Toshiba MAR-F101HTM8-PE, MAR-F81HTM8-PE SERVICE MANUAL

SERVICE
Forçage des PMV dans le groupe.
Shunter TP1 Mettre le rotatif sw1 sur 0 et TP1 shunté ouverture de la PMV1 pendant 2 mn Mettre le rotatif sw1 sur 1 et TP1 shunté ouverture de la PMV2 pendant 2 mn (page 42 du MARF102
Couper l'alimentation électrique pour que les vannes restent en ouverture.
Forçage des PMV sur les multi-controllers
Basculer le bouton rotatif de couleur (situé à droite) sur la position 0 et shunté TP1 pour forcer l'ouverture de la PMVA. Basculer le bouton rotatif de couleur (situé à droite) sur la position 1 et shunté TP1 pour forcer l'ouverture de la PMVB. Basculer le bouton rotatif de couleur (situé à droite) sur la position 2 et shunté TP1 pour forcer l'ouverture de la PMVC. Basculer le bouton rotatif de couleur (situé à droite) sur la position 3 et shunté TP1 pour forcer l'ouverture de la PMVD.
Couper l'alimentation électrique pour que les vannes restent en ouverture.
DATA
TOSHIBA
CCOOUHEAT
Outdoor Units
Multi-Controller
MULTI
AIR
CONDITIONER
FLEX SERIESI
FILE
NO.
300
-
950
RBM-Y
Forcaae des
Shunter TPI Mettre le rotatif swl sur O et TPI shunté ouverture de la PMVI pendant 2 mn Mettre le rotatif swl sur 1 et Couper I'alimentation électrique pour que les vannes restent en ouverture.
Forcaae des
Basculer le bouton rotatif de couleur (situé à droite) sur la position O et shunté TPI pour forcer I'ouverture de la PMVA. Basculer le bouton rotatif de couleur (situé à droite) sur la position 1 et shunté TPI pour forcer I'ouverture de la PMVB. Basculer le bouton rotatif de couleur (situé à droite) sur la position 2 et shunté TPI pour forcer I'ouverture de la PMVC. Basculer le bouton rotatif de couleur (situé à droite) sur la position 3 et shunté TPI pour forcer I'ouverture de la PMVD. Couper
PMV
dans le aroupe.
TPI shunté ouverture de la PMV2 pendant 2 mn (page 42 du MARF102
PMV
sur les multi-controllers
I'alimentation électrique pour que les vannes restent en ouverture.
1031FE
PRINTED
IN
JAPAN,
July,
1993
@
TABLE
1
.
MULTI AIR CONDITIONER SYSTEMS AND THEIR BASIC COMPONENTS
1.1
.
Indoor Remote Controllera
.
1.2 Outdoor Unlis 3 16.3 . Test Run Check
1.3 . Multi-wnlmllera
14
Indoor Units
2
.
CONTRO1 SYSTEM
3
.
REFRIGERANT CYCLE DIAGRAM
4
.
COMBINATION OF INDOOR UNITS AND OUTDOOR UNITS
4.1 . Baslc Criterls for Combinatlons
4-2
Procedure for Checking ihe Comblnation 7 20.2 . How lo Read the Malfunction Check
4-3 . Exemplee of Connectlon Check
5
.
SPECIFICATIONS OF OUTDOOR UNIT
5.1 . Explanatlon of Electrlc Characterlstlcs Calculation
6
.
EXTERNAL VIEW
6.1 Outdoor Unit 11
6.2 . Multlcontroller
.
6.3
Header
7
.
WIRING DIAGRAM
7.1. outdoor unlt (YAR.F~~H~~, MAR-F~O~HTM~) 14
7.2 . Mulll-wntmller (RBY.Y1031FE, Yl041FE)
.
8
ELECTRICAL SPECIFICATIONS
l
.
Speclflcatlons
8.2
.
Speclflcatlons oi Inverter Asssmbly Parts
8.3. Speciflcatlons of Multl-contraller Parts
.
9
Coollng/Heatlng Capaclty Characteristics
.
9.1
Range of Operalion 21
9.2 . Coollng Capaclty Calculation
9.3 . Heatlng Capaclty CaIculatIon
10
.
AIR TIGHTNESS TEST, AIR PURGING WITH VACUUM PUMP AND CHARGING OF ADDlTlONAL REFRIGERANT
10.1 . Air Tlghtness Test
10.2 . Alr Purging with a Vacuum Pump
10.3 . Addltlonal Refrlgerant Charglng and
Amount of Addltlon
11
.
PIPING LENGTH AND CHARGED REFRIGERANT AMOUNT
11.1
.
Maln
Branch (One Mulii-Controller)
11.2 . Sub Branch (Two Multl-Controllers)
12
.
DESCRIPTION OF OPERATION
t
2.1 . Slmultaneous Coollngl Heatlng Operatlon Control Outline
12.2 . Functlons
13
OPERATIONS OF EACH SENSOR
.
13.1. Multi-Controller 33
.
13.2 Outdoor Unlt
14
.
COOLINGIHEATING AUTOMATIC REMOTE CONTROLLER
14-1
.
CoolinglHeatlng Automatic
ChangeOver Operatlon
15
.
IMPORTANT MATTERS T0 BE CHECKED BEFORE TEST RUN AND SERVICING
15-1
.
Reglstered Indoor Unlt Code Numbers
15-2 . Connections o1 Refrigerant Piping and
Control Wires
Multi-Controller 37
15-3 . Conneclions of Control Wires between Units
..............................................................
.......................
................................................................ .
...........................................
...............................................
.............................................
.............................................................. .
..........................................................
........,..,
"-m.,.".-
...........................................
of
Refrlgerant Cycle Parto
...................................................
.............................
................................................
and
Operations of Solenoid Valves
.........................................................
.....................................................
..-...
-
..................................................
beiween Indoor Units and
......................................................
...........................
...,.......................
..
.............................
.............
..................
................................
................................
...-.".....
..................................
..................................
................
............
.......................
............................
............
....................
...............
.............
..................
..........................
..
...............
...........................
................................
........................
.......................
......................
.........................
.................
...........................................
...........
...................
....
...
.......
........
OF
2
3
3
3
3
5 19 6
6
8
9
10
11
12 13
14
16
18
18 19 20
21
22 23
A 25
25 26
27
28
28
29
30
30 31
33
34
35
35
36
36
37
CONTENTS
16
.
TEST RUN
.
16.1 Test Run Prooedure 38
16.2
.
Check
.
Guidelines
16.4
17
.
SERVICING PROCEDURES
18
.
CHECK CODE DISPLAY SYSTEM CHART
.
IDENTIFICATION PROCEDURES
20
.
JUDGMENT OF MALFUNCTIONS WITH THE REMOTE CONTROLLER INDICATION
20.1 . Malfunction Check Dlsplay Operatlon
Monltor Display
20.3 . The Check Code and Ihe Judgmenl
20.4
.
Malfunctlon Judgmeni wlth the Self-Dlagnostlc Function of the
20.5 . Malfunction Judgment wlth the Sell-Dlognoatlc Functlon of the Multl-Controller
20.6. PMV Openlng Pressure Sensor Data Code Display
Conversion Table
21
.OTHERS
21.1 . Microprocessor System Dlagram and the Tlme
Requlred lo Judge the Malfunctlon
21.2 . A Check of ihe Conlrol Clrcuit Power Voltage of
the
Multi-Controller Control Board
21.3
.
A
Check of rhe Control Clrcult Power Voltage of
theoutdoot Interface Board
21.4 220 - 240V Systein Dlagram
.
22 . REMOTE CONTROLLER DISCRIMINATION
FUNCTION, OUTDOOR UNIT D
ISCRIMINATION FUNCTION
.
22.1 Search from the Remote Controller
.
22.2 Search from Outdoor Unit 76
23
.
CHECK FOR REFRIGERANT PIPING AND INTER-UNIT WIRING CONNECTION
23.1
.
Check System Procedure8
24
.
REMOVAL METHOD
24.1 Outdoor Unlt (MAR.FSlHTM0, FlOlHTM8)
.
24.2. Multi-Controller (RBM.Y1031FE, Y1 WlFE)
25
.
EXPLODED VIEWS AND PARTS LIST
25.1 . Outdoor Units (MAR-FS1 HTM8, MAR-FlOIHTM8)
25.2 . Electrical Parto Assembly
(MAR-FS1
25.3
.
Multi-Controller (RBM.Y103IFE, RBM-Yl041FE)
25.4 . Eleclrical Parts Assembly (RBM.Y1031FE, RBM-Y1041FE)
.........................................................
...................................................
before
Test Run
..............................................
...........................................-.............
..................................................................
............................
...................
...........
.....................
.,.,.,
......,.....,..
"v-.
.........................
Outdoor Unlt
....................................
.....................
Degree,
Temperature Sensor and
.......................................................
............................................................
........................
...........................
..........................
.............................
.........................
........................
...............
J
..............
..............
...........
...........................
..........................
................................
................................
HTMB,
MAR-F101HTM8)
.........................................
...........................
........................................
30
38
39 41
43
....
45
46
49
49
50 51
57
.....
64
67
71
71 72
......
73
....
74
76
36
77
70
78
83
86
...8
6
.88
90
91
1.
MULTI AIR CONDITIONER
COMPONENTS
These multi sirnultaneously.
air
conditioner systerns allow separale operation of each indoor unit
Multi-controller
SYSTEMS
AND THEIR BASIC
in
both heating and cooling
Cooling operaiion
0
Heating operation
+
Danger:
Fig.
1-1
Be
sure to provide a ventilator in a room, because;
This multi air conditioner system contains a large amount
a
case of a refrigerant leakage frorn with a large volume of refrigerant gas.
Consequently, people or
anirnals in the room
indoor unit, a room equipped with the indoor unil
may
be
suffocated by lack of oxygen.
of
refrigerant
Indoor remote controller
(HCFC
22).
In
the worst
is
filled
1-1.
Indoor remote controllers come either with or without lhe automatic heatinglcooling mode lunction. Automatic
heating
1-2.
Two types of outdoor units are available in the iine-up: both types are used in combination.
1-3.
Multi-controllers are refrigerant distributing devices to connecl multiple indoor units with the outdoor unit. The series includes 3-way (for 3 indoor units)and 4-way multi-controllers. To make indoor units) system, the 3-way and 4-way mu#icontrollers are used in combination wilh a header.
1-4.
There is a wide range ol indoor units totaling Refer to
Indoor
and
Remote
cooling operations can be controlled by those that equipped with Ihe funclion.
Controllers
Outdoor Units
8
HP
and
10
HP.
For
16
Multi-controllers
Indoor
table
4-1.
Units
13
models
(3
types with 6 capacity ratings from
HP or larger applications,
a
5-,
6-,
7-
or 8-way (for
1.5
to 5 HP).
8
2.CONTROL
The refrigerant and electrical systems of the multi air conditioner system are controlled by the multi-controllers and rnicroprocessor contained inside the outdoor unit. The indoor units of the CooltHeat Flex Series of Multi Air Conditioner Systerns are the same units as in the RAV-series air wnditioner systems.
For system operation, first the microprocessor in each indoor unit reads the difference between Ihe current
room temperature and desired temperature which has been set by the remote corresponding operation comrnands
On the basis of the operation commands sent lrom al1 the indoor microprocessors, the multi-controller microprocessors adjust the cooling and heating operation commands and send them to the interface microprocessor in the ouldoor unit. The inleriace microprocessor calculates the capacity required for cooling and heating, determines Ihe operation mode in the outdoor unit and compressor and frequencies of
SYSTEM
controller, determines the
demand signai, and transmits this to the multicontroller rnicroprocessors in the form
(ONJOFF,
al1 the requested heating command dilference between al1 the requested cooling command
the compressor of al1 the indoor units.
coolinglheating operation mode, operation frequency of the compressor).
calculates frequencies of the
of
-
r-
Indoot unit
Fan
Temp. sensor
Outdoor
I
-
A
1
Multi-controller
Capacity rank
setting
SW
Temp. sensor
-
7-
Protection unit
Comp. sensor
Temp. sensor
unit
.
-
-
-
1
Electronic flow rate
adjustment valve adjustment valve
Indoor unit microprocessor
.>
I-.
cm-'>
-P-
Multi-controller microprocessor Interiace microprocessor
Display
LED
2-way valve Display
Electronic flow rate
Compressor
LED
2-way valve
Fan
v
4
"'"
:
L.
----
----
I-
Multi-controller microprocessor
r-
-
Inverter
microprocessor i Inverier
Compressor
V
-1
D
t-----
----
Fig.
2-1
Ptotection
L+
unit
3.
REFRIGERANT
CYCLE
DIAGRAM
Fig.
3-1
Exarnples
of
8
and
10
HP
4.
COMBINATION OF INDOOR UNITS AND
OUTDOOR
UNITS
4-1.
(1) For details of indoor units to be connected, referto the each Service Data for indivisual RAV-series split
Wall
Cassette
Duct
(2)
Basic
systern air conditioner.
The indoor units have code numbers according to their capacity ranks.
Criteria for Combinations
Table
4-1
Available indoor unit mode1 name and service data file nurnber
130
RAV-130UH-P
No. 300-949
Capacity Rank of tndoor Unit
160
RAV-16OKH-P
NO. 300-885
RAV-1 6OUH-P
No.
300-883
RAV-160BH
NO.
300-842
Table
4-2
130
160
200 260
360
460
-RAV-200KH NO. 300-855
RAV-200BH NO. 300-842
Code numbers of indoor units
200
260
RAV-260KH-P
NO. 300-885
RAV-260UH-P
No. 300-883
RAV-260BH-P
NO.
300-920
Code No.
3.
4 4
5
8
10
360
RAV960UH-P
No. 300-881
RAV-36OBH-P
NO. 300-920
(See
Table
4-2.)
460
RAV46OUH-P
No.
300-881
RAV-460BH-P
NO. 300-920
(Ex.
Model RAVS6OUH-P + Capacity rank 360)
(3)
Indoor units within a determined range of codes can be connected to the outdoor units (minimum code
and maxirnum value of code number total). (See Table
4-3
Code of outdoor units
7
with
but the maximum capacity at which operation is possible at any
8
HP
(MAR-F81
l0
HP
(MAR-F1 O1 HTM8) 8
(4)
Only one multi-controller the systern is divided into two are necessary.
Note:
HTMB)
It is possible to connect indoor units unit (by a maxirnurn given time is the maximum capacity of the outdoor unit.
Table
Max.
Connected Unit Min. Code
is
needed when using up lo four indoor units, but for five to eight indoor units,
parts and a multi-controller is connected lo each, so two multi-controllers
of
13S0h),
4-3.)
Max.
3
3
a total capacity exceeding the capacity of the outdoor
2
27
Code
1
4-2.
Procedure
for
Checking
combination.
the
Combination
Note:
1
to
4
A
multi-controller
For
each
procedure
@
L
units
is
necessary
in
Decision on indmr unit and outdoor unit combination.
@
What
is
the
nurnber
of
indoor
the
even when
above
flow
only
chart,
using
please
one indoor
reter to
Fig.
unit.
4-1.
5
io
8
units
two
multi-wntrollers.
4-3.
Examples
of
Connection
Check
code
@Check
for
the
unii
qliantiy
Fig.
4-1
6-o)
.
Totai Indoor
<130>~9+3~3 0TYType33a3
Cr)
(130I~~pe-3ra
(200)
(200') (200)
Totai Indoor
unitcode
Outdoor
unitcode
Outdoor
~ype
-
:
L,,,,,,J
unit
Max.
Type
-c
Type
-
~~~e + 423 ~ype
-,
,,,,,,
unit
Max.
8z3
code
3 r 3
4
r
3
423
code
7
,
'
@~heck
for
M,,co*
h
,
'I
i
C
lhe
-
5.
SPECIFICATIONS
OF OUTDOOR
Table 5-1
UNIT
Model
Name
Cooling capacity (h 1) (kcallh) Heating capacity (*l
Power supply
Operating current
.-
-
O
Power consumption (kW)
8
Power factor
Operating currenl
.-
C
m
CB
Power oonsumption (kW)
I.
Power facior ("/o)
Starìing current Starting rnethod Dimensions Net
weight
Finished color Compressor
Fan unii
(H
(*2)
x W x
)
D)
TYP~
Motor output Fan Motor output Air flow volume (m3/h)
(kcallh)
(A)
(%l
(A)
(A)
(mm)
(kg)
(k
W)
(kW)
MAR-F81
18,000 (20,000)
18,600 (23,200)
12.3 (1
1 1.7 (15.3)
1,490 x 1,290
HTM8
3-phase 380 - 415V 50Hz
4.0)
8.0(9.2)
94
(95)
7.7 (10.1)
95
(95)
330
Silky gray (Munsell
5.6
MAR-FIO1
22,500 (25,000) 23,200 (29,000)
15.7 (17.2)
10.1 (11.5)
15.0 (20.0)
10.1 (13.6)
60
Direct
x
750
Herrnetically sealed
Propeller fan
0.15
1,490 x 1,290 x 750
6Y710.3)
x
2
10,000
93
97
HTMB
(96)
(98)
340
7.5
Refrigerant (charged weight)
Discharge gas side (mm) Liquid side (mm) Suction gas side (mm)
Coupler style
Max.
equivalenl piping length
Max. actual piping
Max. piping head
Crank case heater
Note:
Specificalions are subject to change without notice.
l:
al maxirnum capacity.
*2:
length
CoolingtHeating capacity
Power voltage,
ii
it varies, should be within a 10% range.
is
based on
(kg)
(m)
(m)
(m)
(W)
R-22
(17.6) R-22 (21.6)
019
015.9
025.4
Flare connection (liquid sideldischarge gas side), Brazing connection
100
:
The equivalent length is the base
many bends.
too 50: In case of outdoor unit installed above,
20: In case of outdoor unit installed below.
JIS B 8615. The value marked by
1
(suction gas side)
120
74
028.6
(
)
means operation
if
there are
5-1.
Explanation
of
Electric Characteristics Calculation
Calculate with the formulas below seeing Table
Totat input Total current
Total power factor
PT
=
CP
IT
=
~(CIP) + (CIv)
(kW)
f
=
Clp/l~
x
100
(A)
(Oh)
5-2.
Table
5-2
Model
Narne
Power consumption
CoOling
Effettive
Ineffective current Power consurnption P
Heating
Effettive
Ineffective current
Note:
Exarnple:
Rated
The value marked
MAR-F01HTM8
value at moling operation:
Total input Total current
Total power factor
Like this, calculate
by
operation
turns.
MAR-F81 HTM8
+
x
5.8
8.0 (9.2)
11.6 (13.3)
4.1
(4.4j
7.7
(10.1)
11.1
(14.5)
3.7
(4.9)
3
units
x
3)2
=
59.4
=
93
(%)
.(A)
P
(kW)
current
IIJ
IV
(A)
(A)
(kW)
current lp
Iv
by
(
)
means operation at rnaximum capacity.
x
1
unit
PT~
=
8.0 + 10.1 x 3 = 38.3
ITI
=
d(11.6 + 14.6
f
=
(1 1.6 + 14.6
the
maximurn value at cooling operation, both rated and maximurn value al heating
(A) (A)
+
MAR-FlOlHTM8
(kW)
x
312
+
(4.1
x3)
x
100/59.4
MAR-101
10.1
14.6 (16.5)
5.8
10.1 (13.6)
14.6
3.4
HTMB
(l
1.5)
(4.9)
(19.6)
(4.0)
6.
EXTERNAL
VIEW
6-1.
Side
air intake
Outdoor
Unit
750
Air
outlet
Anchor
boiis
for
anchor bolt
x
20(slotting hole)
Dimensions:
Model
MAR-
(UNIT:
I
A
mm)
Fig.
6-1
'
piping
To indoor uni1
To indooX1
A
To indoor unii
To indoor uni1 B To outdwr uni1
Electric
parts
box
Refri ant piping joint (Ilare) Liqui
A-TO
To indoor uni1 B To indoor unit
=or unx Toxdoor unit
C
Note: Please install
e019
D
Fig. 6-2
hole for
Oval hanging bolt
4
100 or more
A
I
I
-F
Slit for hanging bolt It is indispensable for test run and servicing.
-1
\
1
I
,I
-
Outdoor uni1 side
M
Or
Electric paris box or more
1
Note: Make an inspection opening at the sp~ified p"..
450rnm x 450rnm over
Suction gas side
Outdoor uni1 sidel
or
Neciri!= 500
g
-
I
Note: Make an inspeciion opening ai the specified place.
Il is indispensable for test run and servicing.
0
28.6
more or more
Indoor unit side
or more
450 x 450 inspection opening installation space
100 or more
I
T
Indoor unit side
500
or more
450 x 450 ins~ection
installation siace
iring entrance
igerant piping joint (Ilare)
Discharge gas side 0 19
I
opening
6-3.
RBM-HD821FE, RBM-HD1021FE
1-
0
36
O O
Liquid side 0 9.5
Fig. 6-3
450mm x 450rnm over
Suction gas side
0
28.6
Discharge gas side 0 19
7.
WIRING DIAGRAM
7-1.
Outdoor
Unit
(MAR-F1
01
HTMBlMARF81HTM8)
Inarlor
Cmtrol
PC bmrd
YCC-1251
Inlaloce Cmlrd
-14- -15-
PC
bmid
Fig.
YCC-1223
7-1
Multi-controller
r----------'------------------------------------------------------------------------
(RBM-Y1031 FE, Y1041 FE)
!
Rernenber:
7
For quick reference on connection between the
!
multi-controller ond indoor units. enter indoor unit models connected. instollotion locations, ond code setting in the toble below.
1. Oond
O
enclosed in them ore termino1 numbers.
2.
The two-dot dosh line indicotes wiring on site.
3.
EZZJ
indicates o printed circuit boord
4.
The C13frome indicotes the product body
5.
RBM-Y1031FE does not have PMVD. SVD(D) SVS(D),@- setting switch for room
Ports layout
Control
PC
boord
m
[
Termina1 plote
8
unii
8
I
i
L.B.A
a
Indoor
L.L.A
]
Indaor
,m
unit
i i
Indoor
L.2.J
8 8 8 8
unii
i
i
L-0-1
Syrnbol PMV A,B.C.D Th A.B.C,D,X Tr CS H MS
lndoar
unii
i i
Ouldcor
L--.l
Product Flow control volve Temperature sensor Power tronsforrner Float switch Heater Reset switch
unit
:
Symbol SVDiA).IBI.IC).(DI SVSiAl.(BI,(C).(DI SVDD SVSS SVH LD101.102.103.104
Electricolly operoted volve of discharge gas side Electrically operoted volve of suction gas side Electricolly operoted valve for pressure raising Electricolly operoted valve for pressure decreasing Electrically operated valve for superheot Foult indicotor lomp
8.
ELECTRICAL
PARTS
SPECIFICATIONS
8-1.
Model
Cornp­ressor motor
Blower
rnotor
Specifications
of
Refrigerant
Name
Model name Motor type Power supply
Output (kW)
Pole Coil resistance Cornpressor oil narne
Arnount of oil Model narne Motor type
Power supply Output Power supply (A) Pole Inner over-load relay
(p)
(Q)
(W)
(p)
Cycle
Parts
MAR-F81
HV990CW-YI 2
HTM8
3-phase induction motor
3-phase, 380 - 415V, 50Hz
5.6
212 (Inveder sidelNon-inverter side)
1.4912.51
(Inverter sidelbion-inverfer side)
SUNISO 3GSD
7,000~~
STF-200-150C
l
-phase, induction motor
1-phase, 220
1.12/1.44
OFF:115 f 5OC
MAR-FIO1
HV1200CW-Y12
-
240V, 50Hz
150
6
HTM8
7.5
High pressure switch
Low pressure switch
4-way valve Compressor case heater
Pressure sensor
Discharge temperature sensor Suction temperature sensor Outdoor air temperature sensor Flow rate adjustment valve Flow rate 2-way valve 2-way valve
Specifications are subject to change without notice.
Model name
Operating pressure (kg/crn2~)
Model narne
Operating
adjustment valve (for bypass)
pressure (kg/cm2~)
20PS-Bl20PS-G (Inverter side/Non-inverter side)
OFF: 30, ON:
ON: 1.5, OFF: 0.25
Model narne: 2S5F-A1
Input voltage: DC 12V
Output voltage:
25°C:
50W,
0°C: 32.8kR, 25°C: 10k2,5O0C: 3,6m 0°C: 32.8kLt25"C: IOkQ, 50°C:
EV23RC2, Coil DC 12V
EV18RC, Coil DC 12V
(RP100-03), Coil
NEV202DXF, Coil AC 240V
23/OFF:23,
20PS-1
V25-760B
AC240V, 74W
DC
50°C: 17.9kQ, 100°C:
ON:
0.5 - 4.5V
AC
240V
30
3.35kS1
3.6U
8-2.
Specifications
of
Inverter
Assembly
Parts
Model
Power supply
Output voiiage at operating frequency of
IGBT Relay
Blower motor running capacitor
Rectifier
AC noise filter
DC noise filter Power supply rectifier capacitor Fuse Electronic starter Reactor Fan
rnotor relay Control relay Magnetic contactor for Magnetic contactor for compressor
(Non-inverler side) Transformer (lnverter) Transformer (Interface)
Power supply
PC
board (tnverter)
termina1 plate
Narne
compressor (Inverter
60Hz
side)
MAR-FS1
HTM8
3-phase,
EAG45M605UF1,6pF450V
ZSG2208-02,8A, 250V
LNT2G222KSMCTF, 2200pFl4OOV
12A
380
AC
MG50Q6ES11
LY
1 F (AC 240V)
30U6P42,30A
LF215AV, 15A, 71
912X25ElOlYV20
CH-26-T, 6.2mH, 18A
G2R217PV
G4U-112P
FT13-2
ACGOOV, 60A
MCC-1251
-
41 5V, 50Hz
266V
20A
13A
FT57
MAR-Fl 01
6V
HTM8
15A
PC
board assembly (Interface)
Cooling
Specifications are subject to change without notice.
fan
MCC-1223
3650EXV-5,220 - 240V
8-3.
Specìfications of Multi-controller
Parts
Model Flow rate adjustment valve Temperature sensor Float switch
Power supply transformer
Relay (on Heater
Temperature fuse for heater Power current fuse for heater Discharge gas side solenoid valve
Suction gas side 2-way valve 2-way valve
Specifications are subject to change without
PC
board)
solenoid valve
Name
Model narne Specif ication
notice.
RBM-Y1031
0°C:
Prirnary side: AC 240V, Secondary side:
50W
REV-1506DXFQ6, Coil
FE
EV23RC5, Coil DC 12V
32.8m.
NEV202DXF, Coil NEV603DXF, Coil AC 240V
25OC: 1 OkR, 50°C:
FS-085-0031
FT56
G2R-117P,
10.4W/m
0FF:11S0C
RP100-03, Coil
Coil
I
1 A
AC
RBM-Y1041
DC
12V
65W
240V
AC
240V
AC
240V
3.6kn
FE
AC
12V
9.
CoolinglHeating Capacity Characteristics
9-1.
Range
15
Room
Temperature
('C
of
20 25
air wet-bulb
WB)
Operation
15
Room
20
25
air wet-bulb
Temperature Temperature
("C
WB)
@
15
Room
("C
20
air
dry-bulb
DB)
@
25
15
20
Room air dry-bulb
Temperature
('=C
DB)
25
30
Note:
Fig.
9-1
@:lndicates the standard internal air temperature
temperature range for
@:When cooling load
@:~hen
lhe
heating load
the indoor unit during the heating operation
is
higher and heat is being exhausted
is
higher and heat is being absorbed
for
the
cooling
from
operalion.
is
15
The
to
the outdoor una.
by
the outdoor unit.
internal air
28°C
DB.
9-2.
Cooling Capacity Calculation
Corrected
a
Room Air Wet-Bulb Temperature Conditions and Capacity Correction Factor
@
Indoor Unit
(Built-in
Air
Duct
cooling capacity = Standard
1.2
flow
Capaciry
rection
Volume
cor-
factor
1
1
0.9
0.8
and Capacity Correction Factor
Type Only)
Capacity cor­rection factor
cooling
.l
capacity
.o
15 Room air wet-bulb temperature
Fig.
20
9-2
24
("C)
x
(a
x
@ x @
x
@)
Air
flow
volume variation ratio
Fig.
9-3
@
Ambient Air Dry-Bulb Temperature and Capacity Correction Factor
Capacity correction factor
Ambient air
dry-bulb
Fig.
temperature
9-4
(%)
("C)
@
Piping
Head,
Length and Capacity Correction Factor
&'r
I
ho
Outdoor unit
I
P'o
unit
9-3.
Heating
@
Room Air
10 20 30
Capacity
Corrected
Dry-Bulb
Capacity corre­ction
40
50
60
70
80
Length (equivalent length)
Calculation
heating
factor
capacity = Standard
Temperature and
1.2
1.1
0.8 15 20 25
Room air dry-bulb temperatuer
90
100 110 120
L'
(m)
Fig.
9-5
heating
Capacity
Fig.
9-6
L'
is
the longest one of
H
=
ho
+
(largest one of
capacity
x
(a
x Q x
Correction Factor
("C)
4'0
@
ha,
x
+l'a,
hb and
@)
O'O
+
hc)
Eb,
4'0
+
O'C
@
Ambient Air Wet-BuIb Temperature and Capacity Correction Factor
Capacity
ction factor
corre-
1.3
1.2
0.5
-1
O
-5
Room
O
air wet-bulb temperature
5
10 15
("C)
Fig.
9-7
@
Indoor Unit Air Flow Volume and Capacity Correction Factor
(Only for Built-in Duct type)
@
Piping
Capacity
ction
facotr
corre-
1.1
1
.o
0.9
80
90 100
Air flow volume variation ratio
110
l20
(%)
Fig. 9-8
Head, Length and Capacity Correction Factor
7
hc
Outdoor
unit
Multi-Controller
O'c
Indoor unit
Length (equivalent length)
L'
(m)
Fig.
9-9
C
is
the longest one of
H
=
ho
+
(largest one of
2'0
ha,
+
l'a,
hb
4'0
and
+
hc)
Ib,
I'o
+
O's
10.
AIR TIGHTNESS
TEST,
AIR
PURGING
WITH
A
VACUUM
PUMP
AND
Make sure Lo multi-controller and outdoor unit.
Aiter the flushing conduct the Air Tightness Test, Air Purging and Additional Refrigerant charge in turn.
10-1.
This test uses nitrogen gas under the pressure of
(1)
(2)
(3)
(4)
CHARGING
do
the "Flushing" of the refrigerant pipes between indoor units and multi-controller,
work
is done, connect the pipes (liquid side, suction gas side, discharge gas side)
Air
Tightness
Do
not
operate the packed valve or service valve until completion of air purging. (Leave the valves
closed.) Air tightness test and air purging with a vacuum pump should be done before turning on the power
The
gauge rnanifold's charge hose has a
(06.4)
for the test.
Connect the copper pipe to the charge port
OF
Test
ADDITIONAL
30
kg/crn2~.
low
pressure resistance,
of
the suction gas pipe's service valve.
REFRIGERANT
so
always replace it
with
and
and
a
copper pipe
Note:
Liquid
pipe
Discharge
After connecting the copper pipe for charging, pressurize
then check that there
may be
a
gas leak. The piace(s) from where the gas is leaking should be checked.
Suction
gas
pipe
gas
pipe
Fig.
10-1
is
no change in the gas pressure.
to
30
kg/cm2~,
If
the gas pressure decreases, there
let stand for one day,
10-2.
(1)
(2)
(3)
(4)
Air
Purging
After completing the air lightness test, exhaust the nitrogen gas from the piping. Connect the charge hoses behveen the gauge manifold and
packed valve charge
Replace the nitrogen tank with lhe vacuum pump.
Carry on air purging with the vacuum pump for at least 2 or 3 hours.
t
he gauge manifold's valve
with
ports.
a
Vacuum
(Vd)
.
Pump
the
liquid pipe and discharge gas pipe's
When
air purging is completed, close
Note:
Liquid
pipe t Suction
Discharge
1.
To prevent leakage, we recommend you to use a pump with a large capacity purging
2.
Check that the gauge pressure
gas
quickly.
pipe
gas
pipe
is
-76
Fig.
10-2
cmHg.
and
complete
10-3.
(l)
(2)
(3)
(4)
Additional
Reptace the vacuum pump with the refrigerant tank, charge the stipulated arnount of refrigerant, and then open both packed valve and service valve fully. If additional charge is needed, conduct the following.
Switch the charge hose lo the suction gas pipe's service valve charge port (dotted lines 4 solid tines, one
charge
Attach the charge hose lightly to the suction gas pipes service valve charge loosen the refrigerant tank's valves (Va and charge
Next, tighten specified amount of refrigerant. refrigerant
hose as shown in Fig.
hose
is
the
in
gas form from the low pressure side lo supply the specified amounl.
Refrigerant
10-3).
expelled by the refrigerant.
hose fully, then loosen the service valve and use the pressure in the tank to add the
Il not enough refrigerant can be added, operate the unit and
Charging
Vb).
The air in the lank's
Low
Charge hose
pressure
port
at first and slightly
gas
hose, gauge rnanifold and
Gauge
manifold
draw
in the
Lquid pipe
Discharge
t
gas
Suction
pipe
gas
pipe
--2.
Fig.
-2.
10-3
.
\
9)
Gas
Refrigerant
5kg
tank
Spring
scale
gas
(20kg)
11.
PIPING
LENGTH
AND
ADDITIONAL
REFRIGERANT
AMOUNT
11-1.
At factory shipping, the "standard arnount of refrigerant" corresponding to the "standard piping length previously charged in outdoor unit. When the actual piping length exceeds the standard length, please add the supplemental refrigerant as follows.
Main
Main pipe:Piping between outdoor unit and multi-controller.
Branch pipe:Piping between multi-controller and each indoor unit. Arnount of additional refrigerant (kg) = Additional amount of main pipe pipe (kg)
Branch
Fig. 11-1
=~x(e,-3)
(One
+~ax
Multi-Controller)
Branch
(1,-2)
pipes
+Nbx
(lb-2) +Ncx(&-2) +Ndx (ed-2)
Table
11
-1
(kg)
+
additional amount of branch
is
Table
11-2 Amount of additional refrigerant
Outdoor Unit
MAR-F81
(Standard arnount of refrigerant
MAR-Fl
(Standard arnount of refrigerant 21.6kg)
M = Arnount of additional refrigerant for every (The value varies depending
Na,
(The
t,,
HTMB
17.6
kg)
O1
HTM8
Nb,
Nc,
Nd
=
Amount of additional refrigerant for every l m of actual length of branch pipe.
value, varies depending on the type of indoor unit.)
= actual length of main pipe (m)
tb,
&,Od
=
Actual length
(Equivalent Horse Power
130
(1.5
HP), 160 (2.0 HP), 200 (2.5 HP)
260 (3HP), 360 (4HP),460(5 HP)
130
(1.5
HP),
260
(3
HP),
on
the type of outdoor unit.)
of
branch pipe (m)
Indoor
Unit
Capacity Rank
160 (2.0 HP), 200
360
(4
HP),
l
m
of actual length of rnain pipe
460
(5
to
(2.5
HP)
Multi Type)
HP)
Additional Arnount
Na,
,,,,
(kg,m,
0.19
0.1
9
Nc,
(kglm)
0.030
0.045
0.030
0.045
Nb,
Nd
11-2.
Sub
Main pipe:Piping between outdoor unit and header. Sub pipe:Piping between header and each rnulti-controller. Branch pipe:Piping between multi-controller and each indoor unit. Arnount of additional refrigerant (kg) = Additional amount of main pipe (kg) +Additional amount of
pipe
(kg)
+~bx(8b-2)+~~x(e,-2)+~d~(id-2)+~e~(8,-2)+~f~(tf-2)+~g~(Q~-2)+~h~(!h-2)
Branch
Pipe
(Two
Sub
pipes
Multi-Controllers)
Branch
pipes
t
~ulli-conirolkr
Fig.
l
1-2
+
Additional amount of branch pipe (kg)
Bych
pipes
=
M
Standard piping
length
x
(10
-
2)
+
S
x
2
{(ti
Table
-
1)
11
-3
e,,
(m)
+
P,,
e2
&,&,eh
l
(e2
-l)} + Na x (ta - 2)
.tb,
4,
2
&,
te,
(m)
sub
Table
11-4
Amount of additional refrigerant
Outdoor
MAR-F81 HTM8 (Standard arnount of refrigerant
MAR-FIO1 (Standard amount of refrigerant
M
=
Arnount of additional refrigerant for every 1m ot actual length of main pipe
(The value varies depending on the type
S
=
Amount of additional refrigerant far 1 m o1 actual length of sub pipe. Na, Nb, Nc. pipe. (The
40
=
Aclual length of main pipe.
41,
t2
la,
tb
,
Unit
130 (1.5 HP), 160 (2.0 HP), 200
17.6
kg)
HTM8
21.6kg)
Nd,
Ne,
value varies depending on the capacity rank of indoor unit.)
=
Actual length of sub pipe (m)
h,
td,
te,
ef,
260 (3 HP),
130 (1.5 HP), 160
260
Nf,
Ng, Nh = Amount of additional refrigerant
.eg,
eh
Indoor Unit Capacity Ranks
(Equivalent Horse Power to Multi Type)
(2.5
360
(4
HP),
460
(5
HP)
(2.0
(3
HP),
360
(4
of
outdoor unit.)
HP), 200
HP), 460
(5
(2.5
HP)
(m)
=
Aclual length of branch pipe.
(m)
HP)
HP)
for
every
Additlonal Amount
M
(kglm)
0.19
0.19
Im
of actual length of branch
(kg'm)
0.125
0.125
Ne, Nf, Ng.
Nh
0.030
0.045
0.030
0.045
Na, Nb, Nc, Nd,
(kglm)
12.
DESCRIPTION
OF
OPERATION
12-1.
Simultaneous CoolingtHeating Operation Control Outline
12-1-1. Switching between the Cooling and Heating Operations for
Each Indoor Unit
The solenoid valves inside the muiti-controller are switched with requested commands sent from the indoor unii.
SVS
valve (at suction gas side) opens for a cooling command.
SVD
valve (al discharge gas side) opens for a heating command.
t
2-1-2.
Determining the Outdoor Unit Operation Mode (CoolingIHeating)
and Operation Frequency of the Compressor
The cooling or heating mode of the outdoor unit and Ihe operation frequency of the compressor are determined heating command frequencies of
by
difference between al1 ihe requested cooling command frequencies and al1 the requested
al1 the indoor units.
12-1-3. Controlling the Refrigerant Cycle in the Outdoor Unit during
SrmuItaneous Cooling-Dominant Operation
(I
)
FIOW
contro1
In order to divide the cooling exhaust heat appropriately to the indoor units in the heating operation and
outdoor heat exchanger, the opening of the between frequencies and by the operation frequency.
(2)
Pressure contro1 Constant high-pressure control is performed so that the capacity of the indoor units in the heating operation is maintained.
1)
2)
al1 the requested cooling comrnand frequencies and al1 the requested heating command
Outdoor fan control Switching between the outdoor main heat exchanger and the sub heat exchanger
PMV2
flow control valve is controlled by the difference
Since the high pressure outside air temperature is low and the difference between the cooling and heating command frequencies is
minimal, the main heat exchanger is switched to the sub heat exchanger which is srnaller than the
ordinary rnain exchanger.
12-1
-4.
Controlling the Refrigerant Cycle in the Outdoor Unit
may
drop even when the fan
is
shut down by the outdoor fan control
if
the
during Simultaneous Heating-Dominant Operation
(1)
Expansion valve control Control for preventing superheat is
(2)
~vaporaiing, temperature control The evaporating temperature control units in the cooling operation is maintained.
periormed
is
by
the outdoor heating expansion valve.
performed by outdoor fan control so that the capacity of Ihe indoor
Loading...
+ 63 hidden pages