPM7032S AC operating conditions.
Table 27.EPM7032S External Timing Parameters (Part 1 of 2)Note (1)
SymbolParameterConditionsSpeed GradeUnit
-5-6-7-10
Min Max Min Max Min Max Min Max
t
PD1
t
PD2
t
SU
t
H
t
FSU
t
FH
t
CO1
t
CH
t
CL
t
ASU
t
AH
t
ACO1
t
ACH
t
ACL
t
CPPW
t
ODH
t
CNT
f
CNT
t
ACNT
Input to non-registered output C1 = 35 pF5.06.07.510.0ns
I/O input to non-registered
C1 = 35 pF5.06.07.510.0ns
output
Global clock setup time2.94.05.07.0ns
Global clock hold time0.00.00.00.0ns
Global clock setup time of fast
2.52.52.53.0ns
input
Global clock hold time of fast
0.00.00.00.5ns
input
Global clock to output delayC1 = 35 pF3.23.54.35.0ns
Global clock high time2.02.53.04.0ns
Global clock low time2.02.53.04.0ns
Array clock setup time0.70.91.12.0ns
Array clock hold time1.82.12.73.0ns
Array clock to output delayC1 = 35 pF5.46.68.210.0ns
Array clock high time2.52.53.04.0ns
Array clock low time2.52.53.04.0ns
Minimum pulse width for clear
(2)2.52.53.04.0ns
and preset
Output data hold time after
C1 = 35 pF (3) 1.01.01.01.0ns
clock
Minimum global clock period5.77.08.610.0ns
Maximum internal global clock
(4)17 5.4142.911 6.3100.0MHz
frequency
Minimum array clock period5.77.08.610.0ns
Altera Corporation 39
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Table 27.EPM7032S External Timing Parameters (Part 2 of 2)Note (1)
SymbolParameterCon di tionsSpeed GradeUnit
-5-6-7-10
Min Max Min Max Min Max Min Max
f
ACNT
f
MAX
Maximum internal array clock
(4)175.4142.9116.3100.0M Hz
frequency
Maximum clock frequency(5)250.0200.0166.7125.0MHz
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Table 28. EPM7032S Int ernal Timing ParametersNote (1)
SymbolParamet erConditio nsSpeed GradeUnit
-5-6-7-10
MinMaxMinMaxMinMaxMinMax
t
PIA
t
LPA
Notes to tables:
(1) These values are specified under the recommended operating conditions shown in Table 14 . See Figure 1 3 for more
(2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t
(3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This
(4) These parameter s ar e measured with a 16-bit loa d ab le, en abled, up/down counter programmed int o eac h L AB .
(5) The f
(6) Operati ng con d iti o ns : V
(7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, E PM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices,
(8) The t
PIA delay(7)1.11.11.41.0ns
Low-power adder(8)12.010.010.011.0ns
information on switching waveforms.
parameter
must be added to this minimum width if the clear or reset signal incorporates the t
path.
parameter into the signal
LAD
LPA
parameter applies for both global and array clocking.
values repr esent the highest fr eq uency for pi pelined data.
MAX
= 3.3 V ± 10% for commercial and industrial use.
CCIO
these values are spec i fied for a PIA fan-out of one LA B (16 macrocells). For eac h add it ional LAB fan-out in thes e
devices, add an addition al 0. 1 n s to th e PI A ti mi ng v alu e.
parameter must be added to the t
LPA
running in the low-power mode.
LAD
, t
LAC
, tIC, tEN, t
SEXP
, t
ACL
, and t
parameters for macrocells
CPPW
Tables 29 and 30 show the EPM7064S AC operating conditions.
Table 29.EPM7064S External Timing Parameters (Part 1 of 2)Note (1)
SymbolParameterConditionsSpeed GradeUnit
-5-6-7-10
MinMaxMinMaxMinMaxMinMax
t
PD1
t
PD2
t
SU
t
H
t
FSU
t
FH
t
CO1
t
CH
t
CL
t
ASU
t
AH
Altera Corporation 41
Input to non-registered output C1 = 35 pF5.06.07.510.0ns
I/O input to non-registered
output
Global clock setup time2.93.66.07.0ns
Global clock hold time0.00.00.00.0ns
Global clock setup time of fast
input
Global clock hold time of fast
input
Global clock to output delayC1 = 35 pF3.24.04.55.0ns
Global clock high time2.02.53.04.0ns
Global clock low time2.02.53.04.0ns
Array clock setup time0.70.93.02.0ns
Array clock hold time1.82.12.03.0ns
C1 = 35 pF5.06.07.510.0ns
2.52.53.03.0ns
0.00.00.50.5ns
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Table 29.EPM7064S External Timing Parameters (Part 2 of 2)Note (1)
SymbolParameterConditionsSpeed GradeUnit
-5-6-7-10
MinMaxMinMaxMinMaxMinMax
t
ACO1
t
ACH
t
ACL
t
CPPW
t
ODH
t
CNT
f
CNT
t
ACNT
f
ACNT
f
MAX
Array clock to output delayC1 = 35 pF5.46.77.510.0ns
Array clock high time2.52.53.04.0ns
Array clock low time2.52.53.04.0ns
Minimum pulse width for clear
(2)2.52.53.04.0ns
and preset
Output data hold time after
C1 = 35 pF (3)1.01.01.01.0ns
clock
Minimum global clock period5.77.18.010.0ns
Maximum internal global clock
(4)175.4140.8125.0100.0MHz
frequency
Minimum array clock period5.77.18.010.0ns
Maximum internal array clock
(4)175.4140.8125.0100.0MHz
frequency
Maximum clock frequency(5)250.0200.0166.7125.0MHz
Table 30. EPM7064S Int ernal Timing Parameters (Part 1 of 2)Note (1)
SymbolP ara me terConditionsSpeed GradeUnit
-5-6-7-10
Min Max Min Max Min Max Min Max
t
IN
t
IO
t
FIN
t
SEXP
t
PEXP
t
LAD
t
LAC
t
IOE
t
OD1
t
OD2
t
OD3
t
ZX1
t
ZX2
t
ZX3
t
XZ
t
SU
t
H
42Altera Corporation
Input pad and buffer delay0.20.20.50.5ns
I/O input pad and buffer delay0.20.20.50.5ns
Fast input delay2.22.61.01.0ns
Shared expander delay3.13.84.05.0ns
Parallel expander delay0.91.10.80.8ns
Logic array delay2.63.23.05.0ns
Logic control array delay2.53.23.05.0ns
Internal output enable delay0.70.82.02.0ns
Output buffer and pad delay C1 = 35 pF0.20.32.01.5ns
Output buffer and pad delay C1 = 35 pF (6)0.70.82.52.0ns
Output buffer and pad delay C1 = 35 pF 5.25.37.05.5ns
Output buffer enable delayC1 = 35 pF4.04.04.05.0ns
Output buffer enable delayC1 = 35 pF (6)4.54.54.55.5ns
Output buffer enable delayC1 = 35 pF 9.09.09.09.0ns
Output buffer disable delayC1 = 5 pF 4.04.04.05.0ns
Register setup time0.81.03.02.0ns
Register hold time1.72.02.03.0ns
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Table 30.EPM7064S Internal Timing Parameters (Part 2 of 2)Note (1)
SymbolParame t erConditio nsSpeed GradeUnit
-5-6-7-10
Min Max Min Max Min Max Min Max
t
FSU
t
FH
t
RD
t
COMB
t
IC
t
EN
t
GLOB
t
PRE
t
CLR
t
PIA
t
LPA
Notes to tables:
(1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more
(2) This minimum pulse width for p reset and cl ear applies fo r both global cle ar and arra y controls. The t
(3) This par a meter is a guideline that is s ample-teste d only and is ba s ed o n extensive de v ic e c haracteri za t ion. This
(4) These paramete rs are measu r ed with a 16-bit loadable, enab le d , up/ d own counter program med into each LAB.
(5) The f
(6) Operating conditions: V
(7) For EPM7064S-5, E PM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, an d EPM7256S-7 devices,
(8) The t
Register setup time of fast
input
Register hold time of fast
input
Register delay1.21.61.02.0ns
Combinatorial delay0.91.01.02.0ns
Array clock delay2.73.33.05.0ns
Register enable time2.63.23.05.0ns
Global control delay1.61.91.01.0ns
Register preset time2.02.42.03.0ns
Register clear time2.02.42.03.0ns
PIA delay(7)1.11 .31.01.0ns
Low-power adder(8)12.011.010.011.0ns
1.91 .83.03.0ns
0.60 .70.50.5ns
information on switching waveforms.
parameter
must be added to this minimum width if the clear or reset signal incorporates the t
path.
parameter into the signal
LAD
LPA
parameter applies for both global and array clocking.
values repres en t th e highest frequency for pipeline d data.
MAX
= 3.3 V ± 10% for commercial and industrial use.
CCIO
these values ar e specified for a PIA fan-out of on e L A B (16 macrocells). For ea c h add itional LAB fan-out in these
devices, add an additional 0.1 ns to the PIA timing value.
parameter must be added to the t
LPA
running in th e low-power mod e.
LAD
, t
, tIC, tEN, t
LAC
SEXP
, t
ACL
, and t
parameters for macrocells
CPPW
Altera Corporation 43
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Tables 31 and 32 show the EPM7128S AC operating conditions.
Table 31.EPM7128S Exter na l Timi ng ParametersNote (1)
SymbolParameterConditionsSpeed GradeUnit
-6-7-10-15
MinMaxMinMaxMinMaxMinMax
t
PD1
t
PD2
t
SU
t
H
t
FSU
t
FH
t
CO1
t
CH
t
CL
t
ASU
t
AH
t
ACO1
t
ACH
t
ACL
t
CPPW
t
ODH
t
CNT
f
CNT
t
ACNT
f
ACNT
f
MAX
Input to non-registered output C1 = 35 pF6.07.510.015.0ns
I/O input to non-registered
C1 = 35 pF6.07.510.015.0ns
output
Global clock setup time3.46.07.011.0ns
Global clock hold time0.00.00.00.0ns
Global clock setup time of fast
2.53.03.03.0ns
input
Global clock hold time of fast
0.00.50.50.0ns
input
Global clock to output delayC1 = 35 pF4.04.55.08.0ns
Global clock high time3.03.04.05.0ns
Global clock low time3.03.04.05.0ns
Array clock setup time0.93.02.04.0ns
Array clock hold time1.82.05.04.0ns
Array clock to output delayC1 = 35 pF6.57.510.015.0ns
Array clock high time3.03.04.06.0ns
Array clock low time3.03.04.06.0ns
Minimum pulse width for clear
(2)3.03.04.06.0ns
and preset
Output data hold time after
C1 = 35 pF (3)1.01.01.01.0ns
clock
Minimum global clock period6.88.010.013.0ns
Maximum internal global clock
(4)147.1125.0100.076.9MHz
frequency
Minimum array clock period6.88.010.013.0ns
Maximum internal array clock
(4)147.1125.0100.076.9MHz
frequency
Maximum clock frequency(5)166.7166.7125.0100.0MHz
44Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Input pad and buffer delay0.20.50.52.0ns
I/O input pad and buffer delay0.20.50.52.0ns
Fast input delay2.61.01.02.0ns
Shared expander delay3.74.05.08.0ns
Parallel expander delay1.10.80.81.0ns
Logic array delay3.03.05.06.0ns
Logic control array delay3.03.05.06.0ns
Internal output enable delay0.72.02.03.0ns
Output buffer and pad delayC1 = 35 pF0.42.01.54.0ns
Output buffer and pad delayC1 = 35 pF (6)0.92.52.05.0ns
Output buffer and pad delayC1 = 35 pF 5.47.05.58.0ns
Output buffer enable delayC1 = 35 pF4.04.05.06.0ns
Output buffer enable delayC1 = 35 pF (6)4.54.55.57.0ns
Output buffer enable delayC1 = 35 pF 9.09.09.010.0ns
Output buffer disable delayC1 = 5 pF 4.04.05.06.0ns
Register setup time1.03.02.04.0ns
Register hold time1.72.05.04.0ns
Register setup time of fast
1.93.03.02.0ns
input
Register hold time of fast
0.60.50.51.0ns
input
Register delay1.41.02.01.0ns
Combinatorial delay1.01.02.01.0ns
Array clock delay3.13.05.06.0ns
Register enable time3.03.05.06.0ns
Global control delay2.01.01.01.0ns
Register preset time2.42.03.04.0ns
Register clear time2.42.03.04.0ns
PIA delay(7)1.41 .01.02.0ns
Low-power adder(8)11.010.011.013.0ns
Altera Corporation 45
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Notes to tables:
(1) These values are specified under the recommended operating conditions shown in Table 14 . See Figure 1 3 for more
information on switching waveforms.
(2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t
must be added to this minimum width if the clear or reset signal incorporates the t
path.
parameter into the signal
LAD
parameter
LPA
(3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This
parameter applies for both global and array clocking.
(4) These parameter s ar e measured with a 16-bit loa d ab le, en abled, up/down counter programmed int o eac h L AB .
(5) The f
(6) Operati ng con d iti o ns : V
(7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, E PM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices,
values repr esent the highest fr eq uency for pi pelined data.
MAX
= 3.3 V ± 10% for commercial and industrial use.
CCIO
these values are spec i fied for a PIA fan-out of one LA B (16 macrocells). For eac h add it ional LAB fan-out in thes e
devices, add an addition al 0. 1 n s to th e PI A ti mi ng v alu e.
(8) The t
parameter must be added to the t
LPA
running in the low-power mode.
LAD
, t
LAC
, tIC, tEN, t
SEXP
, t
ACL
, and t
parameters for macrocells
CPPW
Tables 33 and 34 show the EPM7160S AC operating conditions.
Table 33.EPM7160S External Timing Parameters (Part 1 of 2)Note (1)
SymbolParameterConditionsSpeed GradeUnit
-6-7-10-15
MinMaxMinMaxMinMaxMinMax
t
PD1
t
PD2
t
SU
t
H
t
FSU
t
FH
t
CO1
t
CH
t
CL
t
ASU
t
AH
t
ACO1
t
ACH
t
ACL
t
CPPW
t
ODH
t
CNT
f
CNT
Input to non-registered output C1 = 35 pF6.07.510.015.0ns
I/O input to non-registered
C1 = 35 pF6.07.510.015.0ns
output
Global clock setup time3.44.27.011.0ns
Global clock hold time0.00.00.00.0ns
Global clock setup time of fast
2.53.03.03.0ns
input
Global clock hold time of fast
0.00.00.50.0ns
input
Global clock to output delayC1 = 35 pF3.94.858ns
Global clock high time3.03.04.05.0ns
Global clock low time3.03.04.05.0ns
Array clock setup time0.91.12.04.0ns
Array clock hold time1.72.13.04.0ns
Array clock to output delayC1 = 35 pF6.47.910.015.0ns
Array clock high time3.03.04.06.0ns
Array clock low time3.03.04.06.0ns
Minimum pulse width for clear
(2)2.53.04.06.0ns
and preset
Output data hold time after
C1 = 35 pF (3)1.01.01.01.0ns
clock
Minimum global clock period6.78.210.013.0ns
Maximum internal global clock
(4)149.3122.0100.076.9MHz
frequency
46Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Table 33.EPM7160S External Timing Parameters (Part 2 of 2)Note (1)
SymbolParameterConditionsSpeed GradeUnit
-6-7-10-15
Min Max Min Max Min Max Min Max
t
ACNT
f
ACNT
f
MAX
Minimum array clock period6.78.210.013.0ns
Maximum internal array clock
(4)149.3122.0100.076.9MHz
frequency
Maximum clock frequency(5)166.7166.7125.0100.0MHz
Table 34.EPM7160S Internal Timing Parameters (Part 1 of 2)Note (1)
SymbolParame t erConditio nsSpeed GradeUnit
-6-7-10-15
Min Max Min Max Min Max Min Max
t
IN
t
IO
t
FIN
t
SEXP
t
PEXP
t
LAD
t
LAC
t
IOE
t
OD1
t
OD2
t
OD3
t
ZX1
t
ZX2
t
ZX3
t
XZ
t
SU
t
H
t
FSU
t
FH
t
RD
t
COMB
t
IC
t
EN
t
GLOB
t
PRE
Input pad and buffer delay0.20.30.52.0ns
I/O input pad and buffer delay0.20.30.52.0ns
Fast input delay2.63.21.02.0ns
Shared expander delay3.64.35.08.0ns
Parallel expander delay1.01.30.81.0ns
Logic array delay2.83.45.06.0ns
Logic control array delay2.83.45.06.0ns
Internal output enable delay0.70.92.03.0ns
Output buffer and pad delayC1 = 35 pF0.40.51.54.0ns
Output buffer and pad delayC1 = 35 pF (6)0.91.02.05.0ns
Output buffer and pad delayC1 = 35 pF 5.45.55.58.0ns
Output buffer enable delayC1 = 35 pF4.04.05.06.0ns
Output buffer enable delayC1 = 35 pF (6)4.54.55.57.0ns
Output buffer enable delayC1 = 35 pF 9.09.09.010.0ns
Output buffer disable delayC1 = 5 pF 4.04.05.06.0ns
Register setup time1.01.22.04.0ns
Register hold time1.62.03.04.0ns
Register setup time of fast
1.92.23.02.0ns
input
Register hold time of fast
0.60.80.51.0ns
input
Register delay1.31.62.01.0ns
Combinatorial delay1.01.32.01.0ns
Array clock delay2.93.55.06.0ns
Register enable time2.83.45.06.0ns
Global control delay2.02.41.01.0ns
Register preset time2.43.03.04.0ns
Altera Corporation 47
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Table 34. EPM7160S Int ernal Timing Parameters (Part 2 of 2)Note (1)
SymbolP ara me terConditionsSpeed GradeUnit
-6-7-10-15
Min Max Min Max Min Max Min Max
t
CLR
t
PIA
t
LPA
Notes to tables:
(1) These values are specified under the recommended operating conditions shown in Table 14 . See Figure 1 3 for more
(2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t
(3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This
(4) These parameter s ar e measured with a 16-bit loa d ab le, en abled, up/down counter programmed int o eac h L AB .
(5) The f
(6) Operati ng con d iti o ns : V
(7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, E PM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices,
(8) The t
Register clear time2.43.03.04.0ns
PIA delay(7)1.62.01.02.0ns
Low-power adder(8)11.010.011.013.0ns
information on switching waveforms.
parameter
must be added to this minimum width if the clear or reset signal incorporates the t
path.
parameter into the signal
LAD
LPA
parameter applies for both global and array clocking.
values repr esent the highest fr eq uency for pi pelined data.
MAX
= 3.3 V ± 10% for commercial and industrial use.
CCIO
these values are spec i fied for a PIA fan-out of one LA B (16 macrocells). For eac h add it ional LAB fan-out in thes e
devices, add an addition al 0. 1 n s to th e PI A ti mi ng v alu e.
parameter must be added to the t
LPA
running in the low-power mode.
LAD
, t
LAC
, tIC, tEN, t
SEXP
, t
ACL
, and t
parameters for macrocells
CPPW
Tables 35 and 36 show the EPM7192S AC operating conditions.
Table 35.EPM7192S External Timing Parameters (Part 1 of 2)Note (1)
SymbolParameterConditionsSpeed GradeUnit
-7-10-15
MinMaxMinMaxMinMax
t
PD1
t
PD2
t
SU
t
H
t
FSU
t
FH
t
CO1
t
CH
t
CL
t
ASU
48Altera Corporation
Input to non-registered output C1 = 35 pF7.510.015.0ns
I/O input to non-registered
output
Global clock setup time4.17.011.0ns
Global clock hold time0.00.00.0ns
Global clock setup time of fast
input
Global clock hold time of fast
input
Global clock to output delayC1 = 35 pF4.75.08.0ns
Global clock high time3.04.05.0ns
Global clock low time3.04.05.0ns
Array clock setup time1.02.04.0ns
C1 = 35 pF7.510.015.0ns
3.03.03.0ns
0.00.50.0ns
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Table 35.EPM7192S External Timing Parameters (Part 2 of 2)Note (1)
SymbolParameterConditionsSpeed GradeUnit
-7-10-15
MinMaxMinMaxMinMax
t
AH
t
ACO1
t
ACH
t
ACL
t
CPPW
t
ODH
t
CNT
f
CNT
t
ACNT
f
ACNT
f
MAX
Array clock hold time1.83.04.0ns
Array clock to output delayC1 = 35 pF7.810.015.0ns
Array clock high time3.04.06.0ns
Array clock low time3.04.06.0ns
Minimum pulse width for clear
(2)3.04.06.0ns
and preset
Output data hold time after
C1 = 35 pF (3)1.01.01.0ns
clock
Minimum global clock period8.010.013.0ns
Maximum internal global clock
(4)125.0100.076.9MHz
frequency
Minimum array clock period8.010.013.0ns
Maximum internal array clock
(4)125.0100.076.9MHz
frequency
Maximum clock frequency(5)166.7125.0100.0M Hz
Table 36.EPM7192S Internal Timing Parameters (Part 1 of 2)Note (1)
SymbolParameterConditionsSpeed GradeUnit
-7-10-15
MinMaxMinMaxMinMax
t
IN
t
IO
t
FIN
t
SEXP
t
PEXP
t
LAD
t
LAC
t
IOE
t
OD1
t
OD2
t
OD3
t
ZX1
t
ZX2
t
ZX3
t
XZ
t
SU
Altera Corporation 49
Input pad and buffer delay0.30.52.0ns
I/O input pad and buffer delay0.30.52.0ns
Fast input delay3.21.02.0ns
Shared expander delay4.25.08.0ns
Parallel expander delay1.20.81.0ns
Logic array delay3.15.06.0ns
Logic control array delay3.15.06.0ns
Internal output enable delay0.92.03.0ns
Output buffer and pad delayC1 = 35 pF0.51.54.0ns
Output buffer and pad delayC1 = 35 pF (6)1.02.05.0ns
Output buffer and pad delayC1 = 35 pF 5.55.57.0ns
Output buffer enable delayC1 = 35 pF4.05 .06.0ns
Output buffer enable delayC1 = 35 pF (6)4.55.57.0ns
Output buffer enable delayC1 = 35 pF 9.09.010.0ns
Output buffer disable delayC1 = 5 pF 4.05.06.0ns
Register setup time1.12.04.0n s
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Table 36. EPM7192S Int ernal Timing Parameters (Part 2 of 2)Note (1)
SymbolParameterConditionsSpeed GradeUnit
-7-10-15
MinMaxMinMaxMinMax
t
H
t
FSU
t
FH
t
RD
t
COMB
t
IC
t
EN
t
GLOB
t
PRE
t
CLR
t
PIA
t
LPA
Notes to tables:
(1) These values are specified under the recommended operating conditions shown in Table 14 . See Figure 1 3 for more
(2) This minimum pulse width for preset and clear applies for both global clear and array controls. The t
(3) This parameter is a guideline that is sample-tested only and is based on extensive device characterization. This
(4) These parameter s ar e measured with a 16-bit loa d ab le, en abled, up/down counter programmed int o eac h L AB .
(5) The f
(6) Operati ng con d iti o ns : V
(7) For EPM7064S-5, EPM7064S-6, EPM7128S-6, E PM7160S-6, EPM7160S-7, EPM7192S-7, and EPM7256S-7 devices,
(8) The t
Register hold time1.73.04.0ns
Register setup time of fast
2.33.02.0ns
input
Register hold time of fast
0.70.51.0ns
input
Register delay1.42.01.0ns
Combinatorial delay1.22.01.0ns
Array clock delay3.25.06.0ns
Register enable time3.15.06.0ns
Global control delay2.51.01.0ns
Register preset time2.73.04.0ns
Register clear time2.73.04.0ns
PIA delay(7)2.41.02.0ns
Low-power adder(8)10.011.013.0ns
information on switching waveforms.
parameter
must be added to this minimum width if the clear or reset signal incorporates the t
path.
parameter into the signal
LAD
LPA
parameter applies for both global and array clocking.
values repr esent the highest fr eq uency for pi pelined data.
MAX
= 3.3 V ± 10% for commercial and industrial use.
CCIO
these values are spec i fied for a PIA fan-out of one LA B (16 macrocells). For eac h add it ional LAB fan-out in thes e
devices, add an addition al 0. 1 n s to th e PI A ti mi ng v alu e.
parameter must be added to the t
LPA
running in the low-power mode.
LAD
, t
LAC
, tIC, tEN, t
SEXP
, t
ACL
, and t
parameters for macrocells
CPPW
50Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Tables 37 and 38 show the EPM7256S AC oper ati ng condit ions .
Input to non-registered output C1 = 35 pF7.510.015.0ns
I/O input to non-registered
C1 = 35 pF7.510.015.0ns
output
Global clock setup time3.97.011.0ns
Global clock hold time0.00.00.0ns
Global clock setup time of fast
3.03.03.0ns
input
Global clock hold time of fast
0.00.50.0ns
input
Global clock to output delayC1 = 35 pF4.75.08.0ns
Global clock high time3.04.05.0ns
Global clock low time3.04.05.0ns
Array clock setup time0.82.04.0ns
Array clock hold time1.93.04.0ns
Array clock to output delayC1 = 35 pF7.810.015.0ns
Array clock high time3.04.06.0ns
Array clock low time3.04.06.0ns
Minimum pulse width for clear
(2)3.04.06.0ns
and preset
Output data hold time after
C1 = 35 pF (3)1.01.01.0ns
clock
Minimum global clock period7.810.013.0ns
Maximum internal global clock
(4)128.2100.076.9MHz
frequency
Minimum array clock period7.810.013.0ns
Maximum internal array clock
(4)128.2100.076.9MHz
frequency
Maximum clock frequency(5)166.7125.0100.0M Hz
Altera Corporation 51
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Table 38. EPM7256S Int ernal Timing ParametersNote (1)
SymbolParameterConditionsSpeed GradeUnit
-7-10-15
MinMaxMinMaxMinMax
t
IN
t
IO
t
FIN
t
SEXP
t
PEXP
t
LAD
t
LAC
t
IOE
t
OD1
t
OD2
t
OD3
t
ZX1
t
ZX2
t
ZX3
t
XZ
t
SU
t
H
t
FSU
t
FH
t
RD
t
COMB
t
IC
t
EN
t
GLOB
t
PRE
t
CLR
t
PIA
t
LPA
Input pad and buffer delay0.30.52.0ns
I/O input pad and buffer delay0.30.52.0ns
Fast input delay3.41.02.0ns
Shared expander delay3.95.08.0ns
Parallel expander delay1.10.81.0ns
Logic array delay2.65.06.0ns
Logic control array delay2.65.06.0ns
Internal output enable delay0.82.03.0ns
Output buffer and pad delay C1 = 35 pF0.51.54.0ns
Output buffer and pad delay C1 = 35 pF (6)1.02.05.0ns
Output buffer and pad delay C1 = 35 pF 5.55.58.0ns
Output buffer enable delayC1 = 35 pF4.05.06.0ns
Output buffer enable delayC1 = 35 pF (6)4.55.57.0ns
Output buffer enable delayC1 = 35 pF 9.09.010.0ns
Output buffer disable delayC1 = 5 pF 4.05.06.0ns
Register setup time1.12.04.0ns
Register hold time1.63.04.0ns
Register setup time of fast
2.43.02.0ns
input
Register hold time of fast
0.60.51.0ns
input
Register delay1.12.01.0ns
Combinatorial delay1.12.01.0ns
Array clock delay2.95.06.0ns
Register enable time2.65.06.0ns
Global control delay2.81.01.0ns
Register preset time2.73.04.0ns
Register clear time2.73.04.0ns
PIA delay(7)3.01.02.0ns
Low-power adder(8)10.011.013.0ns
52Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Notes to tables:
(1) These values are specified under the recommended operating conditions shown in Table 14. See Figure 13 for more
information on switching waveforms.
(2) This minimum pulse width for p reset and cl ear applies fo r both global cle ar and arra y controls. The t
must be added to this minimum width if the clear or reset signal incorporates the t
path.
(3) This par a meter is a guideline that is s ample-teste d only and is ba s ed o n extensive de v ic e c haracteri za t ion. This
parameter applies for both global and array clocking.
(4) These paramete rs are measu r ed with a 16-bit loadable, enab le d , up/ d own counter program med into each LAB.
(5) The f
(6) Operating conditions: V
(7) For EPM7064S-5, E PM7064S-6, EPM7128S-6, EPM7160S-6, EPM7160S-7, EPM7192S-7, an d EPM7256S-7 devices,
these values ar e specified for a PIA fan-out of on e L A B (16 macrocells). For ea c h add itional LAB fan-out in these
devices, add an additional 0.1 ns to the PIA timing value.
(8) The t
running in th e low-power mod e.
values repres en t th e highest frequency for pipeline d data.
MAX
parameter must be added to the t
LPA
= 3.3 V ± 10% for commercial and industrial use.
CCIO
, t
LAD
, tIC, tEN, t
LAC
SEXP
, t
, and t
ACL
parameter into the signal
LAD
parameters for macrocells
CPPW
parameter
LPA
Power
Consumption
Supply power (P) versus frequency (f
in MHz) for MAX 7000 dev ices
MAX
is calculated with the following equation:
P = P
INT
IO
= I
CC
× VCC + P
INT
IO
+ P
The PIO value, which depends on the device output load characteristics
and switching frequency, can be calculated using the guidelines given in
Application Note 74 (Evaluating Power for Altera Devices).
The I
value, which depends on the switching frequency and the
CCINT
application logic, is calculated with the following equation:
=
I
CCINT
A × MC
+ B × (MC
TON
DEV
– MC
) + C × MC
TON
USED
×f
MAX
× tog
LC
The parameters in this equation are shown below:
MC
= Number of ma crocells with the Turbo Bit op tion turned on,
TON
as reported in the MAX+PLUS II Report File (.rpt)
MC
MC
= Number of macrocells in the device
DEV
= Total number of macrocells in the design, as reported
USED
in the MAX+PLUS II Report File (.rpt)
f
MAX
tog
= Highest clock frequency to the device
= Average ratio of logic cells toggling at each clock
LC
(typicall y 0.125)
A, B, C= Constants, shown in Table 39
Altera Corporation 53
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
This calculation provides an ICC estimate based on typical conditions
using a pattern of a 16-bit, loadable, enabled, up/down counter in each
LAB with no output load. Actual I
values should be verifie d during
CC
operation because this measurement is sensitive to the actual pattern in
the device and the en vironmen tal operating conditions.
54Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
Figure 14 shows typical supply current versus frequency for
MAX 7000 devices.
Figure 14 . ICC vs. Frequency for MAX 7000 Devices (Part 1 of 2)
EPM7032
Typical I
CC
Active (mA)
EPM7096
Typical I
CC
Active (mA)
VCC = 5.0 V
180
Room T emperature
140
100
60
20
0
VCC = 5.0 V
4
50
Room T emperature
3
50
2
50
1
50
5
0
60.2 MHz
Low Power
50
Frequency (MHz)
55.5 MHz
Low Power
151.5 MHz
High Speed
200100150
125 MHz
High Speed
EPM7064
Typical I
CC
Active (mA)
V
300
Room T emperature
200
100
0
= 5.0 V
CC
50
High Speed
60.2 MHz
Low Power
Frequency (MHz)
151.5 MHz
200100150
1
05
0
00
1
50
Frequency (MHz)
Altera Corporation 55
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Figure 14. ICC vs. Frequency for MAX 7000 Devices (Part 2 of 2)
EPM7128E
Typical I
CC
Active (mA)
500
VCC = 5.0 V
Room T emperature
400
300
200
100
125 MHz
High Speed
55.5 MHz
Low Power
EPM7160E
Typical I
CC
Active (mA)
500
VCC = 5.0 V
Room T emperature
400
300
200
100
100 MHz
High Speed
47.6 MHz
Low Power
EPM7192E
Typical I
CC
Active (mA)
0
500
VCC = 5.0 V
Room T emperature
400
300
200
100
0
2550100125
50100
Frequency (MHz)
43.5 MHz
Low Power
Frequency (MHz)
150200
High Speed
75
90.9 MHz
EPM7256E
Typical I
CC
Active (mA)
0
750
VCC = 5.0 V
Room T emperature
600
450
300
150
0
50100
150200
Frequency (MHz)
90.9 MHz
High Speed
43.4 MHz
Low Power
2550100
75
Frequency (MHz)
125
56Altera Corporation
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
EPM7032S
EPM7064S
E
T
A
T
A
Figure 15 shows typical supply current versus frequency for MAX 7000S
devices.
Figure 15 . ICC vs. Frequency for MAX 7000S Devices (Part 1 of 2)
ypical I
CC
ctive (mA)
PM7128S
ypical I
CC
ctive (mA)
60
50
40
30
20
10
0
280
240
200
160
1
20
80
40
0
VCC = 5.0 V
Room T emperature
58.8 MHz
Low Power
50100
Frequency (MHz)
VCC = 5.0 V
Room T emperature
56.2 MHz
Low Power
50100
Frequency (MHz)
142.9 MHz
High Speed
150
147.1 MHz
High Speed
150
200
200
Typical I
Active (mA)
EPM7160S
Typical I
CC
Active (mA)
VCC = 5.0 V
120
Room T emperature
100
80
CC
60
40
20
0
56.5 MHz
Low Power
50100
High Speed
150
175.4 MHz
200
Frequency (MHz)
VCC = 5.0 V
Room T emperature
300
240
180
120
56.5 MHz
60
0
Low Power
50100
149.3 MHz
High Speed
150
200
Frequency (MHz)
Altera Corporation 57
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Figure 15. ICC vs. Frequency for MAX 7000S Devices (Part 2 of 2)
EPM7192S
EPM7256S
Typical I
CC
Active (mA)
Device
Pin-Outs
300
240
180
120
60
0
400
30
200
100
0
0
VCC = 5.0 V
Room T emperature
56.2 MHz
Low Power
25
5075
Frequency (MHz)
= 5.0 V
V
CC
Room T emperature
55.6 MHz
Low Power
25
5075
Frequency (MHz)
High Speed
100
125.0 MHz
125
Typical I
CC
Active (mA)
See the Altera web site (http://www.altera.com) or the Altera Digital
Library for pin-out information.
High Speed
100
128.2 MHz
125
58Altera Corporation
Figures 16 through 22 show the package pin-out diagrams for MAX 7000
)
devices.
Figure 16 . 44-Pin Package Pin-Out Diagram
Package outlines not drawn to scale.
I/O
I/O
I/O
VCC
INPUT/OE2/(GCLK2) (1)INPUT/GCLRn
INPUT/OE1
INPUT//GCLK1
GND
I/O
I/O
Pin 1
(2) I/O/(TDI)
I/O
I/O
GND
I/O
I/O
(2) I/O/(TMS)
I/O
VCC
I/O
I/O
Pin 12Pin 23
I/O
EPM7032
I/O
I/O
I/O
I/O
I/O
VCC
GND
44-Pin PQFP
Pin 34
I/O
I/O
I/O
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
(1) The pin functions shown in pare nth esi s ar e on ly avail ab le in M AX 7000E and MAX 7000S dev ices.
(2) JTAG ports are availa ble in M AX 7000S devices only.
Altera Corporation 59
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Figure 17. 68-Pin Package Pin-Out Diagram
Package outlines not drawn to scale.
I/O
987654321
10
I/O
11
VCCIO
12
(2) I/O/(TDI)
13
I/O
14
I/O
15
I/O
16
GND
17
I/O
18
I/O
VCCIO
GND
19
20
I/O
21
22
I/O
23
I/O
24
I/O
25
I/O
26
2728293031323334353637383940414243
I/O
(2) I/O/(TMS)
Notes:
(1) The pin functions shown in parenthesis are only available in MAX 7000E and MAX
7000S devices.
(2) JTAG ports are av ail abl e in M A X 7000S devices only.
I/O
I/O
GND
I/O
I/O
VCCINT
EPM7064
EPM7096
I/O
I/O
I/O
I/O
I/O
VCCIO
68-Pin PLCC
INPUT/OE2/(GCLK2) (1)INPUT/GCLRn
INPUT/OE1
INPUT/GCLK1
GND
68676665646362
I/O
I/O
GND
GND
VCCINT
I/O
I/O
VCCIO
I/O
I/O
61
60
I/O
59
I/O
58
GND
57
I/O/(TDO) (2)
56
I/O
55
I/O
54
I/O
53
VCCIO
52
I/O
51
I/O
50
I/O/(TCK) (2)
49
I/O
48
GND
47
I/O
46
I/O
45
I/O
44
I/O
I/O
I/O
I/O
I/O
VCCIO
60Altera Corporation
Figure 18 . 84-Pin Package Pin-Out Diagram
Package outline not drawn to scale.
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
(1) Pins 6, 39, 46, and 79 are no-con n ect (N. C. ) pins on EPM7096, EPM7160E, and EPM7160S devices.
(2) The pin functions shown in pare nth esi s ar e on ly avail ab le in M AX 7000E and MAX 7000S dev ices.
(3) JTAG ports are availa ble in M AX 7000S devices only.
Altera Corporation 61
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
MAX 7000 Programmabl e Log i c Dev ic e Family Data Sheet
EPM7256E
Bottom
View
192-Pin PGA
EPM7256E
EPM7256S
Pin 53
Pin 10
208-Pin PQFP/RQFP
Altera Corporation 63
MAX 7000 Programm ab le Logic D evi ce F ami ly Data Sheet
Revision
History
The information contained in the MAX 7000 Programmable Logic Devic e
Family Data Sheet version 6.6 supersedes information published in previous versions. The following changes were made in the MAX 7000
Programmable Logic Device Family Data Sheet version 6.6:
Version 6.6
The following changes were made in the MAX 7000 Programmable Logic
Device Family Data Sheet version 6.6:
■Added Tables 6 through 8.
Version 6.5
The following changes were made in the MAX 7000 Programmable Logic
Device Family Data Sheet version 6.5:
■Updated text on page 16.
Version 6.4
The following changes were made in the MAX 7000 Programmable Logic
Device Family Data Sheet version 6.4:
■Added Note (5)on page28.
Version 6.3
The following changes were made in the MAX 7000 Programmable Logic
Device Family Data Sheet version 6.3:
■Updated the “Open-Drain Output Opt io n (MA X 70 00 S Devices
Only)” section on page 20.
64Altera Corporation
Notes:
Altera Corporation 65
e
s
a
ir
g
o
1
S
(
h
A
(
C
(
L
l
MAX 7000 Programmabl e Log ic Dev ice Fam ily Data Sheet