VISHAY SM6T33A VIS Datasheet

Page 1
SMB (DO-214AA)
3
Available
Available
SM6T Series
www.vishay.com
Vishay General Semiconductor
Surface-Mount TRANSZORB® Transient Voltage Suppressors
FEATURES
• Low profile package
• Ideal for automated placement
• Glass passivated chip junction
• Available in unidirectional and bidirectional
• 600 W peak pulse power capability with a 10/1000 μs waveform
• Excellent clamping capability
• Low inductance
Cathode
(unidirectional) (bidirectional)
Anode
LINKS TO ADDITIONAL RESOURCES
• Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
• AEC-Q101 qualified available
- Automotive ordering code: base P/NHE3 or P/NHM3
• Material categorization: for definitions of compliance please see www.vishay.com/doc?99912
3
D
3D Models
TYPICAL APPLICATIONS
Use in sensitive electronics protection against voltage transients induced by inductive load switching and lighting
PRIMARY CHARACTERISTICS
V
WM
V
unidirectional 6.8 V to 220 V
BR
V
bidirectional 6.8 V to 220 V
BR
P
PPM
P
D
I
(unidirectional only) 100 A
FSM
T
max. 150 °C
J
Polarity Unidirectional, bidirectional
Package SMB (DO-214AA)
5.80 V to 188 V
600 W
5.0 W
on ICs, MOSFET, signal lines of sensor units for consumer, computer, industrial, automotive, and telecommunication.
MECHANICAL DATA
Case: SMB (DO-214AA) Molding compound meets UL 94 V-0 flammability rating Base P/N-E3 - RoHS-compliant, commercial grade Base P/N-M3 - halogen-free, RoHS-compliant, commercial grade Base P/NHE3_X - RoHS-compliant and AEC-Q101 qualified Base P/NHM3_X - halogen-free, RoHS-compliant, and AEC-Q101 qualified (“_X” denotes revision code e.g. A, B, ...)
DEVICES FOR BIDIRECTION APPLICATIONS
For bidirectional devices use CA suffix (e.g. SM6T12CA). Electrical characteristics apply in both directions.
Terminals: matte tin plated leads, solderable per J-STD-002 and JESD 22-B102 E3, M3, HE3, and HM3 suffix meets JESD 201 class 2 whisker test
Polarity: for unidirectional types the band denotes cathode end, no marking on bidirectional types
MAXIMUM RATINGS (TA = 25 °C unless otherwise noted)
PARAMETER SYMBOL VALUE UNIT
Peak power dissipation with a 10/1000 μs waveform
Peak pulse current with a 10/1000 μs waveform
Power dissipation on infinite heatsink at T
Peak forward surge current 10 ms single half sine-wave unidirectional only
Operating junction and storage temperature range T
Notes
(1)
Non-repetitive current pulse, per fig. 3 and derated above TA = 25 °C per fig. 2
(2)
Mounted on 0.2" x 0.2" (5.0 mm x 5.0 mm) copper pads to each terminal
= 50 °C P
A
(1)(2)
(fig. 1) P
(1)
(fig. 3) I
(2)
J
PPM
I
FSM
, T
PPM
D
STG
600 W
See next table A
5.0 W
100 A
-65 to +150 °C
Revision: 19-Apr-2021
1
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
, DiodesAsia@vishay.com, DiodesEurope@vishay.com
Document Number: 88385
Page 2
SM6T Series
www.vishay.com
ELECTRICAL CHARACTERISTICS (TA = 25 °C unless otherwise noted)
DEVICE
TYPE
(1)
MARKING
CODE
UNI BI MIN. MAX. (V) (A) (V) (A)
SM6T6V8A KE7 KE7 6.45 7.14 10 5.80 1000 10.5 57.0 13.4 298 5.7
SM6T7V5A KK7 AK7 7.13 7.88 10 6.40 500 11.3 53.0 14.5 276 6.1
SM6T10A KT7 AT7 9.50 10.5 1.0 8.55 10.0 14.5 41.0 18.6 215 7.3
SM6T12A KX7 AX7 11.4 12.6 1.0 10.2 5.0 16.7 36.0 21.7 184 7.8
SM6T15A LG7 LG7 14.3 15.8 1.0 12.8 1.0 21.2 28.0 27.2 147 8.4
SM6T18A LM7 BM7 17.1 18.9 1.0 15.3 1.0 25.2 24.0 32.5 123 8.8
SM6T22A LT7 BT7 20.9 23.1 1.0 18.8 1.0 30.6 20.0 39.3 102 9.2
SM6T24A LV7 LV7 22.8 25.2 1.0 20.5 1.0 33.2 18.0 42.8 93 9.4
SM6T27A LX7 BX7 25.7 28.4 1.0 23.1 1.0 37.5 16.0 48.3 83 9.6
SM6T30A ME7 CE7 28.5 31.5 1.0 25.6 1.0 41.5 14.5 53.5 75 9.7
SM6T33A MG7 MG7 31.4 34.7 1.0 28.2 1.0 45.7 13.1 59 68 9.8
SM6T36A MK7 CK7 34.2 37.8 1.0 30.8 1.0 49.9 12.0 64.3 62 9.9
SM6T39A MM7 CM7 37.1 41.0 1.0 33.3 1.0 53.9 11.1 69.7 57 10.0
SM6T68A NG7 NG7 64.6 71.4 1.0 58.1 1.0 92.0 6.50 121 33 10.4
SM6T100A NV7 NV7 95.0 105 1.0 85.5 1.0 137 4.40 178 22.5 10.6
SM6T150A PK7 PK7 143 158 1.0 128 1.0 207 2.90 265 15 10.8
SM6T200A PR7 PR7 190 210 1.0 171 1.0 274 2.20 353 11.3 10.8
SM6T220A PR8 PR8 209 231 1.0 188 1.0 328 2.00 388 10.3 10.8
Notes
(1)
For bidirectional devices add suffix “CA”
(2)
VBR measured after IT applied for 300 μs square wave pulse
(3)
For bi-polar devices with V
BREAKDOWN
VOLTAGE
V
BR
= 10 V or under, the IRM limit is doubled
RM
AT IT
(V)
(2)
TEST
CURRENT
I
T
(mA)
STAND-OFF
VOLTAGE
V
RM
(V)
Vishay General Semiconductor
LEAKAGE
CURRENT
I
AT VRM
RM
(μA)
CLAMPING
VOLTAGE
V
AT I
C
PPM
10/1000 μs
CLAMPING
V
VOLTAGE
AT I
C
PPM
8/20 μs
α
MAX.
-4
10
T
/°C
THERMAL CHARACTERISTICS (TA = 25 °C unless otherwise noted)
PARAMETER SYMBOL VALUE UNIT
Typical thermal resistance, junction to ambient air
Typical thermal resistance, junction to lead R
(1)
R
100
θJA
θJL
20
Note
(1)
Mounted on minimum recommended pad layout
ORDERING INFORMATION (Example)
PREFERRED P/N UNIT WEIGHT (g) PREFERRED PACKAGE CODE BASE QUANTITY DELIVERY MODE
SM6T10A-E3/52
SM6T10A-M3/52
SM6T10A-E3/5B
SM6T10A-M3/5B
SM6T10AHE3_A/H
SM6T10AHM3_A/H
SM6T10AHE3_A/I
SM6T10AHM3_A/I
(1)
(1)
(1)
(1)
Note
(1)
AEC-Q101 qualified
Revision: 19-Apr-2021
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
0.096 52 750 7" diameter plastic tape and reel
0.096 5B 3200 13" diameter plastic tape and reel
0.096 H 750 7" diameter plastic tape and reel
0.096 I 3200 13" diameter plastic tape and reel
2
Document Number: 88385
, DiodesAsia@vishay.com, DiodesEurope@vishay.com
°C/ W
Page 3
0.1
1
10
100
0.2 x 0.2" (5.0 x 5.0 mm) Copper Pad Areas
P
PPM
- Peak Pulse Power (kW)
td - Pulse Width (s)
0.1 µs 1.0 µs 10 µs 100 µs 1.0 ms 10 ms
0 255075100
100
75
50
25
0
125 150 175 200
TJ - Initial Temperature (°C)
Peak Pulse Power (P
PP
) or Current (I
PP
)
Derating in Percentage, %
0
50
100
150
t
d
0
1.0
2.0
3.0 4.0
I
PPM
- Peak Pulse Current, % I
RSM
t - Time (ms)
tr = 10 µs
Peak Value I
PPM
Half Value ­I
PPM
I
PP
2
10/1000 µs Waveform as defined by R.E.A.
TJ = 25 °C Pulse Width (t
d
) is defined as the Point where the Peak Current decays to 50 % of I
PPM
10
200
100
101
100
8.3 ms Single Half Sine-Wave Uni-Directional Only
Number of Cycles at 60 Hz
Peak Forward Surge Current (A)
www.vishay.com
RATINGS AND CHARACTERISTICS CURVES (TA = 25 °C unless otherwise noted)
Vishay General Semiconductor
SM6T Series
Fig. 1 - Peak Pulse Power Rating Curve
6000
1000
V
100
- Junction Capacitance (pF)
J
C
10
R
Stand-Off Voltage V
Uni-Directional Bi-Directional
VWM - Reverse Stand-Off Voltage (V)
Fig. 4 - Typical Junction Capacitance
100
10
Measured at Zero Bias
, Measured at
WM
101 100 200
TJ = 25 °C f = 1.0 MHz
= 50 mVp-p
V
sig
Fig. 2 - Pulse Power or Current vs. Initial Junction Temperature
Revision: 19-Apr-2021
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
Fig. 3 - Pulse Waveform
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
1.0
Transient Thermal Impedance (°C/W)
0.1
0.001 0.01 0.1 10 1 100 1000
t - Pulse Duration (s)
Fig. 5 - Typical Transient Thermal Impedance
Fig. 6 - Maximum Non-Repetitive Peak Forward Surge Current
3
Document Number: 88385
, DiodesAsia@vishay.com, DiodesEurope@vishay.com
Page 4
Cathode Band
SMB (DO-214AA)
0.086 (2.20)
0.077 (1.95)
0.155 (3.94)
0.130 (3.30)
0.180 (4.57)
0.160 (4.06)
0.012 (0.305)
0.006 (0.152)
0.008 (0.2) 0 (0)
0.220 (5.59)
0.205 (5.21)
0.060 (1.52)
0.030 (0.76)
0.096 (2.44)
0.084 (2.13)
Mounting Pad Layout
0.086 (2.18) MIN.
0.060 (1.52) MIN.
0.085 (2.159) MAX.
0.220 (5.59) REF.
www.vishay.com
PACKAGE OUTLINE DIMENSIONS in inches (millimeters)
SM6T Series
Vishay General Semiconductor
Revision: 19-Apr-2021
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
4
, DiodesAsia@vishay.com, DiodesEurope@vishay.com
Document Number: 88385
Page 5
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
© 2021 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED
Revision: 01-Jan-2021
1
Document Number: 91000
Loading...