WARNING:
This installation is not for the electrically or mechanically
challenged! Use this sensor with EXTREME caution! If you are
uncomfortable with anything about this, please refer the
installation to an AEM trained tuning shop or call 800-423-0046
for technical assistance. You should also visit the AEM
!
This product is legal in California for racing vehicles only and should
Performance Electronics Forum at http://www.aempower.com
NOTE: AEM holds no responsibility for any engine damage that
results from the misuse of this product!
never be used on public highways.
ADVANCED ENGINE MANAGEMENT INC.
th
2205 126
Phone: (310) 484-2322 Fax: (310) 484-0152
Instruction Part Number: 10-4110 Rev 140520
2014 Advanced Engine Management, Inc.
Street Unit A, Hawthorne, CA. 90250
http://www.aemelectronics.com
Page 1
AEM Gauge-Type UEGO Controller Parts
1 x UEGO Gauge Assembly
1 x UEGO Sensor
1 x O2 Sensor Bung
4 x Butt Connectors
1 x Installation Instruction
1 x 4 Lead Harness
1 x UEGO Sensor Harness
1 x Silver Bezel
1 x Black Lambda Faceplate
1 x White AFR Faceplate
Congratulations! The 52mm (2-1/16”) AEM Universal Exhaust Gas Oxygen (UEGO)
Gauge features a digital readout and sweeping 24 color-coded light emitting diode
(LED) display, providing immediate reference to the engine air fuel ratio (or lambda) in
real-time. The AEM gauge is ideal for all vehicles including carbureted applications and
engine dynamometers. A user-selectable 0-5V analog output is included and can be
used with data loggers as well as most Electronic Fuel Injection (EFI) systems including
the AEM Engine Management System (EMS). A serial data stream is also integrated for
air fuel (or lambda) ratio output to a RS-232 com port.
Because the AEM gauge utilizes the internal AEM UEGO controller and Bosch UEGO
Sensor, it is accurate and repeatable to 0.1 of an air/fuel ratio point! With this, there is
no abrupt oscillation as found in many competitor gauges, which utilize a narrow band
oxygen sensor detecting only stoichiometry.
Page 2
Typical production vehicle oxygen sensors rely on “Nernst Cell” technology, commonly
called “Narrow Band” and sometimes erroneously described as “Wide Band”. This is a
very cost effective method that outputs a voltage based on the oxygen content of the
gas being sampled. It is accurate in the region surrounding stoichiometric operation and
leaner. Unfortunately, in the rich region where high performance engines usually
operate, their accuracy and repeatability is virtually non-existent. (Figure 1)
Figure 1. Characteristic curve of a Nernst Cell O2 Sensor
The rich region output of narrow band O2 sensors is temperature dependent, which
renders it useless if an accuracy better than 1.5:1 AFR is desired. This is immediately
obvious given the fact that a single output voltage actually represents wildly different air
fuel ratios depending on the unregulated and unmeasured sensor temperature. These
sensors were designed for operating closed loop around stoichiometry (14.64:1 for
gasoline), and for performance tuning they are useless.
The heart of the AEM gauge is the Bosch LSU4.9 Universal Exhaust Gas Oxygen
(UEGO) sensor. This type of sensor is commonly referred to as “laboratory grade” and
works on a different principle than the narrow band oxygen sensor found in most
vehicles. Its unique design makes precision AFR measurements possible over the
entire operating range.
UEGO sensors use a “current pump” to determine the actual oxygen concentration
within the sensing element. The output is in the form of a very small current, which
varies depending on the air-fuel ratio. This is completely different from a narrow band
oxygen sensor, which directly outputs a voltage. The UEGO sensor design allows
measurement of the exact air fuel ratio over the entire operating range.
Page 3
Each AEM UEGO sensor is individually calibrated and a resistor integral at the
connector body is laser trimmed with this value. This process replaces the “free air”
calibration procedure required by some manufacturers when changing sensors and
implements a sensor specific calibration for unparalleled accuracy. (Figure 2)
Figure 2. The connector module contains a laser trimmed calibration resistor,
which defines the characteristic of the sensor.
INSTALLATION
Disconnect the negative (-) battery cable. There are two harnesses that connect to the
back of the AEM UEGO gauge. The longer harness connects to the UEGO sensor.
The shorter harness contains four leads. The red and black leads must be connected in
order for the gauge to function. Connection of the white and blue wires is optional.
Connect the wires as shown below. (Figure 3) The harness ends with the four and six
pin connectors connect to the back of the gauge. When looking at the back of the
gauge as shown below, the six-pin connector connects on the left side and the four pin
on the right side. The locating tabs on the four and six pin connectors should be facing
up. (Figure 4)
Figure 3. Gauge Installation Connections
Page 4
Figure 4. Gauge Side Harness Connections
RED <Power>
Connect to a switched 10-18 volt power source utilizing a 10A fuse.
BLACK <Ground>
Connect to a clean power ground.
*WHITE <Analog Output>
Connects to any auxiliary unit that accepts a 0-5 volt input.
*BLUE <Serial Output>
Connects to a RS-232 com port for hyper-terminal data logging.
*optional
Page 5
Loading...
+ 9 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.