When using the Transmitters in a Safety Instrumented Systems(SIS)
application, refer to Appendix A in either IM 01C25T01-06EN for the
HART protocol or IM 01C25T03-01E for the BRAIN protocol.
IM 01C25B01-01E
<1. Introduction>
1. Introduction
Thank you for purchasing the DPharp Differential
Pressure and pressure transmitter.
NOTE
1-1
Your transmitter was precisely calibrated at the
factory before shipment. To ensure both safety and
efciency, please read this manual carefully before
you operate the instrument.
NOTE
This manual describes the hardware
congurations of the transmitters listed in below.
For information on the software conguration
and operation, please refer to either
IM 01C25T03-01E for the BRAIN communication
type, or IM 01C25T01-06EN for the HART
communication type.
For FOUNDATION Fieldbus protocol type,
please refer to IM 01C25T02-01E.
For PROFIBUS PA protocol type, please refer to
IM 01C25T04-01EN.
To ensure correct use of this instrument, read
both the hardware and software manuals
thoroughly before use.
WARNING
When describing the model name like EJ110,
it shows the applicability for both EJX110A and
EJA110E. The same representations are used
for the other models, too.
NOTE
Unless otherwise stated, the illustrations in
this manual are of the EJ110 differential
pressure transmitter. Users of the other models
should bear in mind that certain features of their
instrument will differ from those shown in the
illustrations of the EJ110.
Regarding This Manual
• This manual should be provided to the end
user.
• The contents of this manual are subject to
change without prior notice.
• All rights reserved. No part of this manual may
be reproduced in any form without Yokogawa’s
written permission.
• Yokogawa makes no warranty of any kind with
regard to this manual, including, but not limited
to, implied warranty of merchantability and
tness for a particular purpose.
• If any question arises or errors are found, or if
any information is missing from this manual,
please inform the nearest Yokogawa sales
ofce.
• The specications covered by this manual are
limited to those for the standard type under the
specied model number break-down and do not
cover custom-made instruments.
When using the transmitters in a Safety
Instrumented Systems (SIS) application, refer
to Appendix 1 in either IM 01C25T01-06EN for
the HART protocol or IM 01C25T03-01E for the
BRAIN protocol. The instructions and procedures
in this section must be strictly followed in order to
maintain the transmitter for this safety level.
• Please note that changes in the specications,
construction, or component parts of the
instrument may not immediately be reected
in this manual at the time of change, provided
that postponement of revisions will not cause
difculty to the user from a functional or
performance standpoint.
IM 01C25B01-01E
<1. Introduction>
1-2
• Yokogawa assumes no responsibilities for this
product except as stated in the warranty.
• If the customer or any third party is harmed by
the use of this product, Yokogawa assumes
no responsibility for any such harm owing to
any defects in the product which were not
predictable, or for any indirect damages.
• The following safety symbols are used in this
manual:
WARNING
Indicates a potentially hazardous situation which,
if not avoided, could result in death or serious
injury.
CAUTION
Indicates a potentially hazardous situation which,
if not avoided, may result in minor or moderate
injury. It may also be used to alert against unsafe
practices.
IMPORTANT
Indicates that operating the hardware or software
in this manner may damage it or lead to system
failure.
NOTE
Draws attention to information essential for
understanding the operation and features.
1.1 Safe Use of This Product
For the safety of the operator and to protect the
instrument and the system, please be sure to follow
this manual’s safety instructions when handling this
instrument. If these instructions are not heeded,
the protection provided by this instrument may be
impaired. In this case, Yokogawa cannot guarantee
that the instrument can be safely operated. Please
pay special attention to the following points:
(a) Installation
• This instrument may only be installed by an
engineer or technician who has an expert
knowledge of this device. Operators are not
allowed to carry out installation unless they
meet this condition.
• With high process temperatures, care must
be taken not to burn yourself by touching the
instrument or its casing.
• Never loosen the process connector nuts when
the instrument is installed in a process. This can
lead to a sudden, explosive release of process
uids.
• When draining condensate from the pressure
detector section, take appropriate precautions
to prevent the inhalation of harmful vapors and
the contact of toxic process uids with the skin
or eyes.
• When removing the instrument from a
hazardous process, avoid contact with the uid
and the interior of the meter.
• All installation shall comply with local installation
requirements and the local electrical code.
(b) Wiring
Direct current
• The instrument must be installed by an
engineer or technician who has an expert
knowledge of this instrument. Operators are not
permitted to carry out wiring unless they meet
this condition.
• Before connecting the power cables, please
conrm that there is no current owing through
the cables and that the power supply to the
instrument is switched off.
IM 01C25B01-01E
<1. Introduction>
1-3
(c) Operation
• Wait 5 min. after the power is turned off, before
opening the covers.
(d) Maintenance
• Please carry out only the maintenance
procedures described in this manual. If you
require further assistance, please contact the
nearest Yokogawa ofce.
• Care should be taken to prevent the build up of
dust or other materials on the display glass and
the name plate. To clean these surfaces, use a
soft, dry cloth.
(e) Explosion Protected Type Instrument
• Users of explosion proof instruments should
refer rst to section 2.9 (Installation of an
Explosion Protected Instrument) of this manual.
• The use of this instrument is restricted to those
who have received appropriate training in the
device.
• Take care not to create sparks when accessing
the instrument or peripheral devices in a
hazardous location.
(f) Modication
1.2 Warranty
• The warranty shall cover the period noted on
the quotation presented to the purchaser at the
time of purchase. Problems occurring during
the warranty period shall basically be repaired
free of charge.
• If any problems are experienced with this
instrument, the customer should contact the
Yokogawa representative from which this
instrument was purchased or the nearest
Yokogawa ofce.
• If a problem arises with this instrument,
please inform us of the nature of the problem
and the circumstances under which it
developed, including the model specication
and serial number. Any diagrams, data and
other information you can include in your
communication will also be helpful.
• The party responsible for the cost of xing the
problem shall be determined by Yokogawa
following an investigation conducted by
Yokogawa.
• The purchaser shall bear the responsibility for
repair costs, even during the warranty period, if
the malfunction is due to:
• Yokogawa will not be liable for malfunctions or
damage resulting from any modication made
to this instrument by the customer.
- Improper and/or inadequate maintenance by
the purchaser.
- Malfunction or damage due to a failure
to handle, use, or store the instrument in
accordance with the design specications.
- Use of the product in question in a location
not conforming to the standards specied by
Yokogawa, or due to improper maintenance
of the installation location.
- Failure or damage due to modication or
repair by any party except Yokogawa or an
approved representative of Yokogawa.
- Malfunction or damage from improper
relocation of the product in question after
delivery.
- Reason of force majeure such as res,
earthquakes, storms/oods, thunder/
lightening, or other natural disasters, or
disturbances, riots, warfare, or radioactive
contamination.
IM 01C25B01-01E
<1. Introduction>
1.3 ATEX Documentation
This is only applicable to the countries in European Union.
1-4
GB
DK
E
NL
SK
CZ
I
LT
LV
EST
PL
SF
P
F
D
S
SLO
H
BG
RO
M
GR
IM 01C25B01-01E
<2. Handling Cautions>
2. Handling Cautions
2-1
This chapter provides important information on how
to handle the transmitter. Read this carefully before
using the transmitter.
The transmitters are thoroughly tested at the
factory before shipment. When taking delivery of an
instrument, visually check them to make sure that
no damage occurred during shipment.
Also check that all transmitter mounting hardware
shown in gure 2.1 is included. If the transmitter
is ordered without the mounting bracket and the
process connector, the transmitter mounting
hardware will not be included. After checking the
transmitter, carefully repack it in its box and keep it
there until you are ready to install it.
Bolt
Process connector
Process connector
Gasket
U-bolt
(Note 1)
2.1 Model and Specications
Check
The model name and specications are written on
the name plate attached to the case.
F0202.ai
Figure 2.2 Name Plate (EJX110A)
2.2 Unpacking
Keep the transmitter in its original packaging to
prevent it from being damaged during shipment.
Do not unpack the transmitter until it reaches the
installation site.
2.3 Storage
Mounting bracket
(L type)
U-bolt nut
Figure 2.1 Transmitter Mounting Hardware
Transmitter mounting bolt
Mounting bracket
(Flat type)
F0201.ai
The following precautions must be observed when
storing the instrument, especially for a long period.
(a) Select a storage area which meets the following
conditions:
• It is not exposed to rain or subject to water
seepage/leaks.
• Vibration and shock are kept to a minimum.
• It has an ambient temperature and relative
humidity within the following ranges.
Ambient temperature:
–40* to 85°C without integral indicator
–30* to 80°C with integral indicator
* –15°C when /HE is specied.
Relative humidity:
0% to 100% R.H.
Preferred temperature and humidity:
approx. 25°C and 65% R.H.
(b) When storing the transmitter, repack it carefully
in the packaging that it was originally shipped
with.
(c) If the transmitter has been used, thoroughly
clean the chambers inside the cover anges, so
that there is no process uid remaining inside.
Before placing it in storage, also make sure that
the pressure-detector is securely connected to
the transmitter section.
IM 01C25B01-01E
<2. Handling Cautions>
2-2
2.4 Selecting the Installation
Location
The transmitter is designed to withstand severe
environmental conditions. However, to ensure
that it will provide years of stable and accurate
performance, take the following precautions when
selecting the installation location.
(a) Ambient Temperature
Avoid locations subject to wide temperature
variations or a signicant temperature gradient.
If the location is exposed to radiant heat from
plant equipment, provide adequate thermal
insulation and/or ventilation.
(b) Ambient Atmosphere
Do not install the transmitter in a corrosive
atmosphere. If this cannot be avoided, there
must be adequate ventilation as well as
measures to prevent the leaking of rain water
and the presence of standing water in the
conduits.
(c) Shock and Vibration
Although the transmitter is designed to be
relatively resistant to shock and vibration, an
installation site should be selected where this is
kept to a minimum.
(d) Installation of Explosion-protected Transmitters
An explosion-protected transmitters is
certied for installation in a hazardous area
containing specic gas types. See subsection
2.9 “Installation of an Explosion-Protected
Transmitters.”
The following precautions must be observed
in order to safely operate the transmitter under
pressure.
(a) Make sure that all the process connector bolts
are tightened rmly.
(b) Make sure that there are no leaks in the impulse
piping.
(c) Never apply a pressure higher than the
specied maximum working pressure.
2.6 Waterproong of Cable
Conduit Connections
Apply a non-hardening sealant to the threads
to waterproof the transmitter cable conduit
connections. (See gure 6.8, 6.9 and 6.10.)
2.7 Restrictions on Use of Radio
Transceivers
IMPORTANT
Although the transmitter has been designed to
resist high frequency electrical noise, if a radio
transceiver is used near the transmitter or its
external wiring, the transmitter may be affected
by high frequency noise pickup. To test this, start
out from a distance of several meters and slowly
approach the transmitter with the transceiver
while observing the measurement loop for noise
effects. Thereafter use the transceiver outside
the range where the noise effects were rst
observed.
2.5 Pressure Connection
WARNING
• Never loosen the process connector bolts
when an instrument is installed in a process.
The device is under pressure, and a loss of
seal can result in a sudden and uncontrolled
release of process uid.
• When draining toxic process uids that have
condensed inside the pressure detector,
take appropriate steps to prevent the contact
of such uids with the skin or eyes and the
inhalation of vapors from these uids.
2.8 Insulation Resistance and
Dielectric Strength Test
Since the transmitter has undergone insulation
resistance and dielectric strength tests at the factory
before shipment, normally these tests are not
required. If the need arises to conduct these tests,
heed the following:
(a) Do not perform such tests more frequently than
is absolutely necessary. Even test voltages that
do not cause visible damage to the insulation
may degrade the insulation and reduce safety
margins.
IM 01C25B01-01E
<2. Handling Cautions>
2-3
(b) Never apply a voltage exceeding 500 V DC
(100 V DC with an internal lightning protector)
for the insulation resistance test, nor a voltage
exceeding 500 V AC (100 V AC with an internal
lightning protector) for the dielectric strength
test.
(c) Before conducting these tests, disconnect
all signal lines from the transmitter terminals.
The procedure for conducting these tests is as
follows:
• Insulation Resistance Test
1) Short-circuit the + and – SUPPLY terminals in
the terminal box.
2) Turn OFF the insulation tester. Then connect
the insulation tester plus (+) lead wire to the
shorted SUPPLY terminals and the minus (–)
leadwire to the grounding terminal.
3) Turn ON the insulation tester power and
measure the insulation resistance. The voltage
should be applied as briey as possible to verify
that the insulation resistance is at least 20 MΩ.
4) After completing the test and being very careful
not to touch exposed conductors disconnect the
insulation tester and connect a 100 kΩ resistor
between the grounding terminal and the shortcircuiting SUPPLY terminals. Leave this resistor
connected at least one second to discharge any
static potential. Do not touch the terminals while
it is discharging.
2.9 Installation of an ExplosionProtected Instrument
NOTE
For FOUNDATION Fieldbus explosion protected
type, please refer to IM 01C22T02-01E.
For PROFIBUS PA explosion protected type,
please refer to IM 01C25T04-01EN.
If a customer makes a repair or modication to
an intrinsically safe or explosionproof instrument
and the instrument is not restored to its original
condition, its intrinsically safe or explosionproof
construction may be compromised and the
instrument may be hazardous to operate. Please
contact Yokogawa before making any repair or
modication to an instrument.
CAUTION
This instrument has been tested and certied
as being intrinsically safe or explosionproof.
Please note that severe restrictions apply to this
instrument’s construction, installation, external
wiring, maintenance and repair. A failure to abide
by these restrictions could make the instrument a
hazard to operate.
• Dielectric Strength Test
1) Short-circuit the + and – SUPPLY terminals in
the terminal box.
2) Turn OFF the dielectric strength tester. Then
connect the tester between the shorted
SUPPLY terminals and the grounding terminal.
Be sure to connect the grounding lead of the
dielectric strength tester to the ground terminal.
3) Set the current limit on the dielectric strength
tester to 10 mA, then turn ON the power and
gradually increase the test voltage from ‘0’ to
the specied voltage.
4) When the specied voltage is reached, hold it
for one minute.
5) After completing this test, slowly decrease the
voltage to avoid any voltage surges.
WARNING
Maintaining the safety of explosionproof
equipment requires great care during mounting,
wiring, and piping. Safety requirements also
place restrictions on maintenance and repair.
Please read the following sections very carefully.
WARNING
The range setting switch must not be used in a
hazardous area.
IM 01C25B01-01E
<2. Handling Cautions>
2-4
IMPORTANT
For combined approval types
Once a device of multiple approval type is
installed, it should not be re-installed using any
other approval types. Apply a permanent mark
in the check box of the selected approval type
on the certication label on the transmitter to
distinguish it from unused approval types.
IMPORTANT
All the blind plugs which accompany the EJX/
EJA-E transmitters upon shipment from the
factory are certied by the applicable agency in
combination with those transmitters. The plugs
which are marked with the symbols “◊ Ex” on
their surfaces are certied only in combination
with the EJX/EJA-E series transmitters.
2.9.1 FM Approval
Note 2. Entity Parameters
• Intrinsically Safe Apparatus Parameters
[Groups A, B, C, D, E, F and G]
Vmax = 30 VCi = 6 nF
Imax = 200 mALi = 0 µH
Pmax = 1 W
Voc ≤ 30 VCa > 6 nF
Isc ≤ 225 mALa > 0 µH
Pmax ≤ 1 W
a. FM Intrinsically Safe Type
Caution for FM intrinsically safe type. (Following
contents refer “DOC. No. IFM022-A12”)
Note 1. Model EJX/EJA-E Series Differential,
gauge and absolute pressure transmitters
with optional code /FS1 are applicable for
use in hazardous locations.
• Applicable Standard: FM3600, FM3610,
FM3611, FM3810
• Intrinsically Safe for Class I, Division 1,
Groups A, B, C & D. Class II, Division 1,
Groups E, F & G and Class III, Division 1,
Class I, Zone 0 in Hazardous Locations, AEx
ia IIC
• Nonincendive for Class I, Division 2, Groups
A, B, C & D. Class II, Division 2, Groups F &
G, Class I, Zone 2, Groups IIC, in Hazardous
Locations.
• Outdoor hazardous locations, NEMA TYPE
4X.
• Temperature Class: T4
• Ambient temperature: –60 to 60°C
• Entity Installation Requirements
Vmax ≥ Voc or Uo or Vt, Imax ≥ Isc or Io or It,
Pmax (or Po) ≤ Pi, Ca or Co ≥ Ci + Ccable,
La or Lo ≥ Li + Lcable
Note 3. Installation
• Barrier must be installed in an enclosure that
meets the requirements of ANSI/ISA S82.01.
• Control equipment connected to barrier must
not use or generate more than 250 V rms or
V dc.
• Installation should be in accordance with
ANSI/ISA RP12.6 “Installation of Intrinsically
Safe Systems for Hazardous (Classied)
Locations” and the National Electric Code
(ANSI/NFPA 70).
• The conguration of associated apparatus
must be FMRC Approved.
• Dust-tight conduit seal must be used when
installed in a Class II, III, Group E, F and G
environments.
• Associated apparatus manufacturer’s
installation drawing must be followed when
installing this apparatus.
• The maximum power delivered from the
barrier must not exceed 1 W.
• Note a warning label worded
“SUBSTITUTION OF COMPONENTS MAY
IMPAIR INTRINSIC SAFETY,” and “INSTALL
IN ACCORDANCE WITH DOC. No. IFM022A12”
IM 01C25B01-01E
<2. Handling Cautions>
2-5
Note 4. Maintenance and Repair
• The instrument modication or parts
replacement by other than authorized
representative of Yokogawa Electric
Corporation is prohibited and will void
Factory Mutual Intrinsically safe and
Nonincendive Approval.
[Intrinsically Safe]
Hazardous LocationNonhazardous Location
Class I, II, III, Division 1,
Groups A, B, C, D, E, F, G
Class 1, Zone 0 in
Hazardous (Classified)
Locations AEx ia IIC
Pressure Transmitters
+
Supply
Hazardous LocationNonhazardous Location
Class I, II, Division 2,
Groups A, B, C, D, F, G
Class 1, Zone 2, Group IIC,
in Hazardous (Classified)
Locations
Pressure Transmitters
Supply
–
[Nonincendive]
+
–
Safety Barrier
+
+
–
–
Not Use
Safety Barrier
b. FM Explosionproof Type
Caution for FM explosionproof type.
Note 1. Model EJX/EJA-E Series pressure
transmitters with optional code /FF1 are
applicable for use in hazardous locations.
• Explosionproof for Class I, Division 1,
Groups B, C and D.
• Dust-ignitionproof for Class II/III, Division 1,
Groups E, F and G.
• Enclosure rating: NEMA TYPE 4X.
• Temperature Class: T6
• Ambient Temperature: –40 to 60°C
• Supply Voltage: 42 V dc max.
• Output signal: 4 to 20 mA
General
Purpose
Equipment
+
–
F0203-1.ai
General
Purpose
Equipment
+
–
F0203-2.ai
Note 2. Wiring
• All wiring shall comply with National Electrical
Code ANSI/NFPA70 and Local Electrical
Codes.
• When installed in Division 1, “FACTORY
SEALED, CONDUIT SEAL NOT
REQUIRED.”
Note 3. Operation
• Keep the “WARNING” nameplate attached to
the transmitter.
WARNING: OPEN CIRCUIT BEFORE
REMOVING COVER. FACTORY SEALED,
CONDUIT SEAL NOT REQUIRED.
INSTALL IN ACCORDANCE WITH THE
USERS MANUAL IM 01C25.
• Take care not to generate mechanical
sparking when accessing to the instrument
and peripheral devices in a hazardous
location.
Note 4. Maintenance and Repair
• The instrument modication or parts
replacement by other than authorized
representative of Yokogawa Electric
Corporation is prohibited and will void
Factory Mutual Explosionproof Approval.
c. FM Intrinsically Safe Type/FM
Explosionproof Type
Model EJX/EJA-E Series pressure transmitters
with optional code /FU1 or /V1U1 can be
selected the type of protection (FM Intrinsically
Safe or FM Explosionproof) for use in
hazardous locations.
Note 1. For the installation of this transmitter,
once a particular type of protection is
selected, any other type of protection
cannot be used. The installation must be in
accordance with the description about the
type of protection in this instruction manual.
Note 2. In order to avoid confusion, unnecessary
marking is crossed out on the label other
than the selected type of protection when
the transmitter is installed.
IM 01C25B01-01E
<2. Handling Cautions>
2-6
2.9.2 CSA Certication
a. CSA Intrinsically Safe Type
Caution for CSA Intrinsically safe and
nonincendive type. (Following contents refer to
“DOC No. ICS013-A13”)
Note 1. Model EJX/EJA-E Series differential,
gauge, and absolute pressure transmitters
with optional code /CS1 are applicable for
use in hazardous locations
Certicate: 1606623
[For CSA C22.2]
Groups A, B, C & D, Class II, Division 1,
Groups E, F & G, Class III, Division 1
• Nonincendive for Class I, Division 2, Groups
A, B, C & D, Class II, Division 2, Groups E, F
& G, Class III, Division 1
• Enclosure: NEMA TYPE 4X
• Temp. Code: T4
• Amb. Temp.:–50* to 60°C
* –15°C when /HE is specied.
• Process Temperature: 120°C max.
[For CSA E60079]
• Applicable Standard: CAN/CSA E60079-11,
CAN/CSA E60079-15, IEC 60529:2001
• Ex ia IIC T4, Ex nL IIC T4
• Ambient Temperature: –50* to 60°C
* –15°C when /HE is specied.
• Max. Process Temp.: 120°C
• Enclosure: IP66/IP67
Note 2. Entity Parameters
• Intrinsically safe ratings are as follows:
Maximum Input Voltage (Vmax/Ui) = 30 V
Maximum Input Current (Imax/Ii) = 200 mA
Maximum Input Power (Pmax/Pi) = 0.9 W
Maximum Internal Capacitance (Ci) = 10 nF
Maximum Internal Inductance (Li) = 0 µH
• Type "n" or Nonincendive ratings are as
follows:
Maximum Input Voltage (Vmax/Ui) = 30 V
Maximum Internal Capacitance (Ci) = 10 nF
Maximum Internal Inductance (Li) = 0 µH
• Installation Requirements
Uo ≤ Ui, Io ≤ Ii, Po ≤ Pi,
Co ≥ Ci + Ccable, Lo ≥ Li + Lcable
Voc ≤ Vmax, Isc ≤ Imax,
Ca ≥ Ci + Ccable, La ≥ Li + Lcable
Uo, Io, Po, Co, Lo, Voc, Isc, Ca and La are
parameters of barrier.
Note 3. Installation
• In any safety barreir used output current
must be limited by a resistor 'R' such that
Io=Uo/R or Isc=Voc/R.
• The safety barrier must be CSA certied.
• Input voltage of the safety barrier must be
less than 250 Vrms/Vdc.
• Installation should be in accordance with
Canadian Electrical Code Part I and Local
Electrical Code.
• Dust-tight conduit seal must be used when
installed in Class II and III environments.
• The instrument modication or parts
replacement by other than authorized
representative of Yokogawa Electric
Corporation and Yokogawa Corporation
of America is prohibited and will void
Canadian Standards Intrinsically safe and
nonincendive Certication.
[Intrinsically Safe]
Hazardous LocationNonhazardous Location
Group IIC, Zone 0
Class I, II, III, Division 1,
Groups A, B, C, D, E, F, G
Pressure Transmitters
+
Supply
Hazardous LocationNonhazardous Location
Group IIC, Zone 2
Class I, II, Division 2,
Groups A, B, C, D, F, G
Class III, Division 1.
Pressure Transmitters
Supply
–
[Nonincendive]
+
–
Safety Barrier
+
–
Not Use
Safety Barrier
+
–
b. CSA Explosionproof Type
Caution for CSA explosionproof type.
Note 1. Model EJX/EJA-E Series pressure
transmitters with optional code /CF1 are
applicable for use in hazardous locations:
• Dustignition-proof for Class II/III, Groups E, F
and G.
• Enclosure: NEMA TYPE 4X
• Temperature Code: T6...T4
• Ex d IIC T6...T4
• Enclosure: IP66/IP67
• Maximum Process Temperature: 120°C (T4),
100°C (T5), 85°C (T6)
• Ambient Temperature: –50* to 75°C (T4),
–50* to 80°C (T5), –50* to 75°C (T6)
* –15°C when /HE is specied.
• Supply Voltage: 42 V dc max.
• Output Signal: 4 to 20 mA dc
Note 2. Wiring
• All wiring shall comply with Canadian
Electrical Code Part I and Local Electrical
Codes.
• In hazardous location, wiring shall be in
conduit as shown in the gure.
• WARNING:
A SEAL SHALL BE INSTALLED WITHIN
50cm OF THE ENCLOSURE.
UN SCELLEMENT DOIT ÊTRE INSTALLÉ À
MOINS DE 50cm DU BOÎTIER.
• WARNING:
WHEN INSTALLED IN CL.I, DIV 2, SEAL
NOT REQUIRED.
UNE FOIS INSTALLÉ DANS CL I, DIV 2,
AUCUN JOINT N'EST REQUIS.
Non-Hazardous
Locations
Non-hazardous
Location
Equipment
42 V DC Max.
4 to 20 mA DC
Signal
Non-Hazardous
Locations
Non-hazardous
Location
Equipment
42 V DC Max.
4 to 20 mA DC
Signal
Hazardous Locations Division 1
50 cm Max.
Sealing Fitting
Hazardous Locations Division 2
Sealing Fitting
Conduit
Transmitter
Transmitter
PULSE
SUPPLY
CHECK
ALARM
F0205-1.ai
PULSE
SUPPLY
CHECK
ALARM
F0205-2.ai
• All wiring shall comply with local installation
requirements and local electrical code.
• In hazardous locations, the cable entry
devices shall be of a certied ameproof
type, suitable for the conditions of use and
correctly installed.
• Unused apertures shall be closed with
suitable ameproof certied blanking
elements. (The plug attached is ameproof
certied.)
Note 3. Operation
• WARNING:
AFTER DE-ENERGIZING, DELAY 5
MINUTES BEFORE OPENING.
APRÉS POWER-OFF, ATTENDRE 5
MINUTES AVANT D'OUVRIR.
• WARNING:
WHEN AMBIENT TEMPERATURE ≥ 65°C,
USE THE HEAT-RESISTING CABLES ≥
90°C.
QUAND LA TEMPÉRATURE AMBIANTE
≥ 65°C, UTILISEZ DES CÂBLES
RÉSISTANTES Á LA CHALEUR ≥ 90°C.
• Take care not to generate mechanical
sparking when accessing to the instrument
and peripheral devices in a hazardous
location.
Note 4. Maintenance and Repair
• The instrument modication or parts
replacement by other than authorized
representative of Yokogawa Electric
Corporation and Yokogawa Corporation of
America is prohibited and will void Canadian
Standards Explosionproof Certication.
c CSA Intrinsically Safe Type/CSA
Explosionproof Type
Model EJX/EJA-E Series pressure transmitters
with optional code /CU1 or /V1U1 can be
selected the type of protection (CSA Intrinsically
Safe or CSA Explosionproof) for use in
hazardous locations.
Note 1. For the installation of this transmitter,
once a particular type of protection is
selected, any other type of protection
cannot be used. The installation must be in
accordance with the description about the
type of protection in this instruction manual.
Note 2. In order to avoid confusion, unnecessary
marking is crossed out on the label other
than the selected type of protection when
the transmitter is installed.
IM 01C25B01-01E
<2. Handling Cautions>
2-8
2.9.3 ATEX Certication
(1) Technical Data
a. ATEX Intrinsically Safe Ex ia
Caution for ATEX Intrinsically safe type.
Note 1. Model EJX/EJA-E Series pressure
transmitters with optional code /KS21 for
potentially explosive atmospheres:
• No. DEKRA 11ATEX0228 X
• Applicable Standard:
EN 60079-0:2009, EN 60079-11:2007,
EN 60079-26:2007, EN 61241-11:2006
• Type of Protection and Marking code:
Ex ia IIC T4 Ga
Ex ia IIIC T85 ºC T100 ºC T120 ºC Db
• Group: II
• Category: 1G, 2D
• Ambient Temperature for EPL Ga:
–50 to 60°C
• Ambient Temperature for EPL Db:
–30* to 60°C
* –15°C when /HE is specied.
• Process Temperature (Tp.): 120°C max.
• Maximum Surface Temperature for EPL Db:
T85°C (Tp.: 80°C)
T100°C (Tp.: 100°C)
T120°C (Tp.: 120°C)
• Enclosure: IP66 / IP67
Note 2 Electrical Data
• In type of explosion protection intrinsic safety
Ex ia IIC or Ex ia IIIC, only for connection to a
certied intrinsically safe circuit with following
maximum values:
Ui = 30 V
Ii = 200 mA
Pi = 0.9 W
(Linear Source)
Maximum internal capacitance; Ci = 27.6 nF
Maximum internal inductance; Li = 0 µH
Note 3. Installation
• Refer to the control drawing. All wiring shall
comply with local installation requirements.
[Control Drawing]
Hazardous Location
Transmitter
+
Supply
–
*1: In any safety barriers used the output current must be
limited by a resistor “R” such that Io=Uz/R.
Nonhazardous Location
+
Safety Barrier
–
F0206.ai
*1
Note 4. Maintenance and Repair
• The instrument modication or parts
replacement by other than authorized
representative of Yokogawa Electric
Corporation is prohibited and will void
DEKRA Intrinsically safe Certication.
Note 5. Special Conditions for Safe Use
WARNING
• In the case where the enclosure of the
Pressure Transmitter is made of aluminium,
if it is mounted in an area where the use of
category 1 G apparatus is required, it must
be installed such, that, even in the event of
rare incidents, ignition sources due to impact
and friction sparks are excluded.
• Electrostatic charge may cause an exlosion
hazard. Avoid any actions that cause the
gerenation of eletrostatic charge, such as
rubbing with a dry cloth on coating face of
the product.
• In case of the enclosure of the Pressure
Transmitter with paint layers, if it is mounted
in an area where the use of category 2D
apparatus is required, it shall be installed in
such a way that the risk from electrostatic
discharges and propagating brush
discharges caused by rapid ow of dust is
avoided.
• To satisfy IP66 or IP67, apply waterproof
glands to the electrical connection port.
• When the lightning protector option is
specied, the apparatus is not capable
of withstanding the 500V insulation test
required by EN60079-11. This must be taken
into account when installing the apparatus.
IM 01C25B01-01E
<2. Handling Cautions>
b. ATEX Flameproof Type
Caution for ATEX ameproof type.
WARNING
2-9
Note 1. Model EJX/EJA-E Series pressure
transmitters with optional code /KF22 for
potentially explosive atmospheres:
• No. KEMA 07ATEX0109 X
• Applicable Standard: EN 60079-0:2009,
EN 60079-1:2007, EN 60079-31:2009
• Type of Protection and Marking Code:
Ex d IIC T6...T4 Gb, Ex tb IIIC T85°C Db
• Group: II
• Category: 2G, 2D
• Enclosure: IP66 / IP67
• Temperature Class for gas-poof:
T6, T5, and T4
• Ambient Temperature for gas-proof:
–50 to 75°C (T6), –50 to 80°C (T5), and
–50 to 75°C (T4)
• Maximum Process Temperature (Tp.) for
gas-proof:
85°C (T6), 100°C (T5), and 120°C (T4)
• Maximum Surface Temperature for dustproof:
T85°C (Tamb.: –30* to 75°C, Tp.: 85°C)
* –15°C when /HE is specied.
Note 2. Electrical Data
• Supply voltage: 42 V dc max.
• Output signal: 4 to 20 mA
Note 3. Installation
• All wiring shall comply with local installation
requirement.
• The cable entry devices shall be of a certied
ameproof type, suitable for the conditions of
use.
Note 4. Operation
• Keep the “WARNING” label attached to the
transmitter.
WARNING: AFTER DE-ENERGIZING,
DELAY 5 MINUTES BEFORE OPENING.
WHEN THE AMBIENT TEMP.≥65°C, USE
HEAT-RESISTING CABLE AND CABLE
GLAND ≥90°C.
• Take care not to generate mechanical
sparking when accessing to the instrument
and peripheral devices in a hazardous
location.
Note 5. Special Conditions for Safe Use
• Electrostatic charge may cause an exlosion
hazard. Avoid any actions that cause the
gerenation of eletrostatic charge, such as
rubbing with a dry cloth on coating face of the
product.
• In the case where the enclosure of the
Pressure Transmitter is made of aluminium,
if it is mounted in an area where the use of
category 2D apparatus is required, it shall
be installed in such a way that the risk from
electrostatic discharges and propagating
brush discharges caused by rapid ow of
dust is avoided.
• The instrument modication or parts
replacement by other than an authorized
Representative of Yokogawa Electric
Corporation is prohibited and will void the
certication.
• To satisfy IP66 or IP67, apply waterproof
glands to the electrical connection port.
c. ATEX Intrinsically Safe Type/ATEX
Flameproof Type
Model EJX/EJA-E Series pressure transmitters
with optional code /KU22 or /V1U1 can
be selected the type of protection ATEX
Flameproof, Intrinsically Safe. Ex ia, or Ex ic for
use in hazardous area.
Note 1. For the installation of this transmitter,
once a particular type of protection is
selected, any other type of protection
cannot be used. The installation must be in
accordance with the description about the
type of protection in this user’s manual.
Note 2. For combined approval types Once a
device of multiple approval type is installed,
it should not be re-installed using any
other approval types. Apply a permanent
mark in the check box of the selected
approval type on the certication label on
the transmitter to distinguish it from unused
approval types.
IM 01C25B01-01E
<2. Handling Cautions>
● ATEX Intrinsically Safe Ex ic
Caution for ATEX intrinsically safe Ex ic
• Applicable Standard:
EN 60079-0:2009/EN 60079-0:2012,
EN 60079-11:2012
• Type of Protection and Marking Code:
II 3G Ex ic IIC T4 Gc
• Ambient Temperature: –30* to +60°C
* –15°C when /HE is specied.
• Ambient Humidity:
0 to 100% (No condensation)
• Maximum Process Temperature: 120°C
• IP Code: IP66
WARNING
• Electrostatic charge may cause an explosion
hazard. Avoid any actions that cause the
gerenation of eletrostatic charge, such as
rubbing with a dry cloth on coating face of
the product.
• When the lightning protector option is
specied, the apparatus is not capable
of withstanding the 500V insulation test
required by EN60079-11. This must be taken
into account when installing the apparatus.
• Ambient pollution degree: 2
• Overvoltage category: I
Note 1. Electrical Data
Ui = 30 V
Ci = 27.6 nF
Li = 0 µH
(2) Electrical Connection
A mark indicating the electrical connection type
is stamped near the electrical connection port.
These marks are as followed.
Screw SizeMarking
Note 2. Installation
• All wiring shall comply with local installation
requirements. (refer to the control drawing)
ISO M20 × 1.5 female
ANSI 1/2 NPT female
• Cable glands, adapters and/or blanking
elements shall be of Ex “n”, Ex “e” or Ex “d”
and shall be installed so as to maintain the
specied degree of protection (IP Code) of
the transmitters.
Location of the mark
Note 3. Maintenance and Repair
• The instrument modication or parts
replacement by other than authorized
representative of Yokogawa Electric
(3) Installation
Corporation is prohibited and will void ATEX
intrinsically safe.
Hazardous Area
Transmitter
[Control drawing]
+
–
Nonhazardous Area
Associated
Apparatus
WARNING
• All wiring shall comply with local installation
requirements and the local electrical code.
• There is no need for conduit seal in Division
1 and Division 2 hazardous locations
because this product is sealed at the factory.
2-10
M
N orW
F0208.ai
Note 4. Specic Conditions of Use
F0207.ai
(4) Operation
WARNING
• OPEN CIRCUIT BEFORE REMOVING
COVER. INSTALL IN ACCORDANCE WITH
THIS USER’S MANUAL
• Take care not to generate mechanical
sparking when access to the instrument and
peripheral devices in a hazardous location.
IM 01C25B01-01E
<2. Handling Cautions>
2-11
(5) Maintenance and Repair
WARNING
The instrument modication or parts replacement
by other than an authorized Representative of
Yokogawa Electric Corporation is prohibited and
will void the certication.
(6) Name Plate
Name plate
Tag plate for flameproof type
No. KEMA 07ATEX0109 X
Ex d IIC T6...T4 Gb, Ex tb IIIC T85°C Db
Enlcosure : IP66/IP67
TEMP. CLASS T6 T5 T4
MAX PROCESS TEMP.(Tp.) 85 100 120 °C
Tamb. -50 to 75 80 75 °C
T85°C(Tamb.:-30(-15) to 75°C, Tp.:85°C)(for Dust)
*3
WARNING
Tag plate for intrinsically safe type
D
AFTER DE-ENERGIZING, DELAY 5 MINUTES BEFORE
OPENING.
WHEN THE AMBIENT TEMP. ≥ 65°C, USE THE
HEAT-RESISTING CABLE & CABLE GLAND ≥ 90°C
POTENTIAL ELECTROSTATIC CHARGING HAZARD
No. DEKRA 11ATEX 0228 X
Ex ia IIC T4 Ga Ta: -50 TO 60°C
Ex ia IIIC T85°C T100°C T120°C Db Ta:-30(-15) TO 60°C
IP66/IP67
MAX. PROCESS TEMP.(Tp.) 120°C
T85°C(Tp.:80°C), T100°C(Tp.:100°C), T120°C(Tp.:120°C)
Ui=30V, Ii=200mA , Pi=0.9W, Ci=27.6nF, Li=0µH
*1: The rst digit in the three numbers next to the nine
letters of the serial number appearing after “NO.”
on the nameplate indicates the year of production.
The following is an example of a serial number for a
product that was produced in 2010:
91K819857 032
The year 2010
*2: “180-8750” is a zip code which represents the
following address.
2-9-32 Nakacho, Musashino-shi, Tokyo Japan
*3: The identication number of Notied Body.
2.9.4 IECEx Certication
Model EJX Series pressure transmitters with
optional code /SU2 can be selected the type of
protection (IECEx Intrinsically Safe/type n or
ameproof) for use in hazardous locations.
Note 1. For the installation of this transmitter,
once a particular type of protection is
selected, any other type of protection
cannot be used. The installation must be in
accordance with the description about the
type of protection in this instruction manual.
Note 2. In order to avoid confusion, unnecessary
marking is crossed out on the label other
than the selected type of protection when
the transmitter is installed.
a. IECEx Intrinsically Safe Type / type n
Caution for IECEx Intrinsically safe and type n.
*3
WARNING
D
POTENTIAL ELECTROSTATIC
CHARGING HAZARD
- SEE USER’S MANUAL
Tag plate for intrinsically safe Ex ic
Ex ic IIC T4 Gc
IP66
Tamb -30(-15) TO 60°C
MAX. PROCESS TEMP. 120°C
Ui=30V, Ci=27.6nF, Li=0µH
WARNING
POTENTIAL ELECTROSTATIC
CHARGING HAZARD
- SEE USER’S MANUAL
MODEL: Specied model code.
STYLE: Style code.
SUFFIX: Specied sufx code.
SUPPLY: Supply voltage.
OUTPUT: Output signal.
MWP: Maximum working pressure.
CAL RNG: Specied calibration range.
NO.: Serial number and year of production*1.
TOKYO 180-8750 JAPAN:
The manufacturer name and the address*2.
F0209.ai
Note 1. Model EJX Series differential, gauge,
and absolute pressure transmitters with
optional code /SU2 are applicable for use
in hazardous locations
• Intrinsically safe ratings are as follows:
Maximum Input Voltage (Vmax/Ui) = 30 V
Maximum Input Current (Imax/Ii) = 200 mA
Maximum Input Power (Pmax/Pi) = 0.9 W
Maximum Internal Capacitance (Ci) = 10 nF
Maximum Internal Inductance (Li) = 0 µH
• Type "n" ratings are as follows:
Maximum Input Voltage (Vmax/Ui) = 30 V
Maximum Internal Capacitance (Ci) = 10 nF
Maximum Internal Inductance (Li) = 0 µH
IM 01C25B01-01E
<2. Handling Cautions>
2-12
• Installation Requirements
Uo ≤ Ui, Io ≤ Ii, Po ≤ Pi,
Co ≥ Ci + Ccable, Lo ≥ Li + Lcable
Voc ≤ Vmax, Isc ≤ Imax,
Ca ≥ Ci + Ccable, La ≥ Li + Lcable
Uo, Io, Po, Co, Lo, Voc, Isc, Ca and La are
parameters of barrier.
Note 3. Installation
• In any safety barrier used output current
must be limited by a resistor 'R' such that
Io=Uo/R.
• The safety barrier must be IECEx certied.
• Input voltage of the safety barrier must be
less than 250 Vrms/Vdc.
• The instrument modication or parts
replacement by other than authorized
representative of Yokogawa Electric
Corporation and will void IECEx Intrinsically
safe and type n certication.
[Intrinsically Safe]
Hazardous LocationNonhazardous Location
Group IIC, Zone 0
[type n]
IECEx certified
Safety Barrier
+
+
–
–
Not Use
Safety Barrier
IECEx Certified
Equipment [nL]
Pressure Transmitters
+
Supply
Hazardous LocationNonhazardous Location
Group IIC, Zone 2
Pressure Transmitters
Supply
–
+
–
b. IECEx Flameproof Type
Caution for IECEx ameproof type.
General
Purpose
Equipment
+
–
F0210-1.ai
+
–
F0210-2.ai
• Maximum Process Temperature: 120°C (T4),
100°C (T5), 85°C (T6)
• Ambient Temperature: –50 to 75°C (T4),
–50 to 80°C (T5), –50 to 75°C (T6)
• Supply Voltage: 42 V dc max.
• Output Signal: 4 to 20 mA dc
Note 2. Wiring
• In hazardous locations, the cable entry
devices shall be of a certied ameproof
type, suitable for the conditions of use and
correctly installed.
• Unused apertures shall be closed with
suitable ameproof certied blanking
elements.
Note 3. Operation
• WARNING:
AFTER DE-ENERGIZING, DELAY 5
MINUTES BEFORE OPENING.
• WARNING:
WHEN AMBIENT TEMPERATURE ≥ 65°C,
USE THE HEAT-RESISTING CABLES ≥
90°C.
• Take care not to generate mechanical
sparking when accessing to the instrument
and peripheral devices in a hazardous
location.
Note 4. Maintenance and Repair
• The instrument modication or parts
replacement by other than authorized
representative of Yokogawa Electric
Corporation is prohibited and will void IECEx
Certication.
2.10 EMC Conformity Standards
EN61326-1 Class A, Table2 (For use in industrial
locations)
EN61326-2-3
CAUTION
Note 1. Model EJX/EJA-E Series pressure
transmitters with optional code /SF2 or
/SU2 are applicable for use in hazardous
locations:
To meet EMC regulations, Yokogawa
recommends that customers run signal wiring
through metal conduits or use shielded twistedpair cabling when installing EJX/EJA-E series
transmitters in a plant.
IM 01C25B01-01E
<2. Handling Cautions>
2-13
2.11 Pressure Equipment
Directive (PED)
(1) General
• EJX/EJA-E Series pressure transmitters are
categorized as piping under the pressure
accessories section of directive 97/23/EC,
which corresponds to Article 3, Paragraph 3 of
PED, denoted as Sound Engineering Practice
(SEP).
• EJX110A-MS, EJX110A-HS,
EJX110A-VS, EJ130, EJ440, and
EJA110E with /HG can be used above 200
bar and therefore considered as a part of a
pressure retaining vessel where category III,
Module H applies. These models with option
code /PE3 conform to that category.
(2) Technical Data
• Models without /PE3
Article 3, Paragraph 3 of PED, denoted as
Sound Engineering Practice (SEP).
• Models with /PE3
Module: H
Type of Equipment: Pressure Accessory-Vessel
Type of uid: Liquid and Gas
Group of uid: 1 and 2
Model
EJA110EM, H, V
EJ110
EJX110A
EJA110E
with code
/HG
EJ110
with code
/PE3
EJ130
EJ130
with code
/PE3
EJ310
EJ430
EJ440
EJ440
with code
/PE3
Capsule
code
F, L
M, H, V2500.012.5
M, H, V2500.012.5III
M, H5000.015.0
M, H5000.015.0III
L, M, A, B1600.011.6
H, A, B1600.011.6
C, D5000.15.0
C, D5000.15.0III
1
PS*
(bar)
1600.011.6
V(L)
PS.V
(bar.L)
Category*
Article 3,
Paragraph 3
(SEP)
Article 3,
Paragraph 3
(SEP)
Article 3,
Paragraph 3
(SEP)
Article 3,
Paragraph 3
(SEP)
Article 3,
Paragraph 3
(SEP)
*1: PS is maximum pressure for vessel itself based on
Pressure Equipment Directive 97/23/EC. Refer to
General Specication for maximum working pressure of a
transmitter.
*2: Referred to Table 1 covered by ANNEX II of EC Directive
on Pressure Equipment Directive 97/23/EC
(3) Operation
CAUTION
• The temperature and pressure of uid should
be maintained at levels that are consistent
with normal operating conditions.
• The ambient temperature should be
maintained at a level that is consistent with
normal operating conditions.
• Please take care to prevent water hammer
and the like from inducing excessive
pressures in pipes and valves. If phenomena
are likely, install a safety valve or take
some other appropriate measure to prevent
pressure from exceeding PS.
• Take appropriate measures at the device or
system level to protect transmitters if they
are to be operated near an external heat
source.
2.12 Low Voltage Directive
2
Applicable standard: EN61010-1
(1) Pollution Degree 2
"Pollution degree" describes the degree to
which a solid, liquid, or gas which deteriorates
dielectric strength or surface resistivity is
adhering. " 2 " applies to normal indoor
atmosphere. Normally, only non-conductive
pollution occurs. Occasionally, however,
temporary conductivity caused by condensation
must be expected.
(2) Installation Category I
"Overvoltage category (Installation category)"
describes a number which denes a transient
overvoltage condition. It implies the regulation
for impulse withstand voltage. " I " applies to
electrical equipment which is supplied from the
circuit when appropriate transient overvoltage
control means (interfaces) are provided.
IM 01C25B01-01E
<3. Component Names>
3. Component Names
Vertical impulse piping type
Pressure-detector section
Terminal box cover
3-1
Cover flange
Integral
indicator
Mounting screw
Amplifier Cover
(Note 2)
Slide switch
(Note 1)
Range-setting
(Note 1)
switch
(See section 7.6)
Transmitter section
Burnout direction switch (BO)
Vent plug
CPU assembly
Burnout direction switch
BO HL
WR ED
Write protection switch
Horizontal impulse piping type
External indicator
conduit connection
Drain plug
Process
connector (Note 1)
Hardware write protection switch (WR)
(Note 1)
Conduit
connection
Zeroadjustment
screw
Process
connection
Burnout Direction
Switch Position
Burnout Direction
HLHL
HIGHLOW
Write Protection
Switch Position
Write Protection
HL
ED
NO
(Write enabled)
HL
ED
YES
(Write disabled)
F0301.ai
Note 1: See subsection 9.2, “Model and Sufx Codes,” for details. A process connector will not be applied for lower side of EJ310,
EJ430, and EJ440.
Note 2: Applicable for BRAIN/HART communication type. Set the switches as shown in the gure above to set the burn-out direction
and write protection. The Burnout switch is set to the H side for delivery (unless option code /C1 or /C2 is specied in the order),
and the hardware write protection switch is set to E side. The setting of the switches can be conrmed via communication. An
external zero adjustment screw can only be disabled by communication. To disable the screw, set a parameter before activating
the hardware write protect function. See each communication manual.
Figure 3.1 Component Names
Table 3.1 Display Symbol
Display SymbolMeaning of Display Symbol
Display mode is ‘square root’. (Display is not lit when ‘linear’ mode.)
The output signal being zero-adjusted is increasing.
The output signal being zero-adjusted is decreasing.
Write protect function is enabled.
IM 01C25B01-01E
F0302.ai
<4. Installation>
4. Installation
4.1 Precautions
Before installing the transmitter, read the cautionary
notes in section 2.4, “Selecting the Installation
Location.” For additional information on the
ambient conditions allowed at the installation
location, refer to subsection 9.1 “Standard
Specications.”
IMPORTANT
57 mm54 mm51 mm
Figure 4.1 Process Connector Impulse Piping
Connection Distances for Differential
Pressure Transmitters
4-1
F0401.ai
• When welding piping during construction,
take care not to allow welding currents to
ow through the transmitter.
• Do not step on this instrument after
installation.
• For the EJ430 and EJ440, the
atmospheric opening is located on the low
pressure side cover ange. The opening
must not face upward. See section 9.4,
“Dimensions,” for the location of the opening.
4.2 Mounting
■ The transmitter is shipped with the process
connection, according to the ordering
specications. To change the orientation of the
process connections, refer to section 4.3.
■ With differential pressure transmitters,
the distance between the impulse piping
connection ports is usually 54 mm (gure 4.1).
By changing the orientation of the process
connector, the dimension can be changed to 51
mm or 57 mm.
■ The transmitter can be mounted on a nominal
50 mm (2-inch) pipe using the mounting
bracket supplied, as shown in gure 4.2 and
4.3 The transmitter can be mounted on either a
horizontal or a vertical pipe.
■ When mounting the bracket on the transmitter,
tighten the (four) bolts that hold the transmitter
with a torque of approximately 39 N·m {4kgf·m}.
Figure 4.1 and 4.2 shows the mounting of the
transmitter for horizontal piping and vertical piping
with using the mounting bracket. The transmitters
with the installation code -U (Universal ange) can
be used for either type of mounting.
The transmitter is shipped with the process
connection specied at the time of ordering. To
change the process connection, the drain (vent)
plug must be repositioned.
To reposition a drain (vent) plug, use a wrench to
slowly and gently unscrew it. Then, remove and
remount it on the opposite side. Wrap sealing tape
around the drain (vent) plug threads (*1 in the gure
below), and apply a lubricant to the threads of the
drain (vent) screw(s) (*2 below). To tighten the drain
(vent) plugs, apply a torque of 34 to 39 N·m (3.5 to 4
kgf·m). Process connector bolts are to be tightened
uniformly to a torque shown in table 4.1.
Table 4.1 Torque
EJ110
EJ120
Model
EJ130
EJ310
EJ430
Torque(N·m)
{kgf·m}
Vertical impulse piping typeHorizontal impulse piping type
39 to 49 {4 to 5}
EJ440
C capsuleD capsule
49 to 59
{5 to 6}
Transmitter
mounting bolt
F0403.ai
Figure 4.3 Transmitter Mounting (Vertical Impulse
Piping Type)
Bolt
Process
connector
Drain/vent plug
gasket
*
1
*
Note: For a horizontal impulse
2
piping type, moving the
process connectors from
the front side to the
back cannot be made.
Figure 4.4 Changing Process Connection
F0404.ai
IM 01C25B01-01E
<4. Installation>
4-3
4.4 Swapping the High/Lowpressure Side Connection
IMPORTANT
This section is applicable only for EJ110,
EJ120, and EJ130 differential
transmitters, and not applicable for gauge or
absolute pressure transmitters.
4.4.1 Rotating Pressure-detector Section
180°
This procedure can be applied only to a transmitter
with a vertical impulse piping type.
The procedure below can be used to turn the
pressure detector assembly 180°. Perform
this operation in a maintenance shop with the
necessary tools laid out and ready for use, and then
install the transmitter in the eld after making the
change.
1) Use an Allen wrench (JIS B4648, nominal 2.5
mm) to remove the two setscrews at the joint
between the pressure-detector section and
transmitter section.
2) Leaving the transmitter section in position,
rotate the pressure-detector section 180°.
3) Tighten the two setscrews to x the pressuredetector section and transmitter section
together (at a torque of 1.5 N·m).
Reposition the process connector and drain
(vent) plugs to the opposite side as described in
subsection 4.3.
Process connector
4.4.2 Using the Communicator
This method is applicable only to the Model
EJ110, EJ120, and EJ130.
With a communicator, you can change which
process connection is used as the high-pressure
side without mechanically rotating the pressuredetector section 180 as described in subsection
4.4.1. To change, call parameter ‘D15: H/L SWAP’
for BRAIN Communication or ‘H/L swap’ for HART
Communication and select REVERSE (right side:
low pressure; left side: high pressure) or select
NORMAL to change back to normal (right side: high
pressure; left side: low pressure).
NORMAL
Output
Input
REVERSE
Figure 4.6 Input/Output Relationship
F0406.ai
IMPORTANT
Since the H/L label plate on the capsule
assembly will remain unchanged, use this
function only when you cannot switch the
impulse piping. If the ‘H/L SWAP’ parameter
setting is changed, the input/output relationship
is reversed as shown in gure 4.6; be sure this is
understood by all.
Setscrew
Before
Figure 4.5 Before and After Modication
After rotating 180°
F0405.ai
IM 01C25B01-01E
<4. Installation>
4-4
4.5 Rotating Transmitter Section
The transmitter section can be rotated
approximately 360° (180° to either direction or
360° to one direction from the original position at
shipment, depending on the conguration of the
instrument.) It can be xed at any angle within
above range.
1) Remove the two setscrews that fasten the
transmitter section and capsule assembly,
using the Allen wrench.
2) Rotate the transmitter section slowly and stop it
at designated position.
3) Tighten the two setscrews to a torque of 1.5
N·m.
IMPORTANT
Do not rotate the transmitter section more than
the above limit.
Vertical impulse piping type
Pressure-detector section
Stopper
Rotate 0 to ±180° segments
4.6 Changing the Direction of
Integral Indicator
IMPORTANT
Always turn OFF power, release pressure and
remove a transmitter to non-hazardous area
before disassembling and reassmbling an
indicator.
An integral indicator can be installed in the
following three directions. Follow the instructions in
section 8.4 for removing and attaching the integral
indicator.
F0408.ai
Figure 4.8 Integral Indicator Direction
Conduit connection
Transmitter section
Horizontal impulse piping type
Transmitter section
Rotate 0 to ±180° segments
Conduit connection
Zero-adjustment screw
Pressure-detector section
F0407.ai
Figure 4.7 Rotating Transmitter Section (Left Side
High Pressure Type)
IM 01C25B01-01E
Loading...
+ 59 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.