VISHAY TLCW5100 Technical data

VISHAY
TLCW5100
Vishay Semiconductors
Ultrabright White LED, 5 mm Untinted Non-Diffused

Description

The TLCW5100 series is a clear, non diffused 5 mm LED for high end applications where supreme lumi­nous intensity required.
These lamps with clear untinted plastic case utilize the highly developed ultrabright InGaN technologies.
The lens and the viewing angle is optimized to achieve best performance of light output and visibility.

Features

• Untinted non diffused lens
• Utilizing ultrabright InGaN technology
• High luminous intensity
• Luminous intensity and color categorized for each packing unit
• ESD-withstand voltage: 1 kV for InGaN

Applications

Interior and exterior lighting Outdoor LED panels Instrumentation and front panel indicators Replaces incandescent lamps Light guide design
Parts Table
Part Color, Luminous Intensity Angle of Half Intensity (±ϕ) Technology
TLCW5100 White, IV = 4000 mcd (typ.) InGaN / YAG on SiC
Absolute Maximum Ratings
T
= 25 °C, unless otherwise specified
amb
TLCW5100
Parameter Test condition Symbol Value Unit
Reverse voltage V
DC forward current T
Surge forward current tp 10 µs I
Power dissipation T
Junction temperature T
Operating temperature range T
Storage temperature range T
Soldering temperature t 5 s T
Thermal resistance junction/ ambient
60 °C I
amb
60 °C P
amb
R
R
F
FSM
V
j
amb
stg
sd
thJA
5 V
30 mA
0.1 A
135 mW
100 °C
- 40 to + 100 °C
- 40 to + 100 °C
260 °C
300 K/W
Document Number 83222
Rev. A2, 17-Jun-03
www.vishay.com
1
TLCW5100
VISHAY
Vishay Semiconductors
Optical and Electrical Characteristics
T
= 25 °C, unless otherwise specified
amb
White
TLCW5100
Parameter Test condition Symbol Min Ty p. Max Unit
Luminous intensity IF = 30 mA I
Chromaticity coordinate x acc. to CIE 1931
Chromaticity coordinate y acc. to CIE 1931
Angle of half intensity IF = 30 mA ϕ ± 9 deg
Forward voltage IF = 30 mA V
Reverse voltage IR = 10 µA V
Temperature coefficient of V
F
Temperature coefficient of I
V
IF = 30 mA x 0.33
IF = 30 mA y 0.33
IF = 30 mA TC
IF = 30 mA TC
V
F
R
VF
IV
1000 4000 mcd
3.9 4.5 V
5 V
- 4 mV/K
- 0.5 % / K
Chromaticity Coordinate Classification
Group X Y
min max min max
3a 0.2900 0.3025 Y = 1.4x - 0.121 Y = 1.4x - 0.071
3b 0.3025 0.3150 Y = 1.4x - 0.121 Y = 1.4x - 0.071
3c 0.2900 0.3025 Y = 1.4x - 0.171 Y = 1.4x - 0.121
3d 0.3025 0.3150 Y = 1.4x - 0.171 Y = 1.4x - 0.121
4a 0.3150 0.3275 Y = 1.4x - 0.121 Y = 1.4x - 0.071
4b 0.3275 0.3400 Y = 1.4x - 0.121 Y = 1.4x - 0.071
4c 0.3150 0.3275 Y = 1.4x - 0.171 Y = 1.4x - 0.121
4d 0.3275 0.3400 Y = 1.4x - 0.171 Y = 1.4x - 0.121
5a 0.3400 0.3525 Y = 1.4x - 0.121 Y = 1.4x - 0.071
5b 0.3525 0.3650 Y = 1.4x - 0.121 Y = 1.4x - 0.071
5c 0.3400 0.3525 Y = 1.4x - 0.171 Y = 1.4x - 0.121
5d 0.3525 0.3650 Y = 1.4x - 0.171 Y = 1.4x - 0.121
tolerance ± 0.005
www.vishay.com
2
Document Number 83222
Rev. A2, 17-Jun-03
VISHAY
TLCW5100
Vishay Semiconductors
Typical Characteristics (T
140
120
100
80
60
40
V
P –Power Dissipation (mW)
20
0
0 1020304050607080 90100
18152
T
– Ambient Temperature ( qC )
amb
= 25 °C unless otherwise specified)
amb
Figure 1. Power Dissipation vs. Ambient Temperature
40
35
30
25
20
15
10
F
I - Forward Current ( mA )
5
0
0 102030405060708090100
18153
T
– Ambient Temperature ( °C)
amb
100
10
F
I - Forward Current ( mA )
1
2.0 2.5 3.0 3.5 4.0 4.5 5.0
16195
VF- Forward Voltage(V)
Figure 4. Forward Current vs. Forward Voltage
100
90
80
70
60
50
40
30
20
V rel
10
I - Relative Luminous Intensity
0
400 450 500 550 600 650 700 750 800
16196
λ
- Wavelength ( nm )
Figure 2. Forward Current vs. Ambient Temperature
10.00
White
1.00
0.10
V rel
I - Relative Luminous Flux
0.01 1 10 100
I
16064
- Forward Current ( mA )
F
Figure 3. Relative Luminous Flux vs. Forward Current
Document Number 83222
Rev. A2, 17-Jun-03
Figure 5. Relative Intensity vs. Wavelength
2.5
2.0
1.5
1.0
0.5
Vrel
I –Relative Luminous Intensity
0.0 –50 –25 0 25 50 75 100
T
18155
– Ambient Temperature ( qC )
amb
Figure 6. Relative Luminous Intensity vs. Amb. Temperature
www.vishay.com
3
TLCW5100
Vishay Semiconductors
VISHAY
600
500
400
300
200
100
0
–100
–200
F
V – Change of Forward Voltage (mV)n
–300
–50 –25 0 25 50 75 100
18154
30 mA
20 mA
10 mA
T
– Ambient Temperature ( qC )
amb
Figure 7. Change of Forward Voltage vs. Ambient Temperature
0.345
0.340
X
0.335
0.330
0.325
White
Y
0
°
10°20
°
30°
40°
1.0
0.9
0.8
rel
S - Relative Sensitivity
0.7
50°
60°
70°
80°
94 8351
0.4 0.2 0 0.2 0.4
0.6
0.6
Figure 10. Relative Radiant Sensitivity vs. Angular Displacement
0.320
f - Chromaticity coordinate shift (x,y)
0.315 0605040302010
16198
I
- Forward Current ( mA )
F
Figure 8. Chromaticity Coordinate Shift vs. Forward Current
0.44
0.42
0.40
0.38
0.36
0.34
0.32
0.30
0.28
Y and Y’ Coordinates
0.26
0.24
0.22
0.28 0.29 0.30 0.31 0.320.33 0.340.35 0.36 0.37
18162
3b
3a
3d
3c
4b
4a
4d
4c
X Coordinates
5b
5a
5d
5c
Figure 9. Coordinates of Colorgroups
www.vishay.com
4
Document Number 83222
Rev. A2, 17-Jun-03
VISHAY

Package Dimensions in mm

TLCW5100
Vishay Semiconductors
96 12121
Document Number 83222
Rev. A2, 17-Jun-03
www.vishay.com
5
TLCW5100
VISHAY
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
www.vishay.com
6
Document Number 83222
Rev. A2, 17-Jun-03
Loading...