Texas Instruments TVP5031PFP Datasheet

TVP5031
NTSC/P AL Digital Video Decoder
April 2000 MSDS Multimedia
Data Manual
SLAS267
IMPORTANT NOTICE
T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
Customers are responsible for their applications using TI components. In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 2000, Texas Instruments Incorporated
iii
Contents
Section Title Page
1 Introduction 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Features 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Applications 1–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Functional Block Diagram 1–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 Terminal Assignments 1–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5 Ordering Information 1–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.6 Terminal Functions 1–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.7 Strapping Terminals Description 1–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Functional Description 2–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Analog Video Processing and A/D Converters 2–1. . . . . . . . . . . . . . . . . . .
2.1.1 Video Input Selection 2–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.2 Analog Input Clamping and Automatic Gain
Control Circuits 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.3 A/D Converter 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Digital Processing 2–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1 Decimation Filter 2–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.2 Y/C Separation 2–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.3 Luminance Processing 2–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.4 Chrominance Processing 2–10. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.5 Clock Circuits 2–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Genlock Control 2–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Video Output Format 2–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.1 Sampling Frequencies and Patterns 2–12. . . . . . . . . . . . . . . . . . .
2.4.2 Video Port 20-Bit and 16-Bit 4:2:2 Output
Format Timing 2–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.3 Video Port 10-Bit and 8-Bit 4:2:2 and ITU-R BT.656
Output Format Timing 2–13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5 Synchronization Signals 2–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6 Host Interface 2–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.1 I
2
C Host Interface 2–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.2 Parallel Host Interface A 2–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.3 Parallel Host Interface B 2–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.4 Parallel Host Interface C 2–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.5 Parallel Host Interface Register Map 2–27. . . . . . . . . . . . . . . . . .
2.6.6 Parallel Host Interface Microcode Write Operation 2–28. . . . . .
2.6.7 Parallel Host Interface Microcode Read Operation 2–29. . . . . .
2.7 VBI Data Processor 2–29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7.1 Teletext Data Byte Order 2–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
iv
2.7.2 Teletext as Ancillary Data in Video Stream 2–31. . . . . . . . . . . . .
2.8 Raw Video Data Output 2–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.9 Reset and Initialization 2–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.10 Internal Control Registers 2–33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11 Register Definitions 2–35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.1 Video Input Source Selection 1 2–35. . . . . . . . . . . . . . . . . . . . . . .
2.11.2 Analog Channel Controls 2–35. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.3 Operation Mode Controls 2–35. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.4 Miscellaneous Control 2–37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.5 Color Killer Threshold Control 2–38. . . . . . . . . . . . . . . . . . . . . . . .
2.11.6 Luminance Processing Control 1 2–38. . . . . . . . . . . . . . . . . . . . .
2.11.7 Luminance Processing Control 2 2–39. . . . . . . . . . . . . . . . . . . . .
2.11.8 Brightness Control 2–39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.9 Color Saturation Control 2–39. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.10 Hue Control 2–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.11 Contrast Control 2–40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.12 Outputs and Data Rates Select 2–40. . . . . . . . . . . . . . . . . . . . . .
2.11.13 Horizontal Sync HSYN Start NTSC/PAL 2–41. . . . . . . . . . . . . . .
2.11.14 Vertical Blanking VBLK Start 2–42. . . . . . . . . . . . . . . . . . . . . . . . .
2.11.15 Vertical Blanking VBLK Stop 2–42. . . . . . . . . . . . . . . . . . . . . . . . .
2.11.16 Chrominance Control 1 2–43. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.17 Chrominance Control 2 2–43. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.18 Interrupt Reset Register B 2–44. . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.19 Interrupt Enable Register B 2–44. . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.20 Interrupt Configuration Register B 2–45. . . . . . . . . . . . . . . . . . . .
2.11.21 Program RAM Write 2–45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.22 Microprocessor Reset Clear 2–45. . . . . . . . . . . . . . . . . . . . . . . . .
2.11.23 Major Software Revision Number 2–45. . . . . . . . . . . . . . . . . . . . .
2.11.24 Status Register 1 2–46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.25 Status Register 2 2–47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.26 Status Register 3 2–47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.27 Status Register 4 2–47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.28 Interrupt Status Register B 2–48. . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.29 Interrupt B Active Register 2–48. . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.30 Minor Software Revision Number 2–48. . . . . . . . . . . . . . . . . . . . .
2.11.31 Status Register 5 2–49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.32 Program RAM Read 2–49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.33 TXF Filter 1 Parameters 2–50. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.34 TXF Filter 2 Parameters 2–51. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.35 TXF Error Filtering Enables 2–52. . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.36 TXF Transaction Processing Enables 2–52. . . . . . . . . . . . . . . . .
2.11.37 TTX Control Register 2–53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.38 Line Enable Registers A, B 2–53. . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.39 Sync Pattern Register 2–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
v
2.11.40 Teletext FIFO 2–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.41 Closed Caption Data 2–54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.42 Buffer Status 2–55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.43 Interrupt Threshold 2–55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.44 Interrupt Line Number 2–55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.45 FIFO Control 2–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.46 FIFO RAM Test 2–56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.47 Interrupt Status Register A 2–57. . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.48 Interrupt Enable Register A 2–57. . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.49 Parallel Host Interface Teletext FIFO 2–58. . . . . . . . . . . . . . . . . .
2.11.50 Parallel Host Interface Status/Interrupt A 2–58. . . . . . . . . . . . . .
3 Electrical Specifications 3–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Absolute Maximum Ratings 3–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Recommended Operating Conditions 3–1. . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.1 Crystal Specifications 3–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Electrical Characteristics Over Recommended Voltage and Temperature Ranges, DV
DD
= 3.3 V, AVDD = 3.3 V, TA = 70°C 3–2. . . .
3.3.1 DC Electrical Characteristics 3–2. . . . . . . . . . . . . . . . . . . . . . . . .
3.3.2 Analog Processing and A/D Converters 3–2. . . . . . . . . . . . . . . .
3.3.3 Clocks, Video Data, Sync Timing 3–3. . . . . . . . . . . . . . . . . . . . .
3.3.4 I
2
C Host Port Timing 3–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.5 Parallel Host Interface A 3–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.6 Parallel Host Interface B 3–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.7 Parallel Host Interface C 3–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Mechanical Data 4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
vi
List of Illustrations
Figure Title Page
2–1 Analog Video Processors and A/D Converters 2–1. . . . . . . . . . . . . . . . . . . . . . . .
2–2 Digital Video Signal Processing Block Diagram 2–3. . . . . . . . . . . . . . . . . . . . . . .
2–3 Decimation Filter Frequency Response 2–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–4 Y/C Separation Block Diagram 2–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–5 Color Low-Pass Filter Frequency Response 2–6. . . . . . . . . . . . . . . . . . . . . . . . . .
2–6 Color Low-Pass Filter With Notch Filter Frequency Response
(NTSC and PAL-M Square Pixel Sampling) 2–6. . . . . . . . . . . . . . . . . . . . . . . .
2–7 Color Low-Pass Filter With Notch Filter Characteristics
(13.5 MHz Sampling) 2–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–8 Color Low-Pass Filter With Notch Filter Frequency Response
(PAL Square Pixel Sampling) 2–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–9 3-Line Adaptive Comb Filtering 2–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–10 Comb Filters Frequency Response 2–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–11 Chroma Trap Filter Frequency Response 2–8. . . . . . . . . . . . . . . . . . . . . . . . . . .
2–12 Chroma Trap Filter Frequency Response (13.5 MHz Sampling) 2–8. . . . . . . .
2–13 Chroma Trap Filter Frequency Response
(PAL Square Pixel Sampling) 2–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–14 Luminance Edge-Enhancer Peaking Block Diagram 2–9. . . . . . . . . . . . . . . . . .
2–15 Peaking Filter Response, NTSC and PAL-M Square Pixel Sampling 2–9. . . .
2–16 Peaking Filter Response, 13.5 MHz Sampling Rate 2–9. . . . . . . . . . . . . . . . . .
2–17 Peaking Filter Response, PAL Square Pixel 2–9. . . . . . . . . . . . . . . . . . . . . . . . .
2–18 Clock Circuit Diagram 2–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–19 Example Reference Clock Configurations 2–10. . . . . . . . . . . . . . . . . . . . . . . . . . .
2–20 GLCO Timing 2–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–21 4:2:2 Sampling 2–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–22 20-Bit 4:2:2 Output Format 2–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–23 20-Bit 4:2:2 Output Format 2–13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–24 Vertical Synchronization Signals 2–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–25 Horizontal Synchronization Signals 2–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–26 I2C Data Transfer Example 2–17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–27 Parallel Host Interface A Timing 2–23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–28 Parallel Host Interface B Timing 2–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–29 Parallel Host Interface C Timing 2–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–30 PHI Address Register Map 2–27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
vii
3–1 Parallel Host Interface A Timing 3–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–2 Parallel Host Interface B Timing 3–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–3 Parallel Host Interface C Timing 3–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
List of Tables
Table Title Page
2–1 Summary of Line Frequencies, Data Rates, and Pixel Counts 2–12. . . . . . . . . . .
2–2 Host Port Mode Select 2–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–3 I2C Host Port Terminal Description 2–17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–4 Parallel Host Interface A Terminal Description 2–22. . . . . . . . . . . . . . . . . . . . . . . .
2–5 Parallel Host Interface B Terminal Description 2–24. . . . . . . . . . . . . . . . . . . . . . . .
2–6 Parallel Host Interface C Terminal Description 2–26. . . . . . . . . . . . . . . . . . . . . . . .
2–7 Teletext Data Byte Order 2–30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–8 NABTS 525-Line Ancillary Data Sequence 2–31. . . . . . . . . . . . . . . . . . . . . . . . . . .
2–9 Dummy Timing Ancillary Data Sequence 2–31. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–10 Data ID 2–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–11 Reset Sequence 2–32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–12 Registers Summary 2–33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–13 Analog Channel and Video Mode Selection 2–35. . . . . . . . . . . . . . . . . . . . . . . . .
2–14 Digital Output Control 2–37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–15 Vertical Blanking Interval Start and End 2–42. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–16 Chrominance Comb Filter Selection 2–43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
viii
1–1
1 Introduction
The TVP5031 is a high quality single-chip digital video decoder that converts base-band analog National Television System Committee (NTSC) and phase alternating line (PAL) video into digital component video. The TVP5031 includes a 9-bit A/D converter with 2x sampling. Sampling is square-pixel or ITU-R BT .601 (27 MHz) and is line-locked for correct pixel alignment. The output formats can be 8-bit, 10-bit or 16-bit 4:2:2, and 8-bit or 10-bit ITU-R BT.656 with embedded synchronization. The TVP5031 utilizes Texas Instruments patented technology for locking to weak, noisy , or unstable signals, and a chroma frequency control output is generated for synchronizing downstream video encoders.
Complementary three-line adaptive (2-H delay) comb filtering is available for both the luma and chroma data paths to reduce both cross-luma and cross-chroma artifacts; a chroma trap filter is also available. Video characteristics including hue, contrast, and saturation may be programmed using one of four supported host port interfaces; I
2
C and three parallel host interface (PHI) modes. The TVP5031 generates synchronization, blanking, field, lock and clock signals in addition to digital video outputs.
The TVP5031 includes methods for advanced vertical blanking interval (VBI) data retrieval. The VBI data processor slices, parses, and performs error checking on teletext data in several formats. A built-in FIFO stores up to 14 lines of teletext data, and with proper host synchronization full-screen teletext retrieval is enabled. The VBI data processor also retrieves closed-caption data. The TVP5031 can also pass through over sampled raw composite data for host-based software VBI processing.
The main blocks of the TVP5031 include:
Analog processors and A/D converters
Y/C separation
Chrominance processor
Luminance processor
Clock/timing processor and power-down control
Output formatter
Host port interface
VBI data processor
1.1 Features
Accepts NTSC (M) and PAL (B, D, G, H, I, M, N) composite video
Two analog video inputs for composite video
A fully differential CMOS analog preprocessing channel with clamping and AGC for best S/N performance
High speed 2x over-sampling 9-bit A/D converter
Patented architecture for locking to weak, noisy, or unstable signals
Single 14.31818 MHz reference crystal for all standards
Line-locked clock and sampling at square-pixel or 27 MHz rates
Programmable output data rates:
12.2727 MHz Square-Pixel (NTSC) – 14.7500 MHz Square-Pixel (PAL) – 13.5 MHz ITU-R BT.601 (NTSC and PAL)
Optional automatic switching between P AL and NTSC standards
1–2
Complementary 3-line (2-H delay) adaptive comb filters for both cross-luminance and cross-chrominance noise reduction
Subcarrier genlock output for synchronizing color subcarrier of external encoder
Standard programmable video output formats:
16-bit 4:2:2 YCbCr – 20-bit 4:2:2 YCbCr – 8-bit 4:2:2 YCbCr – 10-bit 4:2:2 YCbCr – ITU-R BT.656 8-bit 4:2:2 with embedded syncs – ITU-R BT.656 10-bit 4:2:2 with embedded syncs
Advanced programmable video output formats: – 2x oversampled raw VBI data during active video – Sliced VBI data as ancillary data in video stream
Teletext (NABTS, WST) and closed-caption decode with FIFO
Programmable host port options including I
2
C and three parallel host interface (PHI) modes
Brightness, contrast, saturation , and hue control through host port
5-V tolerant digital I/O ports
80-pin TQFP package
1.2 Applications
Digital image processing
Video conferencing
Multimedia
Digital video
Desktop video
Video capture
Video editing
Security applications
1–3
1.3 Functional Block Diagram
Luma/Chroma
Separation
VI_1A
VI_1B
A/D
AGC
Channel 1
Output
Formatter
Y[9:0]
OEB
UV[9:0]
Luminance Processing
Chrominance
Processing
M U X
VBI
I2C Interface
D[7:0]
VC0 VC3
A0
A1 VC1 VC2
Parallel Host
Interface
XTAL1
SCLK PCLK PREF
GLCO
Line
and
Chroma
PLLs
XTAL2
Sync
Processor
HSYN VSYN FID PALI GPCL RSTINB
1–4
1.4 Terminal Assignments
23
Y1 Y0 GPCL DGND XTAL2 XTAL1 DV
DD
FID PALI GLCO HSYN VSYN AVID PCLK PREF SCLK OEB RSTINB RSTOUTB TESTE
40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21
4
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
UV8 UV9
D0 D1
DV
DD
D2 D3
DGND
D4 D5 D6 D7 A0 A1
DV
DD
VC3 VC2 VC1 VC0
INTREQ
5678
TQFP PACKAGE
(TOP VIEW)
59 58 57 56 5560 54 52 51 5053
9 10 11 12 13
49 48147 46 45 44
14 15 16 17 18 19 20
43 42 41
UV7
UV6
UV5
DGND
UV4
UV3DVUV2
UV1
UV0Y9Y8Y7DGNDY6Y5
Y4Y3Y2
BG
CLAMP1
AGND
VI_1B
VI_1A
DD
REFM
REFP
NC
NC
AGND
CLAMP2
NC
NC
AFE_GND
NSUB
PLL_AGND
AV
DD
AV
DD
AFE_V
DD
PLL_AV
DD
DV
DD
1.5 Ordering Information
DEVICE: TVP5031CPFP PFP: Plastic flat-pack with PowerPAD
PowerPAD is a trademark of Texas Instruments.
1–5
1.6 Terminal Functions
TERMINAL
NAME NO.
I/O
DESCRIPTION
Analog Video
VI_1A VI_1B
5 4
I Analog video inputs. Up to two composite inputs. The inputs must be AC coupled. The recommended coupling
is 0.1 µF
Clock Signals
PCLK 27 O Pixel clock output. The frequency is 12.2727 MHz for square-pixel NTSC, 14.75 MHz for square-pixel P AL,
and 13.5 MHz for ITU-R.BT.601 sampling modes.
PREF 26 I/O Clock phase reference signal. This signal qualifies clock edges when SCLK is used to clock data that is
changing at the pixel clock rate. SCLK 25 O System clock output with twice the frequency of the pixel clock (PCLK). XTAL1
XTAL2
35 36
I External clock reference. The user may connect XTAL1 to a TTL-compatible oscillator or to one terminal of
a crystal oscillator. The user may connect XT AL2 to the other terminal of the crystal oscillator or not connect
XTAL2 at all. One single 14.31818 MHz crystal or oscillator is needed for square pixel sampling and ITU-R
BT .601 sampling.
Digital Video
UV[9:0] 62, 61,
60, 59, 58, 56, 55, 53,
52, 51
I/O 10-bit digital chrominance outputs. These terminals may also be configured to output the data from the
channel 2 A/D converter.
Y[9:0] 50, 49,
48, 46, 45, 43, 42, 41,
40, 39
I/O 10-bit digital luminance outputs, or 10-bit multiplexed luminance and chrominance outputs. These terminals
may also be configured to output the data from the channel 1 A/D converter.
Host Port-Bus
A[1:0] 74, 73 I PHI mode: PHI address port. D[7:0] 72, 71,
70, 69, 67, 66,
64, 63
I/O PHI mode: PHI data port-bit [7:0].
INTREQ 80 I/O PHI mode: Interrupt Request (INTREQ). Pullup is required if configured as open drain.
I2C mode: Interrupt Request (INTREQ). Pullup is required if configured as open drain. VC0 79 I/O PHI mode: PHI port data acknowledgement or ready signal (DTACK)
I2C mode: Serial clock (SCL) pullup is required. VC1 78 I/O PHI mode: PHI port read-write or write (RW/WR)
I2C mode: Serial data (SDA) pullup is required. VC2 77 I/O PHI mode: PHI port data strobe or read signal (DS/RD) VC3 76 I PHI mode: PHI port chip select (VC)
I2C mode: Slave address select (I2CA)
1–6
1.6 Terminal Functions (Continued)
TERMINAL
NAME NO.
I/O
DESCRIPTION
Miscellaneous Signals
RSTOUTB 22 O Reset output, active low RSTINB 23 I Reset input, active low OEB 24 I/O Output enable for Y and UV terminals. Output enable is also controllable via the host port. When this terminal
is a logic 1 forces Y and UV output terminals to high impedance states (active low).
GLCO 31 I/O This serial output carries color PLL information. A slave device can decode the information to allow chroma
frequency control by the TVP5031. Data is transmitted at the SCLK rate. Additionally, this terminal, in conjunction with PALI and FID, is used to determine the host port mode configuration during initial powerup.
GPCL 38 I/O General-purpose control logic. This terminal has three functions:
1) General-purpose output. In this mode the state of GPCL is directly programmed via the host port.
2) Vertical blank output. In this mode the GPCL terminal is used to indicate the vertical blanking interval of the output video. The beginning and end times of this signal are programmable via the host port.
3) Sync lock control input. In this mode when GPCL is high, the output clock frequencies and the sync timing are forced to nominal values.
CLAMP1, CLAMP2
2,
13
O Clamp voltage outputs. Connect a 0.1 µF decoupling capacitor from each terminal to AGND.
NC 10, 11, 14,
15
No connection
BG 1 O Connect a 1.0-µF capacitor from this terminal to AGND.
Power Supplies
AFE_V
DD
18 Analog supply. Connect to 3.3-V analog supply AFE_GND 16 Analog ground AGND 3, 12 Analog grounds AV
DD
6, 9 Analog supply. Connect to 3.3-V analog supply
DGND 37, 47, 57,
68
Digital grounds
PLL_AGND 20 PLL ground. Connect to analog ground PLL_AV
DD
19 PLL supply. Connect to 3.3-V analog supply DV
DD
34, 44, 54,
65, 75
Digital supply. Connect to 3.3-V
NSUB 17 Substrate ground. Connect to analog ground REFP 8 O
A/D reference supply. Connect a 4.7-µF capacitor from each terminal to AGND. Connect a 1.0-µF capacitor
REFM 7 O
across the REFM and REFP terminals.
Sync Signals
AVID 28 I/O Active video indicator. This signal is high during the horizontal active time of the video output on the Y and
UV terminals. AVID continues to toggle during vertical blanking intervals. This terminal may be placed in a high-impedance state. During reset, AVID is an input, used to program the
behavior of Y[9:0], UV[9:0], HSYN, VSYN, A VID and FID immediately after the completion of reset. If A VID is pulled up during reset, Y[9:0], UV[9:0], HSYN, VSYN, AVID, PALI and FID will be actively driving after reset. If AVID is pulled down during reset, Y[9:0], UV[9:0], HSYN, VSYN, AVID, PALI and FID will remain in high-impedance state after reset.
FID 33 I/O Odd/even field indicator or vertical lock indicator. For odd/even indicator, a logic 1 indicates the odd field.
For vertical lock indicator, a logic 1 indicates the internal vertical PLL is in a locked state. Additionally, this terminal in conjunction with GLCO and P ALI is used to determine the host port configuration during initial power up and reset.
1–7
1.6 Terminal Functions (Continued)
TERMINAL
NAME NO.
I/O
DESCRIPTION
Sync Signals (Continued)
PALI 32 I/O PAL line indicator or horizontal lock indicator.
For PAL line indicator, a logic 1 indicates a noninverted line, and a logic 0 indicates an inverted line. For horizontal lock indicator, a logic 1 indicates the internal horizontal PLL is in a locked state.
This terminal is an input terminal during reset and is used in conjunction with GLCO and FID to select the mode of the host interface. During reset, this terminal can be pulled up to set a 1, or pulled down to set a 0.
VSYN 29 O Vertical sync signal
1.7 Strapping Terminals Description
All of the following terminals have reset strapping options. The states of these terminals are sampled during reset to configure TVP5031 for various modes of operation. These terminals are temporarily turned into inputs with weak internal pulldowns (~40 kΩ resistor) during reset and return to their normal operation after reset. Each of the following terminals can be pulled up with a 10-KΩ resistor to set a 1 to the corresponding bit or be left undriven during reset, relying on the internal pulldown resistor to pull the terminal low to set a 0 to the corresponding bit.
TERMINAL
NAME NO.
DESCRIPTION
AVID 28 Y , U/V output enable (bit 4) and HSYN, VSYN, AVID, FID, and PALI output enable (bit 3) of miscellaneous
control ( Register 03) PREF 26 Clock enable bit (bit 0) of miscellaneous control ( Register 03) FID 33 Host interface mode (see Table 2-2). PALI 32 Host interface mode (see Table 2-2). GLCO 31 Host interface mode (see Table 2-2).
1–8
2–1
2 Functional Description
2.1 Analog Video Processing and A/D Converters
Figure 2–1 shows a functional diagram of the analog video preprocessor and A/D converter. This block provides the analog interface to all the video inputs. It accepts up to two inputs and performs source selection, video clamping, video amplification, analog-to-digital conversion, and fine gain and offset adjustments to center the digitized video signal.
M U X
VI_1A
CH1_MUX_CTRL
0.1 µF
VI_1B
0.1 µF
CLAMP
CH1_CLAMP_MODE
BANDGAP
+
+–
AGC
CH1_GAIN_OFFSET
FINE GAIN,
OFFSET ADJUST
ADC
CLK
+
9
BITS
CH1_FINE_ADJUST
9
BITS
CH1_OUT
+
ADC REF
BUFFER
CLAMP
BUFFER
1.0 µF
0.1 µF
0.1 µF
4.7 µF
4.7 µF
1.0 µF
CLAMP1
BG
CLAMP2
REFP
REFM
TVP5031 ANALOG FRONT END
SCLK
Figure 2–1. Analog Video Processors and A/D Converters
2.1.1 Video Input Selection
The TVP5031 has one analog channel that accepts two video inputs ac coupled through 0.1 µF capacitors. The internal video multiplexers can be configured via the host port. The two analog video inputs may be connected as two selectable individual composite video inputs.
2–2
2.1.2 Analog Input Clamping and Automatic Gain Control Circuits
An internal clamping circuit restores the ac coupled video signal to a fixed dc level. The clamping circuit provides line-by-line restoration of the video sync level to a fixed dc reference voltage. Two modes of clamping are provided, coarse and fine. In coarse mode, the most negative portion of the input signal (typically the sync tip) is clamped to a fixed dc level. Fine clamp mode may be enabled to prevent spurious level shifting caused by noise more negative than the sync tip on the input signal. If fine clamp mode is selected, clamping is only enabled during the sync period. S-video requires fine clamp mode on the chroma channel for proper operation. External capacitors of 0.1 µF on terminal CLAMP1 and CLAMP2 are required to store and filter the clamp voltage.
Input video signal amplitude may vary significantly from the nominal level of 1V
pp
. An automatic gain control circuit (AGC) adjusts the signal amplitude to utilize the maximum range of the A/D converter without clipping. The AGC adjusts gain to achieve desired sync amplitude. Some nonstandard video signals contain peak white levels that saturate the A/D converter. In these cases, AGC automatically cuts back gain to avoid clipping.
In the digital data path, scaling is applied to the A/D output data to reach CCIR601 Y, Cr, Cb levels. This scaling introduces distortion if digitized sync tip and back porch levels are not precise. The fine gain and offset adjustment block precisely controls the sync tip and back porch levels to achieve best linearity performance.
2.1.3 A/D Converter
The TVP5031 contains one 9-bit oversampling A/D converter that digitizes the analog video inputs. As the input is digitized at greater than two times the Nyquist sampling rate, only a simple external antialiasing low pass filter is needed to prevent out-of-band frequencies. A/D converter reference voltages on terminals REFP and REFM require an external capacitor network for filtering, as shown in Figure 2–1.
2–3
2.2 Digital Processing
Figure 2–2 is a block diagram of the TVP5031 digital video decoder processing. This block receives digitized composite video signal from the A/D converter and performs Y/C separation, and Y , U/V signal enhancements. It also generates horizontal and vertical syncs. The Y U/V digital output may be programmed into various formats: 20-bit, 16-bit, 10-bit or 8-bit 4:2:2, and 10-bit or 8-bit ITU-R BT .656 parallel interface standard. This block also retrieves VBI data and stores it in a FIFO. The data from the FIFO can be read either through the host port or output as ancillary data on the video port.
OUTPUT
FORMATTER
Y[9:0]
OEB
UV[9:0]
GAIN
CH1 A/D
DECIMATION
FILTER
COMPOSITE
ANALOG
PROCESSOR
CONTROL
CLAMP CTRL
INPUT MUX
FINE CTRL
Y/C SEPARATION
LUMA/CHROMA PROCESSING
VBI DATA
SLICER
AVID
SYNCHRONIZATION
VSYN HSYN
PALI
FID
GLCO
HOST PORT
INTREQ
D[7:0]
VC[3:0]
VBI DATA BYPASS
Y
U/V
XTAL1
CLOCK SIGNAL
GENERATION
XTAL2
SCLK
PREF
PCLK
POWER UP
CONTROL
TVP5031 DIGITAL PROCESSING
RSTINB
RSTOUTB
A[1:0]
Figure 2–2. Digital Video Signal Processing Block Diagram
2–4
2.2.1 Decimation Filter
Digitized composite video at 2x PCLK rate first passes through the decimation filter that reduces the data rate from 2x to 1x PCLK. The decimation filter is a half-band filter whose frequency response is shown in Figure 2–3. For applications that cannot tolerate high frequency rolloff, the decimation filter can be bypassed the host port. 2x oversampling and decimation filtering can effectively increase the overall signal-to-noise ratio by 3 dB. This advantage is lost if decimation filtering is bypassed.
f – Frequency – MHz
–60
–50
–40
–30
–20
–10
0
10
012345678
PAL SQP –3 dB at 6.66 MHz
CCIR 601 –3 dB at 6.10 MHz
NTSC SQP –3 dB at 5.54 MHz
Amplitude – dB
Figure 2–3. Decimation Filter Frequency Response
2–5
2.2.2 Y/C Separation
Figure 2–4 illustrates the luminance/chrominance (Y/C) separation process in the TVP5031. The 9-bit composite video is multiplied by subcarrier signals in the quadrature demodulator to generate color difference signals U and V . U and V are then low-pass filtered to achieve the desired bandwidth. An adaptive 3-line comb filter separates UV from Y based on the unique property of color phase shift from line to line. Chroma is remodulated through a quadrature modulator and subtracted from line-delayed composite video to generate luma. This form of Y/C separation is completely complementary , thus there is no loss of information. However in some applications, it is desirable to limit the U/V bandwidth to avoid crosstalk. In that case, notch filters can be turned on. To accommodate some viewing preferences, a peaking filter is also available in the luma path. Contrast, brightness, hue, and saturation are programmable.
Line
Delay
TVP5031 Y/C SEPARATION
Peaking
Quadrature Modulation
Composite
Quadrature
Demodulation
Subcarrier
Generation
Notch
Filter
Color
LPF
Burst
Accum
3-Line
Adaptive
Comb
Filter
Color
LPF
Burst
Accum
Notch
Filter
Notch
Filter
Notch
Filter
To
Sync Block
Delay
Contrast
Brightness
Saturation
Control
Delay
V
Y
U
UV
Y
Figure 2–4. Y/C Separation Block Diagram
2–6
2.2.2.1 Color Low-Pass Filter
Color low-pass filter frequency responses are shown in Figures 2–5 to 2–8. High filter bandwidth preserves sharp color transitions and produces crisp color boundaries. However for nonstandard video sources that have asymmetrical U and V side bands, it is desirable to limit the filter bandwidth to avoid UV crosstalk. Color low-pass filter bandwidth is programmable by enabling one of the three notch filters.
f – Frequency – MHz
–70
–60
–50
–40
–30
–20
–10
0
10
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
PAL SQP –3 dB
@ 1.33 MHz
NTSC SQP –3 dB
@ 1.11 MHz
CCIR 601 –3 dB
@ 1.22 MHz
Amplitude – dB
Figure 2–5. Color Low-Pass Filter Frequency
Response
f – Frequency – MHz
–70
–60
–50
–40
–30
–20
–10
0
10
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Amplitude – dB
No Notch Filter
–3 dB @ 1.11 MHz
Notch1 Filter –3
dB @ 798 kHz
Notch3 Filter –3
dB @ 454 kHz
Notch2 Filter –3
dB @ 664 kHz
Figure 2–6. Color Low-Pass Filter With Notch
Filter Frequency Response
(NTSC and PAL-M Square Pixel Sampling)
f – Frequency – MHz
–70
–60
–50
–40
–30
–20
–10
0
10
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Amplitude – dB
No Notch Filter
–3 dB @ 1.22 MHz
Notch3 Filter –3
dB @ 499 kHz
Notch2 Filter –3
dB @ 730 kHz
Notch1 Filter –3
dB @ 878 kHz
Figure 2–7. Color Low-Pass Filter With Notch
Filter Characteristics (13.5 MHz Sampling)
f – Frequency – MHz
–70
–60
–50
–40
–30
–20
–10
0
10
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Amplitude – dB
No Notch Filter
–3 dB @ 1.33 MHz
Notch3 Filter –3
dB @ 545 kHz
Notch2 Filter –3
dB @ 798 kHz
Notch1
Filter –3 dB
@ 959 kHz
Figure 2–8. Color Low-Pass Filter With Notch Filter Frequency Response (PAL
Square Pixel Sampling)
2–7
2.2.2.2 Adaptive Comb Filter
Y/C separation may be done using adaptive 3-line (2-H delay), fixed 3-line, fixed 2-line comb filters, or a chroma trap filter as shown in Figure 2–9. Adaptive comb filtering is available for both luminance and chrominance. The adaptive comb filter algorithm computes the vertical and horizontal contours of color based on a block of 3×3 pixels. If there is a sharp color transition, comb filtering is applied to the two lines that have less color changes. If there is no color transition, 3-line comb filtering is used with a choice of filter coefficients [1/4, 1/2, 1/4] or [1/2, 0, 1/2] programmable via the host port. Characteristics of 2-line and 3-line comb filters are shown in Figure 2–10. The filter frequency plots show that both 2-line and 3-line (with filter coefficients [1/4,1/2,1/4]) comb filters have zeros at 1/2 of the horizontal line frequency to separate the interleaved Y/C spectrum in NTSC. The 3-line comb filter has less cross-luma and cross-chroma noise due to slightly sharper filter cut off. The 3-line comb filter with filter coefficients[1/2, 0, 1/2] has two zeros at 1/4 and 3/4 of the horizontal line frequency . This should be used for P AL only because of its 90 degrees U/V phase shifting from line to line. The comb filter can be selectively bypassed in the luma or chroma path. If the comb filter is bypassed in the luma path, then chroma trap filters are used which are shown in Figures 2–1 1 to 2–13. TI’s patented adaptive comb filter algorithm reduces artifacts such as hanging dots at color boundary and detects and properly handles false colors in high frequency luminance images such as a multiburst pattern or circle pattern. Adaptive comb filtering is the recommended mode of operation.
Line
Delay
ADAPTIVE COMB FIL TER
IN
Luma Comb
Adaptive Comb Filter Algorithm
>> 1
+
>> 1
>> 1
+
Line
Delay
>> 1 >> 1
++
Comb12
Comb123
Comb23
Comb13
Comb Bypass
Chroma
Comb
Filter Select
Comb_EN
Adap_EN
Figure 2–9. 3-Line Adaptive Comb Filtering
2–8
Figure 2–10. Comb Filters Frequency Response
f – Frequency – MHz
–40
–35
–30
–25
–20
–15
–10
–5
0
5
10
01234567
No Notch Filter
Notch3 Filter
Notch1 Filter
Notch2 Filter
Figure 2–11. Chroma Trap Filter
Frequency Response
Amplitude – dB
f – Frequency – MHz
–60
–50
–40
–30
–20
–10
0
10
012345678
A
mp
li
tu
d
e –
dB
0.5, 0, 0.5
0.5, 0.5, 0
0.25, 0.5, 0.25
f – Frequency – MHz
–40
–35
–30
–25
–20
–15
–10
–5
0
5
10
01234567
No Notch Filter
Notch3 Filter
Notch1 Filter
Notch2 Filter
Figure 2–12. Chroma Trap Filter Frequency
Response (13.5 MHz Sampling)
f – Frequency – MHz
–40
–35
–30
–25
–20
–15
–10
–5
0
5
10
01234567
No Notch Filter
Notch1 Filter
Notch2 Filter
Notch3 Filter
Amplitude – dB
Figure 2–13. Chroma Trap Filter Frequency
Response (PAL Square Pixel Sampling)
Amplitude – dB
2.2.3 Luminance Processing
The digitized composite video signal passes through either a luminance comb filter or a chroma trap filter, either of which removes chrominance information from the composite signal to generate a luminance signal. The luminance signal is then fed to the input of a peaking circuit. Figure 2–14 illustrates the basic functions of the luminance data path. High frequency components of the luminance signal are enhanced by a peaking filter (edge-enhancer). Figure 2–15, Figure 2–16, and Figure 2–17 show the characteristics of the peaking filter at four different gain settings programmable via the host port.
2–9
BANDPASS
Filter
x
Gain
Peaking
Filter
IN
+
OUT
Delay
Figure 2–14. Luminance Edge-Enhancer Peaking Block Diagram
f – Frequency – MHz
–1
0
1
2
3
4
5
6
7
01234567
Gain = 0
Gain = 2
Gain = 1
Gain = 0.5
F = 2.40 MHz
Amplitude – dB
Figure 2–15. Peaking Filter Response, NTSC
and PAL-M Square Pixel Sampling
Figure 2–16. Peaking Filter Response,
13.5 MHz Sampling Rate
f – Frequency – MHz
–1
0
1
2
3
4
5
6
7
01234567
Gain = 0
Gain = 2
Gain = 1
Gain = 0.5
F = 2.64 MHz
Amplitude – dB
f – Frequency – MHz
–1
0
1
2
3
4
5
6
7
01234567
Gain = 0
Gain = 2
F = 2.89 MHz
Gain = 0.5
Gain = 1
Amplitude – dB
Figure 2–17. Peaking Filter Response, PAL Square Pixel
2–10
2.2.4 Chrominance Processing
A quadrature demodulator extracts U and V components from the composite signal. The U/V signals then pass through the gain control stage for chroma saturation adjustment. A comb filter is applied to both U and V to eliminate cross-chrominance noise. Hue control is achieved with phase shift of the digitally controlled oscillator. An automatic color killer (ACK) circuit is also included in this block. The ACK will suppress the chroma processing when the color burst of the video signal is weak or not present.
2.2.5 Clock Circuits
An internal line-locked PLL generates the system and pixel clocks. Figure 2–18 shows a simplified clock circuit diagram. The digital control oscillator (DCO) generates the reference signal for the horizontal PLL. A 14.318 MHz clock is required to drive the DCO. This may be input to the TVP5031 at TTL level on the XT AL1 terminal, or a crystal of 14.318 MHz fundamental resonant frequency may be connected across terminals XT AL1 and XTAL2. Figure 2–19 shows the reference clock configurations. For the example crystal circuit shown in Figure 2–19 (a parallel-resonant crystal with 14.31818 MHz fundamental frequency), the external capacitors should have the following relationship:
CL1 = CL2 = 2CL – C
stray
Where C
stray
is the terminal capacitance with respect to ground.
Lowpass Filter
Sync Detector
Digitized
Video
XTAL1
Phase
Detector
Loop Filter
Digital
Control
Oscillator
XTAL2
Crystal
Clock
Generator
Clock
Generation
Circuit
Line-Locked
Clock
PLL
SCLK PCLK
Figure 2–18. Clock Circuit Diagram
TVP5031
35
XTAL1
14.31818 MHz Crystal
36
XTAL2
TVP5031
35
XTAL1
36
XTAL2
C
L1
C
L2
14.31818 MHz TTL Clock
Figure 2–19. Example Reference Clock Configurations
The TVP5031 generates three signals PCLK, SCLK, and PREF used for clocking data. PCLK, the pixel clock, can be used for clocking data in the 20-bit and 16-bit 4:2:2 output formats. SCLK is twice the PCLK frequency and may be used for clocking data in the 10-bit and 8-bit 4:2:2 as well as in ITU-R BT.656 formats. PREF is used as a clock qualifier with SCLK to clock data in the 20-bit and 16-bit 4:2:2 formats.
Loading...
+ 59 hidden pages