ADLINK ND-6013 User Manual

NuDAM-6011/ NuDAM-6014D NuDAM-6012/D NuDAM-6017 NuDAM-6013/ NuDAM-6018
Analog Input Modules
User’s Guide
©Copyright 1996~2001 ADLINK Technology Inc. All Rights Reserved.
Manual Rev. 5.15: October 2, 2001
The information in this document is subject to change without prior notice in order to improve reliability, design and function and does not represent a commitment on the part of the manufacturer.
In no event will the manufacturer be liable for direct, indirect, special, incidental, or consequential damages arising out of the use or inability to use the product or documentation, even if advised of the possibility of such damages.
This document contains proprietary information protected by copyright. All rights are reserved. No part of this manual may be reproduced by any mechanical, electronic, or other means in any form without prior written permission of the manufacturer.
Trademarks
NuDAM
Other product names mentioned herein are used for identification purposes only and may be trademarks and/or registered trademarks of their respective companies.
is registered trademarks of ADLINK Technology Inc.,
Getting service from ADLINK
Customer Satisfaction is always the most important thing for ADLINK
Tech Inc. If you need any help or service, please contact us and get it.
ADLINK Technology Inc.
Web Site http://www.adlink.com.tw Sales & Service service@adlink.com.tw Technical NuDAQ nudaq@adlink.com.tw Support NuDAM nudam@adlink.com.tw NuIPC nuipc@adlink.com.tw NuPRO nupro@adlink.com.tw Software sw@adlink.com.tw TEL +886-2-82265877 FAX +886-2-82265717 Address 9F, No. 166, Jian Yi Road, Chungho City, Taipei, 235 Taiwan, R.O.C.
Please inform or FAX us of your detailed information for a prompt,
satisfactory and constant service.
Detailed Company Information
Company/Organization Contact Person E-mail Address Address Country TEL FAX Web Site
Questions
Product Model Environment to Use
OComputer
M/B: CPU: Chipset: BIOS: Video Card: Network Interface Card: Other:
Challenge Description
Suggestions for ADLINK
Table of Contents
Chapter 1 Introduction .....................................................1
1.1 About the NuDAM Analog Input Modules ..............................1
1.2 Overview of NuDAM-6011/D.................................................. 1
What is NuDAM-6011/D ?................................................................1
Features of NuDAM-6011/D.............................................................2
Specifications of NuDAM-6011/D.....................................................2
Pin Definitions of ND-6011/D ...........................................................4
Functional Block Diagram of ND-6011/D .........................................4
A Look at ND-6011/D & Pin Assignment..........................................5
1.3 Overview of NuDAM-6012/D.................................................. 6
What is NuDAM-6012/D?.................................................................6
Features of NuDAM-6012/D.............................................................6
Specifications of NuDAM-6012/D.....................................................6
Pin Definitions of ND-6012/D ...........................................................8
Functional Block Diagram of ND-6012/D .........................................8
A Look at ND-6012/D & Pin Assignment..........................................9
1.4 Overview of NuDAM-6013 ...................................................10
What is NuDAM-6013 ? ................................................................ 10
Features of NuDAM-6013 ............................................................. 10
Specifications of NuDAM-6013 ..................................................... 10
Pin Definitions of ND-6013............................................................ 11
Functional Block Diagram of ND-6013 .......................................... 11
A Look at ND-6013 & Pin Assignment .......................................... 12
1.5 Overview of NuDAM-6014D................................................. 13
What is NuDAM-6014D ?.............................................................. 13
Features of NuDAM-6014D........................................................... 13
Specifications of NuDAM-6014D................................................... 13
Pin Definitions of ND-6014D ......................................................... 15
Functional Block Diagram of ND-6014D ....................................... 15
A Look at ND-6014D & Pin Assignment........................................ 16
1.6 Overview of NuDAM-6017 ...................................................17
What is NuDAM-6017 ? ................................................................ 17
Features of NuDAM-6017 ............................................................. 17
Specifications of NuDAM-6017 ..................................................... 17
Pin Definitions of ND-6017............................................................ 18
Functional Block Diagram of ND-6017 .......................................... 18
A Look at ND-6017 & Pin Assignment .......................................... 19
1.7 Overview of NuDAM-6018 ...................................................20
What is NuDAM-6018 ? ................................................................ 20
Features of NuDAM-6018 ............................................................. 20
Specifications of NuDAM-6018 ..................................................... 20
Table of Contents i
Pin Definitions of ND-6018............................................................ 21
Functional Block Diagram of ND-6018 .......................................... 21
A Look at ND-6018 & Pin Assignment .......................................... 22
Chapter 2 Initialization & Installation............................ 23
2.1 Software Installation.............................................................23
2.2 Initializing a Brand-New Module ..........................................23
Objective of Initializing a Brand-New NuDAM ............................... 23
Default State ................................................................................. 24
Initialization Equipments ............................................................... 24
Initialization Procedure.................................................................. 24
Initialization Wiring ........................................................................ 25
2.3 Install a New NuDAM to a Existing Network........................ 25
Equipments for Install a New Module............................................ 25
Installing Procedures..................................................................... 25
2.4 Application Wiring for NuDAM-601X....................................26
Differential Voltage Input............................................................... 26
Single Ended Voltage Input........................................................... 26
Current Measurement ................................................................... 26
Digital Input Connect with TTL Signal ........................................... 27
Digital Input Used as an Event Counter ........................................ 27
Digital Output Connect with Power Loading.................................. 27
RTD Input (NuDAM-6013)............................................................. 28
Application Wiring for NuDAM-6014D ........................................... 29
Transmitter wiring for NuDAM-6014D ........................................... 30
Chapter 3 Command Set................................................ 31
3.1 Command and Response ....................................................31
Introduction ................................................................................... 31
Document Conventions................................................................. 31
Format of NuDAM Commands...................................................... 32
Response of NuDAM Commands ................................................. 33
3.2 Summary of Command Set.................................................. 33
3.3 Set Configuration .................................................................37
3.4 Read Configuration ..............................................................41
3.5 Read Module Name .............................................................42
3.6 Read Firmware Version .......................................................43
3.7 Software Reset.....................................................................44
3.8 Synchronized Sampling .......................................................45
3.9 Read Synchronized Data .....................................................46
3.10 Read Analog Data................................................................ 47
3.11 Span Calibration ..................................................................48
3.12 Span Calibration to each Channel .......................................49
ii Table of Contents
3.13 Offset Calibration .................................................................50
3.14 Offset Calibration to each Channel......................................51
3.15 Read Analog Data From Channel N ....................................52
3.16 Read All Analog Data Channel ............................................53
3.17 Enable/Disable channels for Multiplexing............................ 54
3.18 Read Channel Status...........................................................55
3.19 Read CJC Status .................................................................56
3.20 Enable/Disable CJC.............................................................57
3.21 Read enable/disable CJC Status.........................................58
3.22 Read Source High/Low Values for Linear Mapping............. 59
3.23 Read Target High/Low Values for Linear Mapping.............. 60
3.24 Write Source High/Low Values for Linear Mapping.............61
3.25 Write Target High/Low Values for Linear Mapping.............. 62
3.26 Enable/Disable Linear Mapping...........................................63
3.27 Read enable/Disable Linear Mapping Status .....................64
3.28 CJC Offset Calibration ......................................................... 65
3.29 Clear Latched Alarm ............................................................ 66
3.30 Clear Event Counter ............................................................67
3.31 Disable Alarm....................................................................... 68
3.32 Read Digital I/O and Alarm Status......................................69
3.33 Set Digital Output.................................................................71
3.34 Enable Alarm........................................................................72
3.35 Set High Alarm..................................................................... 73
3.36 Set Low Alarm...................................................................... 74
3.37 Read Event Counter ............................................................75
3.38 Read High Alarm Limit .........................................................76
3.39 Read Low Alarm Limit..........................................................77
3.40 Read Leading Code Setting.................................................78
3.41 Change Leading Code Setting............................................. 80
3.42 Set Host Watchdog Timer & Safety Value..........................82
3.43 Read Host Watchdog Timer & Safety Value.......................84
3.44 Host is OK ............................................................................ 85
Chapter 4 Data Format and Input Range ...................... 86
4.1 Data Format of Analog Input Modules ................................. 86
Engineering Units.......................................................................... 86
Percent of FSR (Full Scale Range) ............................................... 87
Two’s Complement Hexadecimal.................................................. 88
Ohm .............................................................................................. 89
4.2 Analog Input Range .............................................................90
Table of Contents iii
Chapter 5 Calibration ..................................................... 93
5.1 How to Calibrate the Analog Input Modules ? .....................93
What do you need to do calibration ?............................................ 93
Calibration Procedure for ND-6011/D, 6012/D,6014D, 6017 ........ 93
Calibration Procedure for ND-6013 (F/W version A3.05) .............. 94
Calibration Procedure for ND-6013 Firmware Rev C4.60 ............. 94
Calibration Procedure for ND-6018 Firmware Rev B1.10 ............. 95
Calibration Procedure for ND-6018 Firmware Rev E1.00
and e1.00 ...................................................................................... 95
CJC Calibration Procedure ........................................................... 96
Analog Input Module‘s Calibration Voltages.................................. 97
Product Warranty/Service.............................................. 99
iv Table of Contents
1
Introduction
1.1 About the NuDAM Analog Input Modules
The NuDAM provides a series of analog input modules which can sense the analog signal or to control the remote devices. The basic features of each module are shown here.
NuDAM-6011/D: multi-functions high gain analog input module
NuDAM-6012/D: multi-functions analog input module
NuDAM-6013: 3 channels RTD input module
NuDAM-6014D:Analog (Transmitter) input module with LED
display
NuDAM-6017: 8 channels analog input module
NuDAM-6018: 8 channels thermocouple input module
The models with an extended D have the same command set and specification as without D, except the D version has a 5 1/2 LED Display.
1.2 Overview of NuDAM-6011/D
What is NuDAM-6011/D ?
NuDAM-6011/D is a multi-functions analog input module with cold junction compensation (CJC). The maximum input voltage range of analog input channel is ±2.5V. The high gain feature allows very small full range of ±15mV. To measure temperature by directly connect the thermocouple is possible because of using the CJC inside and the high gain feature. The voltage range of the ADC can be set according to different types of thermocouple. The ADC can be calibrated by
Introduction 1
programming without handy adjustment. This features insure the best performance under different environment. The module provides the analog signal monitor or the alarm function. The high and low bound of the alarm limit is programmable. The alarm status can be sent to digital output channels if this function is ON. The supervisor of a factory can ‘see’ or ‘hear’ the alarm if the digital output channel control a real alarm device. The two digital output channels can be set for general-purpose use if the alarm is disabled. For example, connecting relay devices to DO channels, the NuDAM-6011/D can be used to control the high power devices. The module provides another one digital input channel. This can be used for general purpose such as monitor digital signal, or be used as input of the event counter.
Features of NuDAM-6011/D
1 analog input channel with differential input
Programmable voltage range with high gain amplifier
On board CJC for temperature measurement
5000 Vrms isolation voltage for AD channel (2500 Vrms for
NuDAM-6011/D)
2 digital output channels of open collector type
Alarm function with high / low alarm output
1 digital input channel / event counter
Programmable host watchdog timer for host failure protection
Internal watchdog timer for device failure protection
Easy programming by software
Easy installation and wiring
5 1/2 digital LED Display (NuDAM-6011/D)
Specifications of NuDAM-6011/D
Interface
Interface: RS-485, 2 wires
Speed (bps): 1200, 2400, 4800, 9600, 19.2K, 38.4K,115.2K
(115.2K only for firmware reversion above A4.00)
Analog Input
Input type: Differential input
Resolution: 16 bits
Unit Convertion: Thermocouple, mV, V, or mA
Thermocouple Type: J, K, T, E, R, S, B, N, C
J: 0°C~760°C K: 0°C~1370°C T: -100°C~400°C E: 0°C~1000°C R: 500°C~1750°C S: 500°C~1750°C B: 500°C~1800°C N: -270°C~1300°C
2 Introduction
(1)
C: 0°C~2320°C
Voltage Range: Programmable 6 levels ±2.5V, ±1V, ±500mV, ±100mV, ±50mV, ±15mV
Current Measurement: ±20mA (with external 125 resistor)
Accuracy: ±0.4%
(1)
Note
: F/W version above A4.60 support K-type for 0~1370°C. Lower version
supports K-type for 0~1000°C.
Digital Output
Channel numbers: 2
Output characteristic: open collector transistor
Maximum current sink: 50mA
Max. power dissipation: 300mW
Digital Input
Channel numbers: 1
Logical level 0: +1V maximum
Logical level 1: +2.0V~ +30V
Pull up resister: 10KΩ
Maximum current: 0.5mA
Watchdog Function
Module internal watchdog timer: 150 ms
Power failure threshold: 4.65 V
Safety value: 2 digital output channels
Host programmable watchdog: 100 ms ~ 25.500 sec
Power
Power supply: +10V to +30V
Current consumption: 0.76W(1.68W for NuDAM-6011/D)
Introduction 3
Pin Definitions of ND-6011/D
g
r
g
g
g
g
Pin # Signal Name Description
1 IN+ Analog Input Positive Terminal 2 IN- Analog Input Negative Terminal 3 DO 1/ HI Digital Output Channel 1
or High alarm status output
4 DI 0 / EV Digital Input Channel 0
or event counter input
5 DO 0 / LO Digital Output Channel 0
or Low alarm output 6 DEFAULT* Initial state setting 7 (Y) DATA+ RS-485 series signal, positive 8 (G) DATA- RS-485 series signal, negative 9 (R) +Vs Power supply, +10V~+30V 10 (B) GND Ground 11 TC(+) Thermocouple Input positive Terminal 12 TC(-) Thermocouple Input negative Terminal
Functional Block Diagram of ND-6011/D
Power Input +10V ~ +30V
Data +
Data -
4 Introduction
Power
ulator & Filter
Re
Watchdog/Power Failure
Superviso
RS-485
Rec/Drv
EEPROM
Config Data
Safe Value
Micro
Processor
LED Display
(only ND-6011/D)
+ 5V
GND
ADC
2-bits
ital Output
Di
1-bit
ital Input
Di
1-bit
ital Input
Di
Analog
nal
Si CJC
DO0
DI0
Default* Pin
A Look at ND-6011/D & Pin Assignment
T/C (-) T/C (+)
High Gain Analog
ND-6011
Code mV/mA Code T/C
15 mV
00
01
50 mV
02
100 mV
03
500 mV
04
1 V
2.5 V
05
20 mA
06
5 V
Input
0E
0F
10
11
12
13
14
J Type
K Type
T Type
E Type
R Type
S Type
B Type
1
IN (-)
IN (+)
DI0/EV
DO 1/HI
DO 0/LO
DEFAULT*
(Y)DATA+
(G)DATA-
10
(R)+Vs
(B)GND
Introduction 5
1.3 Overview of NuDAM-6012/D
What is NuDAM-6012/D?
NuDAM-6012/D is a multi-functions analog input module. The programmable input voltage range of analog input channel is from ±10V maximum to ±150mV minimum. The module also provides the alarm function and the event counter just like NuDAM-6011/D. In fact, the NuDAM-6012/D provides almost all functions that NuDAM-6011/D has except the CJC and temperature measurement function.
Features of NuDAM-6012/D
1 analog input channel with differential input
Programmable voltage range
5000 Vrms isolation voltage for AD channel (2500 Vrms for
ND-6012/D)
2 digital output channels of open collector type
Alarm function with high / low alarm output
1 digital input channel / event counter
Programmable host watchdog timer for host failure protection
Internal watchdog timer for device failure protection
Easy programming by software
Easy installation and wiring
51/2 digital LED display (NuDAM-6012/D)
Specifications of NuDAM-6012/D
Interface
Interface: RS-485, 2 wires
Speed (bps): 1200, 2400, 4800, 9600, 19.2K, 38.4K ,115.2K
(115.2K only for firmware reversion above A4.00)
Analog Input
Input type: Differential input
Resolution: 16 bits
Unit Convertion: mV, V, or mA
Voltage Range: Programmable 5 levels ±10V, ±5V, ±1V, ±500mV, ±150mV
Current Measurement: ±20mA (with external 125 resistor)
Accuracy: ±0.05%
Isolation Voltage: 5000 Vrms(2500 Vrms for NuDAM-6012/D)
6 Introduction
Digital Output
Channel numbers: 2
Output characteristic: open collector transistor
Maximum current sink: 50mA
Max. power dissipation: 300mW
Digital Input
Channel numbers: 1
Logical level 0: +1V maximum
Logical level 1: +2.0V~30V
Pull up resister: 10KΩ
Maximum current: 0.5mA
Watchdog Function
Module internal watchdog timer: 150 ms
Power failure threshold: 4.65 V
Host programmable watchdog: 100 ms ~ 25.500 sec
Power
Power supply: +10V to +30V
Current consumption: 1.1 W(2.0W for NuDAM-6012/D)
Introduction 7
Pin Definitions of ND-6012/D
g
r
g
g
g
g
Pin # Signal Name Description
1 IN+ Analog Input Positive Terminal 2 IN- Analog Input Negative Terminal 3 DO 1/ HI Digital Output Channel 1
or High alarm status output 4 DI 0 / EV Digital Input Channel 0
or event counter input 5 DO 0 / LO Digital Output Channel 0
or Low alarm output 6 DEFAULT* Initial state setting 7 (Y) DATA+ RS-485 series signal, positive 8 (G) DATA- RS-485 series signal, negative 9 (R) +Vs Power supply, +10V~+30V 10 (B) GND Ground
Functional Block Diagram of ND-6012/D
+ 5V
Power Input +10V ~ +30V
Watchdog/Power Failure
Data +
Data -
RS-485
Rec/Drv
EEPROM
Config Data
Safe Value
Superviso
Power
ulator & Filter
Re
Micro
Processor
ADC
2-bits
ital Output
Di
1-bit
ital Input
Di
1-bit
ital Input
Di
GND
Analog
nal
Si
DO0
Default* Pin
LED Display
( only ND-6012/D)
8 Introduction
A Look at ND-6012/D & Pin Assignment
20
High Gain Analog
ND-6012
Code mV/mA
08 09
0A
0B
0C
0D
Input
10V
5 V
1 V
500 mV
150 mV
100 mV
0 - 20 mA
1
IN (-)
IN (+)
DI0/EV
DO 1/HI
DO 0/LO
DEFAULT*
(Y)DATA+
(G)DATA-
11
10
(R)+Vs
(B)GND
Introduction 9
1.4 Overview of NuDAM-6013
What is NuDAM-6013 ?
NuDAM-6013 is a RTD input module with 3 input channels. It supports 2, 3 or 4 wires RTD input device.
Features of NuDAM-6013
3 RTD input channels
2, 3 or 4 wire RTD input support
Programmable RTD input range
Internal watchdog timer for device failure protection
Easy programming by software
Easy installation and wiring
(2)
Note
: for H/W version C1.2 or above and F/W version C4.6 or above.
Specifications of NuDAM-6013
Interface
Interface: RS-485, 2 wires
Speed (bps): 1200, 2400, 4800, 9600, 19.2K, 38.4K ,115.2K
(115.2K only for firmware reversion above A4.00)
RTD Input
Input type: Pt or Ni input, 2, 3 or 4 wires
Channels Numbers: 3
Resolution: 16 bits
Unit Conversion: °C or Ohm
Temperature Range: Programmable 5 levels, ±100°C, 0~100°C, 0~200°C, 0~600°C, 0~60 Ohms
Accuracy: ±0.1%
(3)
Note
: Supported on F/W version C4.5 or above.
(3)
Power
Power supply: +10V to +30V
Current consumption: 0.65 W
10 Introduction
Pin Definitions of ND-6013
Pin # Signal Name Description
1 +IEXC0 Current source of CH0 2 +SENSE0 Differential positive input of CH0 3 -SENSE0 Differential negative input of CH0 4 -IEXC0 Current source of CH0 5 AGND0 Analog signal ground of CH0 6 DEFAULT* Initial state setting 7 (Y) DATA+ RS-485 series signal, positive 8 (G) DATA- RS-485 series signal, negative 9 (R) +Vs Power supply, +10V~+30V 10 (B) GND Ground
11 AGND2 Analog signal ground of CH2 12 -IEXC2 Current source of CH2 13 -SENSE2 Differential negative input of CH2 14 +SENSE2 Differential positive input of CH2 15 +IEXC2 Current source of CH2 16 AGND1 Analog signal ground of CH1 17 -IEXC1 Current source of CH1 18 -SENSE1 Differential negative input of CH1 19 +SENSE1 Differential positive input of CH1 20 +IEXC1 Current source of CH1
Functional Block Diagram of ND-6013
Power Input +10V ~ +30V
Data +
RS-485
Rec/Drv
Data -
Config Data
Safe Value
Regulator & Filter
Watchdog/Power
Failure Supervisor
EEPROM
Power
Micro
Processor
+ 5V
ADC
1-bit
Digital Input
Mux
GND
3 RTD Input
Channels
Default* Pin
200µA
200µA
2, 3, 4 Wires
+IEXC
+SENSE
-SENSE
-IEXC
GND
Introduction 11
A Look at ND-6013 & Pin Assignment
N
20
IEXC 1+
SENSE 1+
SENSE 1-
IEXC 1-
AGND 1
IEXC 2+
3-CH RTD Input
D-6013
α=0.00385 α=0.003916
Code Input Range Code Input Range
20 Pt.-100°C~+100°C 24 Pt.-100°C~+100°C
21 Pt. 0°C~+100°C 25 Pt. 0°C~+100°C 22 Pt. 0°C~+200°C 26 Pt. 0°C~+200°C 23 Pt. 0°C~+100°C 27 Pt. 0°C~+100°C
28 Ni-1000°C~+100°C29Ni-
SENSE 0+
IEXC 0+
1
SENSE 0-
DEFAULT*
IEXC 0-
AGND 0
SENSE 2+
SENSE 2-
1200°C~+100°C
DATA +
DATA -
IEXC 2-
+Vs
11
AGND 2
GND
10
12 Introduction
1.5 Overview of NuDAM-6014D
What is NuDAM-6014D ?
NuDAM-6014D is a multi-functions analog(transmitter) input module with LED display. The programmable input voltage range of analog input channel is from ±10V maximum to ±150mV minimum. The module also provides the alarm function and the event counter just like NuDAM-6012/D. In fact, the NuDAM-6014D provides almost all functions that NuDAM-6012/D has but there is more function with transmitter.
Features of NuDAM-6014D
1 analog input channel with differential input
Programmable voltage range
2500 Vrms isolation voltage for AD channel
2 digital output channels of open collector type
Alarm function with high / low alarm output
1 digital input channel / event counter
Programmable host watchdog timer for host failure protection
Internal watchdog timer for device failure protection
Easy programming by software
Easy installation and wiring
51/2 digital LED Display
Specifications of NuDAM-6014D
Interface
Interface: RS-485, 2 wires
Speed (bps): 1200, 2400, 4800, 9600, 19.2K, 38.4K ,115.2K
(115.2K only for firmware reversion above A4.00)
Analog Input
Input type: Differential input
Resolution: 16 bits
Unit Convertion: mV, V, or mA
Voltage Range: Programmable 5 levels ±10V, ±5V, ±1V, ±500mV, ±150mV
Current Measurement: ±20mA
Accuracy: ±0.05%
Isolation Voltage: 2500 Vrms
Introduction 13
Digital Output
Channel numbers: 2
Output characteristic: open collector transistor
Maximum current sink: 50mA
Max. power dissipation: 300mW
Digital Input
Channel numbers: 1
Logical level 0: +1V maximum
Logical level 1: +2.0V~30V
Pull up resister: 10KΩ
Maximum current: 0.5mA
Watchdog Function
Module internal watchdog timer: 150 ms
Power failure threshold: 4.65 V
Host programmable watchdog: 100 ms ~ 25.500 sec
Power
Power supply: +10V to +30V
Current consumption: 2.0 W
14 Introduction
Pin Definitions of ND-6014D
g
r
g
g
g
p
p
Pin # Signal Name Description
1 +15V External +15V 2 IIN+ Current Input Positive Terminal 3 IIN- Current Input Negative Terminal 6 DEFAULT* Initial state setting 7 (Y) DATA+ RS-485 series signal, positive 8 (G) DATA- RS-485 series signal, negative 9 (R) +Vs Power supply, +10V~+30V 10 (B) GND Ground 11 VIN- Analog Input Negative Terminal 12 VIN+ Analog Input Positive Terminal 13 +15V out External +15V Output
18 DO 0 / LO Digital Output Channel 0
or Low alarm output
19 DI 0 / EV Digital Input Channel 0
or event counter input
20 DO 1/ HI Digital Output Channel 1
or High alarm status output
Functional Block Diagram of ND-6014D
+ 5V
Power Input +10V ~ +30V
Watchdog/Power Failure
Data +
Data -
Config Data
Superviso
RS-485
Rec/Drv
EEPROM
Safe Value
Power
ulator & Filter
Re
Micro
Processor
ADC
2-bits
ital Output
Di
1-bit
ital Input
Di
1-bit
ital Input
Di
GND
Voltage
In
Current
In
DO0 DO1
DI0
Default* Pin
VIN+ VIN-
ut
ut
IIN+ IIN-
LED DISPLAY
Introduction 15
A Look at ND-6014D & Pin Assignment
)
N
)
±
1
20
DO1/HI
DI0/EV
DO0/LO
D-6014D
Code mV/mA
08/09/0A
0B/0C/0D
IIN+
+15V out
IIN-
Transmitter Input Module
10V/25V/±1V
±
500mV/
±
150mV/
±
20mV
DEFAULT*
VIN-
+15V out
VIN+
GND
+Vs
B
R
(Y)DATA+
(G)DATA-
10
16 Introduction
1.6 Overview of NuDAM-6017
What is NuDAM-6017 ?
NuDAM-6017 is an analog input module with 8 input channels. Six of the eight channels are differential type and the other two are single ended type.
Features of NuDAM-6017
8 analog input channels
6 differential inputs and 2 single ended inputs
Programmable input voltage range
Programmable host watchdog timer for host failure protection
5000 Vrms isolation voltage
Internal watchdog timer for device failure protection
Easy programming by software
Easy installation and wiring
Specifications of NuDAM-6017
Interface
Interface: RS-485, 2 wires
Speed (bps): 1200, 2400, 4800, 9600, 19.2K, 38.4K ,115.2K
(115.2K only for firmware reversion above A4.00)
Analog Input
Input type: Differential input
Channels Numbers: 8
Resolution: 16 bits
Unit Conversion: mV, V, or mA
Voltage Range: Programmable 5 levels , ±10V, ±5V, ±1V, ±500mV, ±150mV
Current Measurement: ±20mA (with external 125 resistor)
Accuracy: ±0.1%
Power
Power supply: +10V to +30V
Current consumption: 1.2 W
(4)
Note
: The maximum input voltage shall not exceed to ±30V with reference to
AGND otherwise, they may cause an unrecoverable harm to the hardware component.
(4)
Introduction 17
Pin Definitions of ND-6017
Pin # Signal Name Description
1 Vin5+ Differential positive input channel 5 2 Vin5- Differential negative input channel 5 3 Vin6+ Single-ended voltage input channel 6 4 AGND Analog signal ground of CH6 & 7 5 Vin7+ Single-ended voltage input channel 7 6 DEFAULT* Initial state setting 7 (Y) DATA+ RS-485 series signal, positive 8 (G) DATA- RS-485 series signal, negative 9 (R) +Vs Power supply, +10V~+30V 10 (B) GND Ground
11 Vin0+ Differential positive input channel 0 12 Vin0- Differential negative input channel 0 13 Vin1+ Differential positive input channel 1 14 Vin1- Differential negative input channel 1 15 Vin2+ Differential positive input channel 2 16 Vin2- Differential negative input channel 2 17 Vin3+ Differential positive input channel 3 18 Vin3- Differential negative input channel 3 19 Vin4+ Differential positive input channel 4 20 Vin4- Differential negative input channel 4
Functional Block Diagram of ND-6017
Power Input +10V ~ +30V
Data +
Data -
18 Introduction
Power
Regulator & Filter
Watchdog/Power Failure
Supervisor
RS-485
Rec/Drv
EEPROM
Config Data
Safe Value
Micro
Processor
ADC
1-bit
Digital Input
+ 5V
GND
Mux
8
Analog
Input
Channels
Default* Pin
A Look at ND-6017 & Pin Assignment
20
Vin 4+
Vin 4-
Vin 3+
Vin 3-
Vin 2-
Vin 2+
8-CH Analog Input
ND-6017
CODE
08 09
0A
0B
0C
0D
mV/mA
0 - 20 mA
10V
5 V
1 V
500 mV
150 mV
100 mV
Vin 1+
Vin 1-
11
Vin 0+
Vin 0-
1
Vin 5+
Vin 5-
Vin 6+
AGND
Vin 7+
DEFAULT*
(Y)DATA+
(G)DATA-
(R)+Vs
10
(B)GND
Introduction 19
1.7 Overview of NuDAM-6018
What is NuDAM-6018 ?
NuDAM-6018 is a thermocouple input module with 8 input channels. Six of the eight channels are differential type and the other two are single ended type.
Features of NuDAM-6018
8 analog input channels
6 differential inputs and 2 single ended inputs
Programmable input voltage range
Programmable host watchdog timer for host failure protection
On board CJC for temperature measurement
2500 Vrms isolation voltage
Internal watchdog timer for device failure protection
Easy programming by software
Easy installation and wiring
Wiring open detection
Specifications of NuDAM-6018
Interface
Interface: RS-485, 2 wires
Speed (bps): 1200, 2400, 4800, 9600, 19.2K, 38.4K ,115.2K
(115.2K only for firmware reversion above A4.00)
Analog Input
Input type: Differential input
Channels Numbers: 8
Resolution: 16 bits
Unit Conversion: Thermocouple, mV, V or mA
Thermocouple Type: J, K, T, E, R, S, B, N, C
J: 0°C~760°C K: 0°C~1370°C T: -100°C~400°C E: 0°C~1000°C R: 500°C~1750°C S: 500°C~1750°C B: 500°C~1800°C N: -270°C~1300°C C: 0°C~2320°C
Voltage Range: Programmable 6 levels ±2.5V, ±1V, ±500mV, ±100mV, ±50mV, ±15mV
Current Measurement: ±20mA (with external 125 resistor)
Power
Power supply: +10V to +30V
Current consumption: 0.9 W
(5)
Note
: For H/W version B4.0 or above and F/W version B1.31 or above.
(6)
(5)
(6)
20 Introduction
(6)
Note
: The maximum input voltage shall not exceed to ±30V with reference to
AGND otherwise, they may cause an unrecoverable harm to the hardware component.
(7)
Note
: F/W version above C4.30 support K-type for 0~1370°C. Lower version
°
supports K-type for 0~1000
C.
Pin Definitions of ND-6018
Pin # Signal Name Description
1 Vin5+ Differential positive input channel 5 2 Vin5- Differential negative input channel 5 3 Vin6+ Single-ended voltage input channel 6 4 AGND Analog signal ground of CH6 & 7 5 Vin7+ Single-ended voltage input channel 7 6 DEFAULT* Initial state setting 7 (Y) DATA+ RS-485 series signal, positive 8 (G) DATA- RS-485 series signal, negative 9 (R) +Vs Power supply, +10V~+30V 10 (B) GND Ground
11 Vin0+ Differential positive input channel 0 12 Vin0- Differential negative input channel 0 13 Vin1+ Differential positive input channel 1 14 Vin1- Differential negative input channel 1 15 Vin2+ Differential positive input channel 2 16 Vin2- Differential negative input channel 2 17 Vin3+ Differential positive input channel 3 18 Vin3- Differential negative input channel 3 19 Vin4+ Differential positive input channel 4 20 Vin4- Differential negative input channel 4
Functional Block Diagram of ND-6018
Power Input +10V ~ +30V
Data+
Data -
Watchdog/Power Failure
RS-485
Rec/Drv
EEPROM
Config Data
Safe Value
Power
Regulator & Filter
Micro
Processor
ADC
1-bit
+ 5V
GND
Mux
Thermo-
couple
Input
channels
Default* Pin
Introduction 21
8
A Look at ND-6018 & Pin Assignment
N
20
Vin 4+
Vin 4-
ND-6017
Code mV/mA Code T/C
00 ±15mV 0E J Type 01 ±50mV 0F K Type 02 ±100mV 10 T Type 03 ±500mV 11 E Type 04 ±1V 12 R Type 05 ±2.5V 13 S Type 06 ±20mA 14 B Type
Vin 3-
D-6018
CODE
08 09
0A
0B
0C
0D
Vin 3+
Vin 2-
Vin 1-
Vin 2+
Multiple Analog Input
8-CH Analog Input
mV/mA
10V
5 V
1 V
500 mV
100 mV
0 - 20 mA
11
Vin 0+
Vin 1+
Vin 0-
1
Vin 5+
Vin 5-
Vin 6+
AGND
Vin 7+
DEFAULT*
(Y)DATA+
(G)DATA-
(R)+Vs
10
(B)GND
22 Introduction
2
Initialization & Installation
2.1 Software Installation
1. If you have already installed “NuDAM Administration” then skip other steps.
2. Backup your software diskette.
3. Insert “NuDAM Administration” disc into CD-ROM:
4. Change drive to the path of CD-ROM. For example, your drive of CD-ROM is F:, then change the drive to F:
5. Find the setup of NuDAM Administration and run it.
6. Please follow the steps of setup program then you can successful to install the nudism Administration.
2.2 Initializing a Brand-New Module
Objective of Initializing a Brand-New NuDAM
All NuDAM modules, except NuDAM-6520 and NuDAM-6510, in a RS-485 network must have an unique address ID. Every brand-new NuDAM has a factory default setting as following:
Address ID is 01.
Baud rate is 9600 bps
Check-sum disable
Host Watchdog timer is disable
Therefore, to configure the brand-new NuDAM before using is necessary to avoid conflicting address. The baud rate may also be changed according to user‘s requirements.
Initialization & Installation 23
The initialization procedures of a brand-new NuDAM are shown in the following sections. The procedures are applicable for initializing NuDAM-6011/D, NuDAM-6012/D, NuDAM-6013, NuDAM-6014D, NuDAM-6017, and NuDAM-6018.
Default State
The NuDAM modules must be set at Default State when you want to change the default settings, including the ID address, baud rate, check-sum status etc. All NuDAM modules have an special pin labeled
as DEFAULT*. The module will be in Default State if the Default*1 pin is shorted to ground when power ON. Under this state, the default configuration is set as following:
Address ID is 00.
Baud rate is 9600 bps.
Check-sum disable.
Watchdog timer is disable.
Therefore, the configuration of the host and the module can be easily set identically and initializing a module will be possible no matter what configuration is set under operating state.
Initialization Equipments
Host computer with an RS-232 port.
An installed RS-485 module (NuDAM-6520) with 9600 baud rate.
The brand new NuDAM module
Power supply (+10 V
Administration utility software
to +30 VDC) for NuDAM modules
DC
Note1: Never Connect the DRFAULT* pin to Vs or power source just left it
open or wired to GND.
Initialization Procedure
1. Power off the host computer and the installed NuDAM-6520. Be
sure of the baud rate of the NuDAM-6520 is 9600 bps.
2. Connect a brand new NuDAM module with the RS-485. Set the
module in Default State by shorting the DEFAULT* pin. Refer to Figure 2.1 for detailed wiring.
3. Power on the host computer.
4. Power on the power supply for NuDAM modules.
5. Use the NuDAM Administration utility to configure the address ID,
Baud rate and check-sum status of the module.
24 Initialization & Installation
Initialization Wiring
Host
Computer
RS-232
Local Power Supply
+10 V to +30 V
+Vs GND
Figure 2-1 Layout for Initialization the NuDAM module
NuDAM-6520 RS-232/RS-485 Converter
DATA + DATA -
New NuDAM module
DATA+ DATA -
Default*
+Vs GND +Vs GND
2.3 Install a New NuDAM to a Existing Network
Equipments for Install a New Module
A existing NuDAM network
New NuDAM modules
Power supply (+10 to +30 V
Installing Procedures
1. Configure the new NuDAM module according to the initialization
procedures in section 2.2.
2. The baud rate and check-sum status of the new module must be
identity with the existing RS-485 network. The address ID must not be conflict with other NuDAM modules on the network.
3. Power off the NuDAM power supply of the existing RS-485
network.
4. Power off the host computer.
5. Wire the power lines for the new NuDAM with the existing network.
Be careful about the signal polarity as wiring.
6. Wire the RS-485 data lines for the new NuDAM with the existing
network. Be careful about the signal polarity as wiring.
7. Wire to the input or output devices. Refer to section 2.4 for
illustrations.
8. Power on the host computer.
9. Power on the NuDAM local power supply.
10. Use the NuDAM administration utility to check entire network.
DC
)
Initialization & Installation 25
2.4 Application Wiring for NuDAM-601X
A
A
A
y
A
Differential Voltage Input
Differential Signal Source
Differential Analog Input Channel of
Differential Analog Input Channel of
NuDAM-6011/D/6012/D/6017/6018
NuDAM-6011/6012/6017/6018
IN(+)
DC
IN(-)
Single Ended Voltage Input
Ground Signal Source
Single Ended Input Channel of NuDAM-6017/6018
Current Measurement
Current Source
R=125 Ohm %1 accurac
Differential Input Channel of
Differential Input Channel of NuDAM-6011/D/6012/D/6017/6018
NuDAM-6011/6012/60176018
IN(+)
R
IN(-)
IN(+)
DC
GND
DC
26 Initialization & Installation
Digital Input Connect with TTL Signal
r
r
rSupply
NuDAM-6011D/6012D Digital Input Channel
+5V
TTL Buffer
TTL
Device
DI 0
GND
Digital Input Used as an Event Counter
NuDAM-6011D/ 6012D Digital Input Channel
+5V
TTL Buffer
Clock
Source
Digital Output Connect with Power Loading
NuDAM-601x Digital Output Channel
DI 0
GND
LED, SSR, Relay etc.
To Micro Processor
To Micro Processor
+Vs
From Micro Processo
open collector
DO n
GND
R : current limit resistor
Powe Loading
Powe
Initialization & Installation 27
RTD Input (NuDAM-6013)
2 Wire
RTD
3 Wire
RTD
4 Wire
RTD
+IEXC 1
+SENSE
-SENSE
-IEXC
A.GND
+IEXC 1
+SENSE
-SENSE
-IEXC
A.GND
+IEXC 1
+SENSE
-SENSE
-IEXC
A.GND
28 Initialization & Installation
Application Wiring for NuDAM-6014D
Millivolt and Volt Input
Process Current Input
Initialization & Installation 29
Transmitter wiring for NuDAM-6014D
2-wire Transmitter Input
3-wire Transmitter Input
+15V out IN+
-
30 Initialization & Installation
3
Command Set
3.1 Command and Response
Introduction
The NuDAM command is composed by numbers of characteristics, including the leading code, address ID, the variables, the optional check-sum bytes, and a carriage return to indicate the end of a command. The host computer can only command only one NuDAM module except those synchronized commands with wildcard address “**”. The NuDAM may or may not give response to the command. The host should check the response to handshake with the modules.
Document Conventions
The following syntax conventions describe the NuDAM commands in this manual.
(Leading Code) Leading Code is the first characteristic of the NuDAM
(Addr) Module’s address ID, the value is in the range of 00 - FF
(Command Variable) [Data] Some commands need additional data.
[Checksum] Checksum in brackets indicate optional parameter, only
< > Identifies a control code character, such as <CR> for
command. All NuDAM commands need a command leading code, such as %,$,#,@,...etc. 1- character
(Hex). 2- character Command codes or value of variables.
Variable length
Variable length
checksum is enable then this field is required. 2- character
carriage return, its value is 0x0D.
1- character
Command Set 31
Format of NuDAM Commands
(Leading Code)(Addr)(Command)[Data][Checksum]<CR>
When checksum is enable then [Checksum] is needed, it is 2-character. Both command and response must append the checksum characters.
How to calculate checksum value ?
[Checksum] =
0x100
Example 1: checksum is disable
User Command: $012<CR> Response: !01400600<CR>
$ 01 2 <CR>
Example 2: checksum is enable
User Command: Response:
$ 01 2 B7 <CR>
‘$’ = 0x24 ‘0’ = 0x30 ‘1’ = 0x31 ‘2’ = 0x32
B7 = ( 0x24 + 0x30 + 0x31 + 0x32 ) MOD 0x100
‘!’ = 0x24 ‘0’ = 0x30 ‘1’ = 0x31 ‘4’ = 0x34 ‘6’ = 0x36
AC = ( 0x24 + 0x30 + 0x31 + 0x34 + 0x30 + 0x30 + 0x36 + 0x30 + 0x30 ) MOD 0x100
((LeadingCode)+(Addr)+(Command)+[Data]) MOD
: LeadingCode : Address : Command (Read Configuration) : Carriage return 0x0D
$012B7<CR> !01400600AC<CR>
: LeadingCode : Address : Command (Read Configuration) : Checksum value : Carriage return 0x0D
32 Command Set
Note: 1. There is no spacing between the command words and The checksum characters.
2. Every command follows a <CR> carriage return for ending.
3. The checksum characters are optional.
Response of NuDAM Commands
The response message depends on versatile NuDAM command. The response is composed with a few characteristics, including leading code, variables, and carriage return for ending. There are two categories of leading code for response message, ”!“ or ”>“ means valid command and ”?“ means invalid. By checking the response message, user can monitor the command is valid or not.
Note: Under the following conditions, there will have no response
message.
1. The specified address ID is not exist.
2. Syntax error.
3. Communication error.
4. Some special commands do not have response.
3.2 Summary of Command Set
There are three categories of NuDAM commands. The first is the general commands, including set configuration command, read configuration, reset, read module‘s name or firmware version, etc. Every NuDAM can response to the general commands. The second is the functional commands, which depends on functions of each module. Not every module can execute all function commands. The third is the special commands including functions about the programmable watchdog timer, safe values, and the programmable leading code. All the commands used in the NuDAM analog input module are list in the following table.
Command Set of Analog Input Modules
Command Syntax
General Commands
%(OldAddr)(NewAddr)
Set Configuration
Read Configuration Read Module Name
(InputRange)(BaudRate) (DataFormat) $(Addr)2 $(Addr)M
Module
ALL 3-7
ALL 3-11 ALL 3-12
s
Page
Command Set 33
Read Firmware Version Software Reset
Functional Commands
Synchronized Sampling
Read Synchronized Analog Data
Read Analog Data
Read Analog Data Channel 0 Span Calibration Span Calibration to each Channel
Offset Calibration Offset Calibration to each Channel
Read Analog Data From Channel N
Read All Analog Data
Enable/Disable Channel for Multiplexing
Read Channel Status
Read CJC Status
Enable/Disable CJC
Read Enable/Disable CJC Status
Read Source High/Low Values for Linear Mapping
$(Addr)F $(Addr)RS
#**
$(Addr)4
#(Addr)
#(Addr)
$(Addr)0
$(Addr)0(Channel No)
$(Addr)1
#(Addr)1(Channel No)
#(Addr)(ChannelNo)
$(Addr)A
$(Addr)5(ChannelVal)
$(Addr)6
$(Addr)3
$(Addr)C(Status)
$(Addr)D
$(Addr)3
ALL 3-13 ALL(1) 3-14
6011/D, 6012/D, 6014D 6011/D, 6012/D, 6014D 6011/D, 6012/D, 6014D
6013 3-17
ALL 3-18
6013(2) 3-19
ALL 3-20
6013(2) 3-21
6013, 6017, 6018 6013, 6017, 6018 6013, 6017, 6018 6013, 6017, 6018 6011/D, 6018 6011/D, 6018(3)
6011/D, 6018(3)
6014D 3-32
3-15
3-16
3-17
3-22
3-23
3-24
3-25
3-26
3-27
3-28
Read Target High/Low Values for Linear Mapping
34 Command Set
$(Addr)5
6014D 3-33
Write Source High/Low Values for Linear Mapping
$(Addr)6(Data_L)(Data_H)
6014D 3-34
Write Target High/Low Values for Linear Mapping
Enable/Disable Linear Mapping
Read Enable/Disable Linear Mapping Status
CJC Offset Calibration
Clear Latch Alarm
Clear Event Counter
Disable Alarm
Read Digital I/O and Alarm Status
Set Digital Output
Enable Alarm
Set High Alarm
Set Low Alarm
Read Event Counter
Read High Alarm
Read Low Alarm
$(Addr)7(Data_L)(Data_H)
$(Addr)A(Status)
$(Addr)R
$(Addr)9(Counts)
@(Addr)CA
@(Addr)CE
@(Addr)DA
@(Addr)DI
@(Addr)DO(OutData)
@(Addr)EA(Mode)
@(Addr)HI(Data)
@(Addr)LO(Data)
@(Addr)RE
@(Addr)RH
@(Addr)RL
6014D 3-35
6014D 3-36
6014D 3-37
6011/D, 6018 6011/D, 6012/D, 6014D 6011/D, 6012/D, 6014D 6011/D, 6012/D, 6014D
6011/D, 6012/D, 6014D
6011/D, 6012/D, 6014D 6011/D, 6012/D, 6014D 6011/D, 6012/D, 6014D 6011/D, 6012/D, 6014D 6011/D, 6012/D, 6014D 6011/D, 6012/D, 6014D 6011/D, 6012/D, 6014D
3-38
3-39
3-40
3-41
3-42
3-44
3-45
3-46
3-47
3-48
3-49
3-50
Command Set 35
Special Commands
Read Command Leading Code Setting
Change Command Leading Code Setting
Set Host Watchdog / Safety Value
Read Host WatchDog / Safe Value
Host is OK
~(Addr)0
~(Addr)10(C1)(C2)(C3) (C4)(C5)(C6)
~(Addr)2(Flag) (TimeOut)(SafeValue)
~(Addr)3
~**
ALL 3-51
ALL 3-53
ALL 3-55
ALL 3-57
ALL 3-58
Note: “ALL” means for ND-6011/D, ND-6012/D, ND-6013, ND-6014D,
ND-6017 and ND-6018.
(1) This function only support on F/W version above A4.30. (2)These two functions only support between F/W versionA3.05 to A4.52. (3)These two functions support on F/W version above B4.60 of ND-6018 and F/W version above A4.60 of ND-6011. (4)These two functions support on F/W version above B1.31 of ND-6018 and F/W version above C4.60 of ND-6013.
36 Command Set
3.3 Set Configuration
@Description
Configure the basic setting of NuDAM, including the address ID, input range, baud rate, and data format. The new configuration will be available after executing the command.
@Syntax
%(OldAddr)(NewAddr)(InputRange)(BaudRate)(DataFormat)<CR
>
% Command leading code. (1-character) (OldAddr)
(NewAddr)
(InputRange)
(BaudRate)
(DataFormat)
NuDAM module original address ID. The default address ID of a brand new module is
01. The value range of address ID is 00 to FF in hexadecimal.
(2-character)
New address ID, if you don’t want to change address ID, let new address ID equals to the old one. (2-character) Define analog input range, refers to Table 3-1 for details. (2-character) Define communication baud rate, refers to Table 3-2 for details. (2-character) Define checksum, integration time and output data format, refers to Figure 3-1 for details. (2-character)
(6011/D, 6012/D, 6013
6014D, 6017, 6018)
@Response
!(Addr)<CR>
or
?(Addr)<CR >
(Addr)
! ?
Address ID.
Command is valid. Command is invalid, parameter values are invalid, or change the setting without grounding the DEFAULT* pin.
Command Set 37
Note:
1. When you want to change the checksum or baud rate, the DEFAULT* pin must be grounded at first.
2. Waiting a maximum of 7 seconds to perform auto calibration and ranging after the analog input module is reconfigured. Please don’t execute any other command during this time period.
@Example
User command: %0130050600<CR> Response: !30<CR>
Item Meaning Description
% (Leading Code) Command leading code. 01 (OldAddr) Original address ID is 01(Hex). 30 (NewAddr) New address ID is 30(Hex). 05 (InputRange) 06 (BaudRate) Baud rate is 9600. 00 (DataFormat) 00 means data format is engineering
<CR> Carriage return 0x0D.
Analog input range is ±2.5V
units, checksum is disable and integration time is 50 ms (60Hz).
38 Command Set
Code (Hex) Input Range Modules
00 01 02 03 04 05
06
08
09
0A
0B
0C
0D
0E 0F 10 11 12 13 14 15 16 20 21 22 23 24 25 26 27 28 29 2A 0~60 Ohms 6013
±15 mV ±50 mV ±100 mV ±500 mV ±1 V ±2.5 V ±20 mA (Required 125 current conversion resistor.)
±10 V
±5 V
±1 V
±500 mV
±150 mV
±20 mA
(Required 125 current conversion resistor.) Type J Thermocouple 0° to 760°C
Type K Thermocouple 0° to 1370°C Type T Thermocouple -100° to 400°C Type E Thermocouple 0° to 1000°C Type R Thermocouple 500° to 1750°C Type S Thermocouple 500° to 1750°C Type B Thermocouple 500° to 1800°C Type N Thermocouple -270° to 1300°C Type C Thermocouple 0° to 2320°C Pt-100, -100°C to +100°C, α=0.00385 Pt-100, 0°C to +100°C, α=0.00385 Pt-100, 0°C to +200°C, α=0.00385 Pt-100, 0°C to +600°C, α=0.00385 Pt-100, -100°C to +100°C, α=0.003916 Pt-100, 0°C to +100°C, α=0.003916 Pt-100, 0°C to +200°C, α=0.003916 Pt-100, 0°C to +600°C, α=0.003916 Ni-100, 0°C to +100°C Ni-120, 0°C to +100°C
6011/D,6018 6011/D,6018 6011/D,6018 6011/D,6018 6011/D,6018 6011/D,6018
6011/D,6018
6012/D,6017, 6014D 6012/D,6017, 6014D 6012/D,6017, 6014D 6012/D,6017, 6014D 6012/D,6017, 6014D
6012/D,6017, 6014D
6011/D,6018 6011/D,6018 6011/D,6018 6011/D,6018 6011/D,6018 6011/D,6018 6011/D,6018 6011/D,6018 6011/D,6018 6013 6013 6013 6013 6013 6013 6013 6013 6013 6013
Table 3-1 AD Input Range Setting
Command Set 39
A
Code Baudrate
03 1200 bps 04 2400 bps 05 4800 bps 06 9600 bps 07 19200 bps 08 38400 bps 09 115200 bps
Table 3-2 Baud rate setting code
6
7
Checksum
0: disable 1: enable
Figure 3-1 Data Format Setting of Analog Input Modules
4 3 2 1 0
5
nalog Input Data Format
00: Engineering units 01: % of Full Scale Range 10: Two’s complement of hexadecimal 11: Ohms (6013 only)
Note: 6017/6018 only support engineering units.
6013 supports engineering units and
ohms display.
Reserved
Must to be 0
40 Command Set
3.4 Read Configuration
@Description
Read the configuration of module on a specified address ID.
@Syntax
$(Addr)2<CR >
$ (Addr) 2
@Response
!(Addr)(InputRange)(BaudRate)(DataFormat)<CR> or ?(Addr)<CR >
! ? (Addr) (InputRange)
(BaudRate)
(DataFormat)
Command leading code Address ID. Command code for reading configuration
Command is invalid. Command is invalid. Address ID. Current setting of analog voltage input, refers to Table 3-1 for details. Current setting of communication baud rate, refers to Table 3-2 for details. Current settings of checksum, integration time and output data format, refers to Figure 3-1 for details.
(6011/D, 6012/D, 6013
6014D, 6017, 6018)
@Example
User command: $302<CR> Response: !30050600<CR>
! 30 05 06 00
Command is valid. Address ID. Analog input range is ±2.5 V. Baud rate is 9600 bps. checksum is disable.
Command Set 41
3.5 Read Module Name
@Description
Read module name of NuDAM at specified address.
@Syntax
$(Addr)M<CR>
$ (Addr) M
@Response
!(Addr)(ModuleName) <CR> or ?(Addr)<CR >
Command leading code. Address ID Read module name
! ? (Addr) (ModuleName)
Command is invalid. Command is invalid. Address ID. NuDAM module‘s name could be ‘6011’, ’6011/D‘, ‘6012’, ’6012/D‘, ‘6013’, ‘6017’ or ’6018‘. 4 or 5 characters
(6011/D, 6012/D, 6013
6014D, 6017, 6018)
@Example
User command: $30M<CR> Response: !306011/D<CR>
! 30 6011/D
42 Command Set
Command is valid. Address ND-6011/D (Analog Input Module)
3.6 Read Firmware Version
@Description
Read firmware version of NuDAM at specified address.
@Syntax
$(Addr)F<CR>
$ (Addr) F
@Response
!(Addr)(FirmRev) <CR> or ?(Addr)<CR >
Command leading code. Address ID Read module firmware version.
! ? (Addr) (FirmRev)
@Example
User command: $30F<CR> Response: !30A2.10<CR>
! 30 A2.10
Command is valid. Command is invalid. Address ID. NuDAM module‘s firmware version.
Command is valid. Address Firmware Version
(6011/D, 6012/D, 6013
6014D, 6017, 6018)
Command Set 43
3.7 Software Reset
@Description
To stop current operation , reset the module to initial power on state.
@Syntax
$(Addr)RS<CR>
$ Command leading code (1 character) (Addr) Address ID (2 character) RS Software Reset (2 character)
@Response
!(Addr)<CR> or ?(Addr)<CR >
! ? (Addr )
@Example
User command: Response: !06<CR>
To stop current operation , reset the module to initial power on state for analog input module ND-6013 , address ID is 06H.
(6011/D, 6012/D, 6013
6014D, 6017, 6018)
Command is valid. Command is invalid. Address ID.
$060RS<CR>
44 Command Set
3.8 Synchronized Sampling
@Description
Synchronized all modules to sample analog input values and stored the values in the module’s register at the same time. The sampled data can be read by “Read Synchronized Data” command.
@Syntax
#**<CR >
# **
@Response
Note: Synchronized sampling command has NO response.
@Example
User command: #**<CR>
Command leading code. Synchronized sampling command
(6011/D, 6012/D, 6014D)
Command Set 45
3.9 Read Synchronized Data
@Description
After a synchronized sampling command #** was issued, you can read the sampled value that was stored in the register of the module at specified address.
@Syntax
$(Addr)4<CR >
$ (Addr) 4
@Response
>(Addr)(Status)(Data)<CR> or ?(Addr)<CR >
> ?
(Addr) (Status)
(Data)
Command leading code. Address ID Read synchronized data.
Command is invalid. Command is invalid or no synchronized sampling command was issued. Address ID. 0: Data has been sent at least once before. 1: Data has been sent for the first time since a synchronized sampling command was issued. (1-character) There are four types of Data format, refers to Chapter 4 for details.
(6011/D, 6012/D, 6014D)
@Examples
User command: $064<CR> Response: >060+1.6888<CR>
Read synchronized data at address 06H, analog input module send its analog input data +1.6888 (units). Status is 0 means it has sent the same data at least once. The current units is set by the data format.
User command: $064<CR> Response: >061+1.6888<CR>
Read synchronized data at address 06H, analog input module send its analog input data +1.6888 (units). Status is 1 means it is the first time that the data has been sent. The current units is set by the data format
46 Command Set
3.10 Read Analog Data
@Description
Read the analog input value from an analog input module at specified address in a NuDAM network. While for ND-6013, it returns the channel 0 analog data.
@Syntax
#(Addr)<CR>
# (Addr)
@Response
>(InputData)<CR>
Command leading code Address ID
> (InputData)
@Example
User command: #06<CR> Response: >+1.6888<CR>
Read the analog input module data at address 06 (Hex). The analog input module response data is +1.6888 units. The unit depends on the data format.
Delimiter character The input data represents the analog signal. The unit of the digits depends on the data format used. There are four types of data format. The format is set by the set configuration command. Delimiter character
(6011/D, 6012/D, 6013, 6014D)
Command Set 47
3.11 Span Calibration
@Description
To correct the gain errors of AD converter by using the span calibration.
@Syntax
$(Addr)0<CR>
$ Command leading code (1 character) (Addr) Address ID (2 character) 0 Span calibration (1 character)
@Response
!(Addr)<CR> or ?(Addr)<CR >
! ? (Addr)
@Example
User command: $060<CR> Response: !06<CR>
To perform the span calibration for analog input module, address ID is 06H.
Command is valid. Command is invalid. Address ID.
(6011/D, 6012/D, 6013 C4.6
6014D, 6017, 6018)
Note: To perform the calibration, a proper input signal should be
connected to the analog input module. Different input range have different input voltage, detail refer chapter 5 “Calibration”.
48 Command Set
3.12 Span Calibration to each Channel
A
@Description
To correct the gain errors of AD converter by using the span calibration.
@Syntax
$(Addr)0(Channel No)<CR>
$ Command leading code (1 character) (Addr) Address ID (2 character) 0 Span calibration (1 character) (Channel No) Channel for Calibration (1 character) 0~2
@Response
!(Addr)<CR> or ?(Addr)<CR >
! ? (Addr)
@Example
User command: $0601<CR> Response: !06<CR>
To perform the span calibration for analog input module ND-6013 channel 1, address ID is 06H.
Command is valid. Command is invalid. Address ID.
(for 6013 F/W version
3.05~A4.60)
Note: To perform the calibration, a proper input signal should be
connected to the analog input module. Different input range have different input voltage, detail refer chapter 5 “Calibration” .
Command Set 49
3.13 Offset Calibration
@Description
To correct the offset errors of AD converter by using the offset calibration.
@Syntax
$(Addr)1<CR>
$ (Addr) 1
@Response
!(Addr)<CR> or ?(Addr)<CR >
! ? (Addr)
@Example
User command: $061<CR> Response: !06<CR>
To perform the offset calibration for analog input module at specified address 06 (Hex).
Command leading code Address ID Offset calibration.
Command is valid. Command is invalid. Address ID.
(6011/D, 6012/D, 6013 C4.6
and above, 6014D, 6017, 6018)
Note: To perform the calibration, a proper input signal should be
connected to the analog input module. Different input range have different input voltage, detail refer chapter 5 “Calibration” .
50 Command Set
3.14 Offset Calibration to each Channel
A
(for 6013 F/W version
@Description
To correct the offset errors of AD converter by using the offset calibration.
@Syntax
$(Addr)1(Channel No)<CR>
3.05~A4.60)
$ (Addr) 1 (Channel No) Channel for calibration.(1 character)0~2
@Response
!(Addr)<CR> or ?(Addr)<CR >
! ? (Addr)
@Example
User command: $0612<CR> Response: !06<CR>
To perform the offset calibration for analog input module ND-6013 channel 2 at specified address 06 (Hex).
Command leading code Address ID Offset calibration.
Command is valid. Command is invalid. Address ID.
(6013)
Note: To perform the calibration, a proper input signal should be
connected to the analog input module. Different input range have different input voltage, detail refer chapter 5 “Calibration” .
Command Set 51
3.15 Read Analog Data From Channel N
@Description
Read the analog input value of a specified AD channel from an analog input module at specified address in a NuDAM network.
@Syntax
#(Addr)(ChannelNo)<CR>
# Command leading code. (1-character) (Addr) Address ID. (2-character) (ChannelNo) Channel number, range (0 - 7). (1-character)
Range (0-2). For ND-6013
@Response
>(InputData)<CR>
> (InputData)
@Example
User command: #061<CR> Response: >+1.6888<CR>
Read the analog input channel 1 of AD module at address 06 (Hexadecimal) in the network. The analog input data is +1.6888 Volts (Data format is engineering unit)
Delimiter character Input value from a specified channel number, the data format is a + or - sign with five decimal digits and a fixed decimal point.
(6013, 6017, 6018)
52 Command Set
3.16 Read All Analog Data Channel
@Description
Read all the enable analog input channel value of a specified from an analog input module at specified address in a NuDAM network.
@Syntax
#(Addr)A<CR>
# Command leading code. (1-character) (Addr) Address ID. (2-character) A
@Response
>(InputData)(InputData)(InputData)<CR>
All the enable channel
> (InputData)
@Example
User command: #06A<CR> Response: >+100.88+020.66+006.79<CR>
Read the analog input of AD module at address 06 (Hexadecimal) in the network. The analog input data are +100.88 °C for channel 0, +020.66 °C for channel 1 and +006.79°C for channel 3. (Data format is engineering unit).
Delimiter character Input value from a specified channel number, the data format is a + or - sign with five decimal digits and a fixed decimal point.
(6013, 6017, 6018)
Command Set 53
3.17 Enable/Disable channels for Multiplexing
(6013, 6017, 6018)
@Description
Enable/Disable multiplexing simultaneously for individual channel.
@Syntax
$(Addr)5(ChannelVal)<CR>
$ Command leading code. (1-character) (Addr) Address ID (2-character) 5 Enable/Disable channel. (1-character) (ChannelVal)
@Response
!(Addr)<CR> or ?(Addr)<CR >
! ? (Addr)
@Example
User command: $06548<CR> Response: !06<CR>
$ 06 5 48
bit 3~0 of 1st character: control channel 7 - 4. bit 3~0 of 2nd character: control channel 3 - 0. bit value 0: Disable channel bit value 1: Enable channel (2-character)
Command is valid. Command is invalid. Address ID.
Command leading code. Address ID. Disable/Enable channel. Channel Value is 0x48. ‘48’ is 01001000 that means enable channel 3 and channel 6, the other channels are all disable.
54 Command Set
3.18 Read Channel Status
@Description
Read the enable/disable status the channels of ND-6013, ND-6017 or
6018.
@Syntax
$(Addr)6<CR>
$ Command leading code. (1-character) (Addr) Address ID (2-character) 6 Read channel status. (1-character)
@Response
!(Addr)(ChannelVal)<CR> or ?(Addr)<CR >
! ? (Addr) (ChannelVal)
@Example
User command: $066<CR> Response: !0648<CR>
4 is equals binary 0100 that means enable channel 6 and disable channel 7, 5, 4. 8 is equals binary 1000 that means enable channel 3 and disable channel 2, 1, 0.
Command is invalid. Command is invalid. Address ID. bit 3~0 of 1st character: controlt channel 7 - 4. bit 3~0 of 2nd character: control channel 3 - 0. bit value 0: Disable channel bit value 1: Enable channel (2-character)
(6013, 6017, 6018)
Command Set 55
3.19 Read CJC Status
@Description
Read the CJC (Cold Junction Compensation) sensors data.
@Syntax
$(Addr)3<CR>
$ (Addr) 3
@Response
>(Data)<CR> or ?(Addr)<CR >
> (Data)
? (Addr)
@Example
User command: $063<CR> Response: >+0037.9<CR>
This command is to read analog input module CJC status at address 06H, return data is 37.9°C.
Command leading code. Address ID Read CJC status.
Command is invalid. CJC sensor’s data. Data format is engineering units. (an + or - sign with five decimal digits and a decimal fixed point. The resolution is 0.1°C Command is invalid. Address ID.
(6011/D, 6018)
56 Command Set
3.20 Enable/Disable CJC
@Description
To disable/enable CJC of ND-6011/D and ND-6018
@Syntax
$(Addr)C(Status)<CR>
$ Command leading code (1 character) (Addr) Address ID (2 character) C Disable/enable CJC command (1 character) (Status)
@Response
!(Addr)<CR> or ?(Addr)<CR >
! ? (Addr ))
@Example
User command: Response: !02<CR>
To enable CJC and module’s address is 02H.
Command is valid. Command is invalid. Address ID (2 character)
(6011/D, 6018)
0: Disable 1: Enable
$02C1<CR>
Command Set 57
3.21 Read enable/disable CJC Status
@Description
To read CJC disable/enable status of ND-6018
@Syntax
$(Addr)D<CR>
$ Command leading code (1 character) (Addr) Address ID (2 character) D Read CJC disable/enable staus command (1
character)
@Response
!(Addr)(Statu s)<CR> or ?(Addr)<CR >
! ? (Stat us)
@Example
User command: Response: !021<CR>
To read CJC disable/enable status, and module’s address is 02H., the CJC is enable.
Command is valid. Command is invalid. 0: Disable 1: Enable
$02D<CR>
(6011/D, 6018)
58 Command Set
3.22 Read Source High/Low Values for Linear Mapping
@Description
Read the high/low limit values from input for linear mapping.
@Syntax
$(Addr)3<CR>
$ (Addr) 3
@Response
!(Addr)(Data_L)(Data_H)<CR> or ?(Addr)<CR>
!
(Addr) (Data_L)
(Data_H)
?
Command leading code. Address ID Read the high/low limit values from input for linear mapping .
Command is invalid.
Address ID. Low limit value for linear mapping.
Data format is with an + or - sign with five decimal digits and a decimal fixed point. High limit value for linear mapping. Data format is with an + or - sign with five decimal digits and a decimal fixed point. Command is invalid.
(6014D)
@Example
User command: $023<CR>
Response: !02+04.000+20.000<CR> The module is configured for +20~-20mA input current range. The linear mapping function should already have been executed. This command is to read the high/low values for linear mapping. The high limit value is +20mA and low limit value is +4mA. The address of this module is 06H.
Command Set 59
3.23 Read Target High/Low Values for Linear Mapping
@Description
Read the mapped high/low limit values from input for linear mapping.
@Syntax
$(Addr)5<CR>
$ (Addr) 5
@Response
!(Addr)(Data_L)(Data_H)<CR> or ?(Addr)<CR>
!
(Addr) (Data_L)
(Data_H)
?
Command leading code. Address ID Read the mapped high/low limit values from input for linear mapping .
Command is invalid.
Address ID. Mapped low limit value for linear mapping.
Data format is with an + or - sign with five decimal digits and a decimal fixed point. Mapped high limit value for linear mapping. Data format is with an + or - sign with five decimal digits and a decimal fixed point. Command is invalid.
(6014D)
@Example
User command: $055<CR> Response: !05-20.000+20.000<CR>
The module is configured for +20~-20mA input current range. The linear mapping function had been executed. This command is to read the mapped high/low values for linear mapping. The mapped high limit value is +20mA and mapped low limit value is -20mA. The address of this module is 05H.
60 Command Set
3.24 Write Source High/Low Values for Linear Mapping
@Description
Write the source high/low limit values from input for linear mapping.
@Syntax
$(Addr)6(Data_L)(Data_H)<CR>
$ (Addr) 6
(Data_L)
(Data_H)
@Response
!(Addr)<CR> or ?(Addr)<CR>
!
(Addr) ?
Command leading code. Address ID Set the high/low limit values from input for linear mapping .
Low limit input value for linear mapping. It must be lower than the high limit input value. The format of data is the same as input current range. The minimum input value could equal to the minimum input value of input current range. Data format is with an + or - sign with five decimal digits and a decimal fixed point. High limit input value for linear mapping. It must be higher than the low limit input value. The format of data is the same as input current range. The maximum input value could equal to the maximum input value of input current range. Data format is with an + or - sign with five decimal digits and a decimal fixed point.
Command is invalid.
Address ID. Command is invalid.
(6014D)
@Example
User command: $036-100.00+100.00<CR> Response: !03<CR>
The module is configured for +150~-150mV input range. This command is to set the input high/low values from +100.00 to –100.00mV for linear mapping. The address of this module is 05H.
Command Set 61
3.25 Write Target High/Low Values for Linear Mapping
@Description
Write the target high/low limit values from input for linear mapping.
@Syntax
$(Addr)7(Data_L)(Data_H)<CR>
$ (Addr) 7
(Data_L)
(Data_H)
@Response
!(Addr)<CR> or ?(Addr)<CR>
!
(Addr) ?
Command leading code. Address ID Set the mapped high/low limit values from input for linear mapping . Mapped low limit input value for linear mapping. It must be lower than the mapped high limit input value. Data format is with an + or - sign with five decimal digits and a decimal fixed point. Mapped high limit input value for linear mapping. It must be Higher than mapped the low limit input value. Data format is with an + or - sign with five decimal digits and a decimal fixed point.
Command is invalid.
Address ID. Command is invalid.
(6014D)
@Example
User command: $036-100.00+100.00<CR> Response: !03<CR>
The module is configured for +150~-150mV input range. This command is to set the input high/low values from +100.00 to –100.00mV for linear mapping. The address of this module is 03H.
62 Command Set
3.26 Enable/Disable Linear Mapping
@Description
Enable or disable the linear mapping function for the module.
@Syntax
$(Addr)A(Status)<CR>
$ (Addr) A (Status)
@Response
!(Addr)<CR> or ?(Addr)<CR>
!
(Addr) ?
@Example
User command: $03A1<CR> Response: !03<CR>
This command set the linear mapping function of ND-6014D is enable, and the address of this module is 03H.
Command leading code. Address ID Reference to control the linear mapping function. One char to determine the linear mapping function enable or disable. 1: means enable. 0: means disable.
Command is invalid.
Address ID. Command is invalid.
(6014D)
Command Set 63
3.27 Read enable/Disable Linear Mapping Status
@Description
Read enable or disable the linear mapping status for the module.
@Syntax
$(Addr)R<CR>
$ (Addr) R
@Response
!(Addr)(Status)<CR> or ?(Addr)<CR>
!
(Addr) (Status)
?
@Example
User command: $07R<CR> Response: !070<CR>
This command means the linear mapping function of ND-6014D is disable, and the address of this module is 07H.
Command leading code. Address ID Read to the linear mapping status.
Command is invalid.
Address ID. One char to means the state of linear mapping.
1: means enable. 0: means disable. Command is invalid.
(6014D)
64 Command Set
3.28 CJC Offset Calibration
@Description
To correct the CJC offset errors use CJC (Cold Junction Compensation) offset calibration.
@Syntax
$(Addr)9(Counts)<CR>
$ (Addr) 9 (Counts)
@Response
!(Addr)<CR> or ?(Addr)<CR >
! ? (Addr)
Command leading code Address ID CJC offset calibration. It is a 4-characters (Hexadecimal) with a sign + or -, range is 0000 to FFFF, each count equals approximately 0.0153°C. Example: +0042 = 4x16 + 2 = 66 66 * 0.0153°C = 1.009°C
Command is valid. Command is invalid. Address ID.
(6011/D, 6018)
@Example
User command: $089+0042<CR> Response: !08<CR>
CJC offset calibration at address 08H. The calibrated offset temperature is +0042(Hex) = 66, 66 x 0.0153°C = 1.009°C
Command Set 65
3.29 Clear Latched Alarm
@Description
Clear the High/Low alarm state at specified analog input module.
@Syntax
@(Addr)CA<CR>
@ (Addr) CA
@Response
!(Addr)<CR>
Command leading code. Address ID Clear latched alarm.
! (Addr)
@Example
User command: @06CA<CR> Response: !06<CR>
Clear the both High/Low latch alarm state at address 06H.
Command is valid. Address ID.
(6011/D, 6012/D, 6014D)
66 Command Set
3.30 Clear Event Counter
@Description
Reset the event counter to zero at specified analog input module.
@Syntax
@(Addr)CE<CR>
@ (Addr) CE
@Response
!(Addr)<CR>
Command leading code. Address ID Clear event counter.
! (Addr)
@Example
User command: @06CE<CR> Response: !06<CR>
Set the event counter to zero at address 06H, response data means its event counter has been reset.
Command is valid. Address ID.
(6011/D, 6012/D, 6014D)
Command Set 67
3.31 Disable Alarm
@Description
Disable High/Low alarm functions at specified analog input module.
@Syntax
@(Addr)DA<CR>
@ (Addr) DA
@Response
!(Addr)<CR>
Command leading code. Address ID Disable Alarm.
! (Addr)
@Example
User command: @06DA<CR> Response: !06<CR>
Disable all alarm functions at address 06H.
Command is valid. Address ID.
(6011/D, 6012/D, 6014D)
68 Command Set
3.32 Read Digital I/O and Alarm Status
@Description
Read the digital input channel, digital output channel and the alarm state at specified analog input module.
@Syntax
@(Addr)DI<CR>
@ (Addr) DI
@Response
!(Addr)(Alarm)(DigitalO)(DigitalI)<CR>
Command leading code. Address ID Read digital I/O and alarm state.
! (Addr) (Alarm)
(DigitalO)
(DigitalI)
Command is invalid. Address ID. 0: alarm is disable 1: MOMENTARY mode enable. 2: LATCH mode enable. (1-character) Digital output channel, port 0 and 1 status. 00: channel 0 is OFF, channel 1 is OFF 01: channel 0 is ON , channel 1 is OFF 02: channel 0 is OFF, channel 1 is ON 03: channel 0 is ON , channel 1 is ON (2-character) Digital input channel, port status. 00: channel is LOW. 01: channel is HIGH. (2-character)
(6011/D, 6012/D, 6014D)
Command Set 69
@Example
User command: @06DI<CR> Response: !0620301<CR>
Item Meaning Description ! 06 2 03
01
Read digital I/O and alarm at address 06H. alarm state is LATCH, digital output channel port 0 and 1 are ON and digital input channel is HIGH.
(Leading Code) Command leading code. (Addr) Analog module’s address ID is 06H. (Alarm) 2 means alarm state is LATCH. (DigitalO) Digital output channel status.
03: channel 0 is ON channel 1 is ON
(DigitalI) Digital input channel status
01: digital input is HIGH.
70 Command Set
3.33 Set Digital Output
@Description
Set digital output channel at specified module.
@Syntax
@(Addr)DO(OutData)<CR>
@ (Addr) DO (OutData)
@Response
!(Addr)<CR> or ?(Addr)<CR >
! ? (Addr)
@Example
User command: @06DO02<CR> Response: !06<CR>
Set the digital output channel state at address 06H, digital output channel port 0 is OFF, port 1 is ON.
Command leading code. Address ID Set digital output Digital output data .(2 - characters) 00: bit 1 is OFF, bit 0 is OFF. 01: bit 1 is OFF, bit 0 is ON. 02: bit 1 is ON , bit 0 is OFF 03: bit 1 is ON , bit 0 is ON.
Command is valid. Command is invalid. Address ID.
(6011/D, 6012/D, 6014D)
Command Set 71
3.34 Enable Alarm
@Description
Enable alarm to Latch mode or Momentary mode at specified analog input module.
@Syntax
@(Addr)EA(Mode)<CR>
@ (Addr) EA (Mode) M: enable alarm to MOMENTARY mode.
@Response
!(Addr)<CR>
Command leading code. Address ID Enable alarm command code
L: enable alarm to LATCH mode.
! (Addr)
@Example
User command: @06EAL<CR> Response: !06<CR>
Enable alarm to LATCH mode at address 06H.
User command: @06EAM<CR> Response: !06<CR>
Enable alarm to MOMENTARY mode at address 06H.
Command is valid. Address ID.
(6011/D, 6012/D, 6014D)
72 Command Set
3.35 Set High Alarm
@Description
Set high alarm limit value at specified analog input module.
@Syntax
@(Addr)HI(Data)<CR>
@ (Addr) HI (Data)
@Response
!(Addr)<CR>
Command leading code. Address ID Set high alarm limit value. Alarm high limit value. Data format is engineering units. (an + or - sign with five decimal digits and a decimal fixed point.
! (Addr)
Command is valid. Address ID.
@Example
User command: @06HI+300.00<CR> Response: !06<CR>
Set high alarm limit value to 300°C for type J thermocouple to input at address 06H.
(6011/D, 6012/D, 6014D)
Command Set 73
3.36 Set Low Alarm
@Description
Set low alarm limit value at specified analog input module.
@Syntax
@(Addr)LO(Data)<CR>
@ (Addr) LO (Data)
@Response
!(Addr)<CR>
! (Addr)
@Example
User command: @06LO+100.00<CR> Response: !06<CR>
Set low alarm limit value to +100°C to accept J-type thermocouple input at address 06H.
Command leading code Address ID Set low alarm limit value. Alarm low limit value. Data format is engineering units. (an + or - sign with five decimal digits and a decimal fixed point.
Command is valid. Address ID.
(6011/D, 6012/D, 6014D)
74 Command Set
3.37 Read Event Counter
@Description
Read the event counter value at specified analog input module.
@Syntax
@(Addr)RE<CR>
@ (Addr) RE
@Response
!(Addr)(Data)<CR>
Command leading code. Address ID Read event counter.
! (Addr) (Data)
@Example
User command: @06RE<CR> Response: !0612345<CR>
Read event counter, its value is 12345 (Decimal) at address 06H.
Command is valid. Address ID. 5-character (Decimal), range 00000 to 65535, if the event counter exceed 65535 then event counter value is 65535 (No changed). (5-character)
(6011/D, 6012/D, 6014D)
Command Set 75
3.38 Read High Alarm Limit
@Description
Read the high alarm limit at specified analog input module.
@Syntax
@(Addr)RH<CR>
@ (Addr) RH
@Response
!(Addr)(Data)<CR>
Command leading code. Address ID Read high alarm limit.
! (Addr) (Data)
@Example
User command: @06RH<CR> Response: !06+01.500<CR>
Read the high alarm limit value at address 06H, its value is 1.500 Volts, presume this module is configured to accept ±2.5 Volts input.
Command is valid. Address ID. High alarm limit value. Data format is engineering units. (an + or - sign with five decimal digits and a decimal fixed point.
(6011/D, 6012/D, 6014D)
76 Command Set
3.39 Read Low Alarm Limit
@Description
Read the low alarm limit at specified analog input module.
@Syntax
@(Addr)RL<CR>
@ (Addr) RL
@Response
!(Addr)(Data)<CR>
Command leading code. Address ID, range (00 - FF). Read low alarm limit.
! (Addr) (Data)
@Example
User command: @06RL<CR> Response: !06-0.3850<CR>
Read the low alarm limit value at address 06H, its value is
-0.3850 Volts, presume this module is configured to accept 1 Volts input.
Command is valid. Address ID. Alarm low limit value. Data format is engineering units. (an + or - sign with five decimal digits and a decimal fixed point.
(6011/D, 6012/D, 6014D)
Command Set 77
3.40 Read Leading Code Setting
@Description
Read command leading code setting and host watchdog status.
@Syntax
~(Addr)0<CR >
~ (Addr) 0
@Response
!(Addr)(Status)(C1)(C2)(C3)(C4)(C5)(C6)<CR>
or
?(Addr)<CR >
! ? (Addr) (Status) (2-character)
(C1)
(C2)
(C3)
(C4)
Command leading code. Address ID Read command leading code setting.
Command is valid. Command is invalid. Address ID
Bit 0: Reserved Bit 1: Power failure or watchdog failure Bit 2: Host watchdog is enable Bit 3: Host failure Leading code 1, for read configuration status, firmware version, etc. default is $. (1-character) Leading code 2, for read synchronize sampling, digital output, default is #. (1-character) Leading code 3, for change configuration. default is %. (1-character) Leading code 4, for read alarm status, enable alarm, etc. default is @. (1-character)
(6011/D, 6012/D, 6013
6014D, 6017, 6018)
78 Command Set
(C5)
(C6)
@Example
User command: ~060<CR> Response: !0600$#%@~*<CR>
Leading code 5, for read command leading code, change command leading code, etc. default is ~. (1-character) Leading code 6, this leading code is reserved. default is *. (1-character)
Command leading code setting is $#%@~* for module address ID is 06, current status is factory default setting.
Command Set 79
3.41 Change Leading Code Setting
@Description
User can use this command to change command leading code setting as he desired.
@Syntax
~(Addr)10(C1)(C2)(C3)(C4)(C5)(C6)<CR>
~ (Addr) 10 (C1)
(C2)
(C3)
(C4)
(C5)
(C6)
Command leading code. Address ID, range (00 - FF). Change command leading code setting. Leading code 1, for read configuration status, firmware version, etc. default is $. (1-character) Leading code 2, for read synchronize sampling, digital output ,default is #. (1-character) Leading code 3, for change configuration. default is %. (1-character) Leading code 4, for read alarm status, enable alarm, etc. default is @. (1-character) Leading code 5, for read command leading code, change leading code, etc. default is ~. (1-character) Leading code 6, this leading code is reserved. default is *. (1-character)
(6011/D, 6012/D, 6013
6014D, 6017, 6018)
@Response
!(Addr)< CR>
or
?(Addr)<CR>
! ? (Addr)
80 Command Set
Command is valid. Command is invalid. Address ID.
@Examples
User command: ~060<CR> Response:
User command: Response: !06<CR>
User command: Response: !06A1.8<CR>
!0600$#%@~*<CR>
~0610A#%@~*<CR>
A06F
Read leading code setting is $#%@~* for module address 06 and change leading code $ to A, then use A06F to read firmware version of module on address 06.
*** WARNING ***
z We do not recommend users to change the default setting of
leading code, because it will confuse yourself
z The leading code change only use the command conflicts other
devices of other brand on the network
z The changing of leading code is not necessary if all modules in a
network are NuDAMs‘
Command Set 81
3.42 Set Host Watchdog Timer & Safety Value
@Description
Set host watchdog timer, module will change to safety state when host is failure. Define the output value in this command.
@Syntax
~(Addr)2(Flag)(TimeOut)(SafeValue)<CR>
(6011/D, 6012/D, 6013
6014D, 6017, 6018)
~ (Addr) 2 (Flag)
(TimeOut)
(SafeValue)
@Response
!(Addr)<CR > or ?(Addr)<CR >
! ? (Addr)
Command leading code. Address ID, range (00 - FF). Set host watchdog timer and safe state value. 0: Disable host watchdog timer 1: Enable host watchdog timer (1-character) Host timeout value, between this time period host must send (Host is OK) command to module, otherwise module will change to safety state. Range 01 - FF. (2-character)
One unit is 100 ms
01 = 1 * 100 = 100 ms FF = 255 * 100 = 25.5 sec 2 channels safety value of digital output channels when host is failure. (2-character)
Command is valid. Command is invalid. Address ID
82 Command Set
@Example
User command: ~06211203<CR> Response: !06<CR>
06 2 1 12
03
Address ID Set host watchdog timer and safe state value. Enable host watchdog timer. Timeout value. 0x12 = 18 18 * 100 = 1800 ms 03 (00000011) The two digital output channels are high as failure or reset.
Command Set 83
3.43 Read Host Watchdog Timer & Safety Value
(6011/D, 6012/D, 6013
6014D, 6017, 6018)
@Description
Read host watchdog timer setting and the safety value.
@Syntax
~(Addr)3<CR >
~ (Addr) 3
@Response
!(Addr) (Flag)(TimeOut)(SafeValue)<CR>
or ?(Addr)<CR >
! ? (Addr) (Flag)
(TimeOut)
(SafeValue)
Command leading code. Address ID Read host watchdog setting and module safety state value.
Command is invalid. Command is invalid. Address ID, range (00 - FF). 0: Host watchdog timer is disable 1: Host watchdog timer is enable(1-character) Host timeout value. Range 01 - FF. (2-character)
One unit is 100 ms
01 = 1 * 100 = 100 ms FF = 255 * 100 = 25.5 sec 2 channels safety state digital output value when host is failure. (2-character)
@Example
User command: ~063<CR> Response: !0611203<CR>
06 1 12
03
84 Command Set
Address ID Host watchdog timer is enable. Timeout value. 0x12 = 18 18 * 100 = 1800 ms 03 (00000011) The safety status of the two digital output channels are high.
3.44 Host is OK
@Description
When host watchdog timer is enable, host computer must send this command to every module before timeout otherwise “host watchdog timer enable” module‘s output value will go to safety state output value.
Timeout value and safety state output value is defined in 3.30. “Set Host Watchdog Timer & Safety Value”
@Syntax
~**<CR >
~ **
@Response
Note: Host is OK command has NO response.
@Example
User command: ~**<CR>
Command leading code. Host is OK.
(6011/D, 6012/D, 6013
6014D, 6017, 6018)
Command Set 85
4
Data Format and Input Range
4.1 Data Format of Analog Input Modules
There are four types of data format used in analog input modules.
1. Engineering units.
2. Percent of FSR (Full Scale Range).
3. Two’s complements hexadecimal.
4. Ohms.
Engineering Units
Set bit 1 and bit 0 of data format variable to “00” means the data is represented in engineering units
This data format including three components
1. sign (+ or -)
2. digits
3. decimal point
Data is composited with a sign (+ or -) followed with 5-digits and a decimal point.
It does not exceed 7-characters
The different analog input ranges have different resolutions or number of decimal places. Refer to Table 4-1 for details.
86 Data Format and Input Range
Input Range Resolution
±15 mV, ±50 mV 1µV ±100 mV, ±150 mV, ±500 mV 10µV ±1 V, ±2.50 V, ±5 V 100µV ±10 V ±20 mA 1µA
Type J and T thermocouple, RTD Type K, E, R, S, B, N and C
thermocouple
Table 4-1 Data format and resolution
Example 1:
Input Range is ±5 V
Input is -1.37 Volts
engineering units: -1.3700<CR>
Example 2:
Input Range is ±10 V
Input is +3.653 Volts
engineering units: +03.653<CR>
Example 3:
Input Range is Type K thermocouple (range 0°C to 1000°C)
Input is 406.5°C
engineering units: +0406.5<CR>
Example 4:
Input Range is Type T thermocouple (range -100°C to 400°C)
Input is -50.5°C
engineering units:
-050.50<CR>
1mV three decimal places
0.01°C
0.1°C
three decimal places two decimal places four decimal places
three decimal places two decimal places
one decimal places
Percent of FSR (Full Scale Range)
Data format bit 1 and 0 set to 01 is percent of FSR
This data format including three components
1. sign (+ or - )
2. digits
3. decimal point
Data Format and Input Range 87
Data is sign (+ or - ) followed with 5-digits and a decimal point
It does not exceed 7-characters
Maximum resolution is 0.01%, the decimal point is fixed
Data is the ratio of input signal to the value of full scale range
Example 1:
Input Range is ±5 V
Input is +1 Volts
% of FSR: +020.00<CR> (+(20/100) x 5 V) = +1 V
Example 2:
Input Range is ±10 V
Input is +4 Volts
% of FSR: +040.00<CR> (+(40/100) x 10 V) = +4 V
Example 3:
Input Range is Type K thermocouple (range 0°C to 1000°C)
Input is 406.5°C
% of FSR: +040.65<CR> (+(40.65/100) x 1000°C ) = 406.5°C
Two’s Complement Hexadecimal
Data format bit 1 and 0 set to 10 is 2’s complement
Data is 4-character(16 binary bits) hexadecimal string
Positive full scale is 7FFF (+32767)
Negative full scale is 8000 (-32768)
Example 1:
Input Range is ±5 V
Input is +1 Volts
Two’s complement hexadecimal: 1999<CR> ((1/5) x 32768) = 6553.6 = 1999H
Example 2:
Input Range is ±5 V
Input is -2 Volts
88 Data Format and Input Range
Two’s complement hexadecimal: CD27<CR> ((-2/5) x 32768) = -13107.2 = CD27H
Example 3:
Input Range is ±10 V
Input is +4 Volts
Two’s complement hexadecimal: 3333<CR> ((4/10) x 32768) = 13107.2 = 3333H
Example 4:
Input Range is Type K thermocouple (range 0°C to 1000°C)
Input is 406.5°C
Two’s complement hexadecimal: 3408<CR> ((406.5/1000) x 32768 ) = 13320.2 = 3408H
Ohm
Data format bit 1 and 0 set to 11 is ohm presentation.
This data format including three components.
1. sign (+)
2. digits
3. decimal point
Data is sign (+) followed with 5-digits and a decimal point
It does not exceed 7-characters
Maximum resolution is 0.01ohm, the decimal point is fixed
Example 1:
Input Range is Pt-100, -100°C to +100°C, α=0.00385
Input is 120.23 ohm
ohm: +120.23<CR>
Data Format and Input Range 89
4.2 Analog Input Range
The following table shows the relation between the input range setting with the data format and the resolution.
Engineering Units Table:
Code
00 01 02 03 04 05 06 07 Reserved 08 09 0A 0B 0C 0D
Input
Range
±15mV ±50mV ±100mV ±500mV ±1V ±2.5V ±20mA
±10V ±5V ±1V ±500mV ±150mV ±20mA
Code Input Range
Pt-100, -100°C to
20
+100°C, α=0.00385 Pt-100, 0°C to
21
+100°C, α=0.00385 Pt-100, 0°C to
22
+200°C, α=0.00385 Pt-100, 0°C to
23
+600°C, α=0.00385 Pt-100, -100°C to
24
+100°C, α=0.003916 Pt-100, 0°C to
25
+100°C, α=0.003916 Pt-100, 0°C to
26
+200°C, α=0.003916 Pt-100, 0°C to
27
+600°C, α=0.003916
28
Ni-100, 0°C to +100°C
29
Ni-120, 0°C to +100°C
Data
Format
Eng. Units +15.000 Eng. Units +50.000 Eng. Units +100.00 Eng. Units +500.00 Eng. Units +1.0000 Eng. Units +2.5000 Eng. Units +20.000
Eng. Units +10.000 Eng. Units +5.0000 Eng. Units +1.0000 Eng. Units +500.00 Eng. Units +150.00 Eng. Units +20.000
+Full
Scale
Data
Format
Eng.
Units
Eng.
Units
Eng.
Units
Eng.
Units
Eng.
Units
Eng.
Units
Eng.
Units
Eng.
Units
Eng.
Units
Eng.
Units
Zero
±00.000 ±00.000 ±000.00 ±000.00 ±0.0000 ±0.0000 ±00.000
±00.000 ±0.0000
±0.0000 ±000.00 ±000.00 ±00.000
+Full
Scale
+100.0
0
+100.0
0
+200.0
0
+600.0
0
+100.0
0
+100.00 +000.00 +000.0
+200.0
0
+600.0
0
+100.0
0
+100.0
0
- Full
Scale
-15.000
-50.000
-100.00
-500.00
-1.0000
-2.5000
-20.000
-10.000 1mV
-5.0000
-1.0000
-500.00
-150.00
-20.000
Zero
±000.0
0
+000.00
+000.00
+000.00
±000.00
+000.00
+000.00
+000.00
+000.00
- Full
Scale
-100.00
+000.0
0
+000.0
0
+000.0
0
-100.00
0
+000.0
0
+000.0
0
+000.0
0
+000.0
0
Displayed
Resolution
100.00µV
100.00µV
100.00µV
100.00µV
Disp.
Reso.
0.01°C
0.01°C
0.01°C
0.01°C
0.01°C
0.01°C
0.01°C
0.01°C
0.01°C
0.01°C
1µV
1µV 10µV 10µV
1µA
10µV 10µV
1µA
90 Data Format and Input Range
2A 0 Ohm to 60Ohm Ohms +60.00 +000.00
+000.0
0
0.01°C
Percent of Full Scale Range Table:
Code
00 01 02 03 04 05 06 07 Reserved 08 09 0A 0B 0C 0D
Input
Range
±15mV ±50mV ±100mV ±500mV ±1V ±2.5V ±20mA
±10V ±5V ±1V ±500mV ±150mV ±20mA
Data
Format
% of FSR +100.00 % of FSR +100.00 % of FSR +100.00 % of FSR +100.00 % of FSR +100.00 % of FSR +100.00 % of FSR +100.00
% of FSR +100.00 % of FSR +100.00 % of FSR +100.00 % of FSR +100.00 % of FSR +100.00 % of FSR +100.00
+Full
Scale
Zero
±000.00 ±000.00 ±000.00 ±000.00 ±000.00 ±000.00 ±000.00
±000.00 ±000.00
±000.00 ±000.00 ±000.00 ±000.00
- Full
Scale
-100.00 0.01%
-100.00 0.01%
-100.00 0.01%
-100.00 0.01%
-100.00 0.01%
-100.00 0.01%
-100.00 0.01%
-100.00 0.01%
-100.00 0.01%
-100.00 0.01%
-100.00 0.01%
-100.00 0.01%
-100.00 0.01%
Displayed
Resolution
Tow‘s Complement Table:
Code
00 01 02 03 04 05 06 07 Reserved 08 09 0A 0B 0C 0D
Input
Range
±15mV ±50mV ±100mV ±500mV ±1V ±2.5V ±20mA
±10V ±5V ±1V ±500mV ±150mV ±20mA
Data
Format
2’s Comp. 7FFF 0000 8000 1 LSB 2’s Comp. 7FFF 0000 8000 1 LSB 2’s Comp. 7FFF 0000 8000 1 LSB 2’s Comp. 7FFF 0000 8000 1 LSB 2’s Comp. 7FFF 0000 8000 1 LSB 2’s Comp. 7FFF 0000 8000 1 LSB 2’s Comp. 7FFF 0000 8000 1 LSB
2’s Comp. 7FFF 0000 8000 1 LSB 2’s Comp. 7FFF 0000 8000 1 LSB 2’s Comp. 7FFF 0000 8000 1 LSB 2’s Comp. 7FFF 0000 8000 1 LSB 2’s Comp. 7FFF 0000 8000 1 LSB 2’s Comp. 7FFF 0000 8000 1 LSB
+Full
Scale
Zero
- Full
Scale
Displayed Resolutio
n
Data Format and Input Range 91
The following table shows the relation between the input range setting with the data format and the resolution when using ND-6011/D or 6018 to measure temperature by thermocouple.
Code
0E
0F 10 11 12 13 14 15 16
Input Range
Thermocouple
J (0°C to 760°C) K (0°C to 1000°C) T (-100°Cto400°C) E (0°C to 1000°C) R (500°C to 1750°C) S (500°C to 1750°C) B (500°C to 1800°C) N (-270°C to 1300°C) C (0°C to 2320°C)
Data
Format
Eng. Units +760.00 +000.00 Eng. Units +1000.0 +0000.0 Eng. Units +400.00 -100.00 Eng. Units +1000.0 +0000.0 Eng. Units +1750.0 +0500.0 Eng. Units +1750.0 +0500.0 Eng. Units +1800.0 +0500.0 Eng. Units +1300.0 -0270.0 Eng. Units +2320.0 +0000.0
Maximum Minimum
Displayed
Resolution
0.01°C
0.1°C
0.01°C
0.1°C
0.1°C
0.1°C
0.1°C
0.1°C
0.1°C
Code
0E
0F 10 11 12 13 14 15 16
Input Range
Thermocouple
J (0°C to 760°C) K (0°C to 1000°C) T (-100°Cto400°C) E (0°C to 1000°C) R (500°C to 1750°C) S (500°C to 1750°C) B (500°C to 1800°C) N (-270°C to 1300°C) C (0°C to 2320°C)
Data
Format
% of FSR +100.00 +000.00 0.01% % of FSR +100.00 +000.00 0.01% % of FSR +100.00 -025.00 0.01% % of FSR +100.00 +000.00 0.01% % of FSR +100.00 +028.57 0.01% % of FSR +100.00 +028.57 0.01% % of FSR +100.00 +027.27 0.01% % of FSR +100.00 -020.76 0.01% % of FSR +100.00 +000.00 0.01%
Maximum Minimum
Displayed
Resolution
Code
0E
0F 10 11 12 13 14 15 16
Input Range
Thermocouple
J (0°C to 760°C) K (0°C to 1000°C) T (-100°Cto400°C) E (0°C to 1000°C) R (500°C to 1750°C) S (500°C to 1750°C) B (500°C to 1800°C) N (-270°C to 1300°C) C (0°C to 2320°C)
Data
Format
2’s Comp. 7FFF 0000 1 LSB 2’s Comp. 7FFF 0000 1 LSB 2’s Comp. 7FFF E000 1 LSB 2’s Comp. 7FFF 0000 1 LSB 2’s Comp. 7FFF 2492 1 LSB 2’s Comp. 7FFF 2492 1 LSB 2’s Comp. 7FFF 238E 1 LSB 2’s Comp. 7FFF E56B 1 LSB 2’s Comp. 7FFF 0000 1 LSB
Maximum Minimum
Displayed
Resolution
92 Data Format and Input Range
Loading...