TEXAS INSTRUMENTS TMS320VC5407, TMS320VC5404 Technical data

现货库存、技术资料、百科信息、热点资讯,精彩尽在鼎好!
TMS320VC5407/TMS320VC5404
Fixed-Point Digital Signal
Processors
Data Manual
Literature Number: SPRS007D
November 2001 Revised April 2004
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty . Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security
Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless
Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright 2004, Texas Instruments Incorporated
Revision History
REVISION HISTORY
This data sheet revision history highlights the technical changes made to the SPRS007C device-specific data sheet to make it an SPRS007D revision.
Scope: This document has been reviewed for technical accuracy; the technical content is up-to-date as of the specified release date with the following changes.
PAGE(S)
NO.
21 Added “This pin must be tied directly to DVDD to enable HPI.” to the HPIENA description and “This pin must be tied directly to
38 Added the following to Section 3.9: “Since the Timer1 output is multiplexed externally with the HINT output, the HPI must be
42 Changed the parenthetical statement “(such as the McBSPs)” in Section 3.12. to read “(such as the McBSPs, but not the
48 Added the following footnote to Table 312: “Note that the UART DMA synchronization event is usable as a synchronization
59 Changed Figure 323, bit 15 from “Reserved” to “TOUT1”.
60 Added the following paragraph to Section 3.14.2: “Bit 15 of the GPIOCR is also used as the Timer1 output enable bit, TOUT1.
71 Changed the I
DV
to enable HPI16 mode.” to the HPI16 description in Table 22. Also deleted “Internally pulled low.” from the HPI16
DD
description.
disabled (HPIENA input pin = 0) if the Timer1 output is to be used. The Timer1 output also has a dedicated enable bit in the General Purpose I/O Control Register (GPIOCR) located at data memory address 003Ch. If the external Timer1 output is to be used, in addition to disabling the HPI, the TOUT1 bit in the GPIOCR must also be set to 1.”
UART)”
event only, and is not usable for transferring data to or from the UART. The DMA cannot be used to transfer data to or from the UART.”
The TOUT1 bit enables or disables the Timer1 output on the HINT available externally; if TOUT1 = 1, the Timer1 output is driven on the HINT only available when the HPI is disabled (HPIENA input pin = 0).”
parameter from “60” to “42” in the Electrical Characteristics Over Recommended Operating Case
Temperature Range table.
DDC
ADDITIONS/CHANGES/DELETIONS
/TOUT1 pin. If TOUT1 = 0, the Timer1 output is not
/TOUT1 pin. Note also that the Timer1 output is
November 2001 − Revised April 2004 SPRS007D
3
Revision History
4
November 2001 − Revised April 2004SPRS007D
Contents
Contents
Section Page
1 TMS320VC5407/TMS320VC5404 Features 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Introduction 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Description 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Pin Assignments 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1 Terminal Assignments for the GGU Package 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.2 Pin Assignments for the PGE Package 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Signal Descriptions 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Functional Overview 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Memory 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.1 Data Memory 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.2 Program Memory 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.3 Extended Program Memory 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 On-Chip ROM With Bootloader 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 On-Chip RAM 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 On-Chip Memory Security 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5 Memory Maps 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.1 5407 Memory Map 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.2 5404 Memory Map 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.3 Relocatable Interrupt Vector Table 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6 On-Chip Peripherals 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.1 Software-Programmable Wait-State Generator 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.2 Programmable Bank-Switching 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.3 Bus Holders 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7 Parallel I/O Ports 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.1 Enhanced 8-/16-Bit Host-Port Interface (HPI8/16) 33. . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.2 HPI Nonmultiplexed Mode 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8 Multichannel Buffered Serial Ports (McBSPs) 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.9 Hardware Timers 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.10 Clock Generator 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.11 Enhanced External Parallel Interface (XIO2) 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.12 DMA Controller 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.12.1 Features 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.12.2 DMA External Access 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.12.3 DMA Memory Map 44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.12.4 DMA Priority Level 46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.12.5 DMA Source/Destination Address Modification 46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.12.6 DMA in Autoinitialization Mode 46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.12.7 DMA Transfer Counting 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.12.8 DMA Transfer in Doubleword Mode 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.12.9 DMA Channel Index Registers 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.12.10 DMA Interrupts 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.12.11 DMA Controller Synchronization Events 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
November 2001 Revised April 2004 SPRS007D
5
Contents
Section Page
3.13 Universal Asynchronous Receiver/Transmitter (UART) 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.13.1 UART Accessible Registers 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.13.2 FIFO Control Register (FCR) 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.13.3 FIFO Interrupt Mode Operation 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.13.4 FIFO Polled Mode Operation 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.13.5 Interrupt Enable Register (IER) 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.13.6 Interrupt Identification Register (IIR) 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.13.7 Line Control Register (LCR) 55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.13.8 Line Status Register (LSR) 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.13.9 Modem Control Register (MCR) 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.13.10 Programmable Baud Generator 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.14 General-Purpose I/O Pins 59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.14.1 McBSP Pins as General-Purpose I/O 59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.14.2 HPI Data Pins as General-Purpose I/O 59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.15 Device ID Register 60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.16 Memory-Mapped Registers 61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.17 McBSP Control Registers and Subaddresses 63. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.18 DMA Subbank Addressed Registers 64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.19 Interrupts 66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.19.1 IFR and IMR Registers 67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Documentation Support 68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 Device and Development-Support Tool Nomenclature 69. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Electrical Specifications 70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1 Absolute Maximum Ratings 70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 Recommended Operating Conditions 70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3 Electrical Characteristics Over Recommended Operating Case Temperature
Range (Unless Otherwise Noted) 71. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4 Package Thermal Resistance Characteristics 72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5 Timing Parameter Symbology 72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6 Internal Oscillator With External Crystal 72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7 Clock Options 73. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7.1 Divide-By-Two and Divide-By-Four Clock Options 73. . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7.2 Multiply-By-N Clock Option (PLL Enabled) 75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.8 Memory and Parallel I/O Interface Timing 76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.8.1 Memory Read 76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.8.2 Memory Write 79. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.8.3 I/O Read 81. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.8.4 I/O Write 83. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.9 Ready Timing for Externally Generated Wait States 84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.10 HOLD
and HOLDA Timings 87. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.11 Reset, BIO, Interrupt, and MP/MC Timings 88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.12 Instruction Acquisition (IAQ) and Interrupt Acknowledge (IACK) Timings 90. . . . . . . . . . . . . . . . .
5.13 External Flag (XF) and TOUT Timings 91. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
November 2001 Revised April 2004SPRS007D
Contents
Section Page
5.14 Multichannel Buffered Serial Port (McBSP) Timing 92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.14.1 McBSP Transmit and Receive Timings 92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.14.2 McBSP General-Purpose I/O Timing 95. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.14.3 McBSP as SPI Master or Slave Timing 96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.15 Host-Port Interface Timing 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.15.1 HPI8 Mode 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.15.2 HPI16 Mode 104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.16 UART Timing 107. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 Mechanical Data 108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1 Ball Grid Array Mechanical Data 108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 Low-Profile Quad Flatpack Mechanical Data 109. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
November 2001 Revised April 2004 SPRS007D
7
Figures
List of Figures
Figure Page
21 144-Ball GGU MicroStar BGA (Bottom View) 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22 144-Pin PGE Low-Profile Quad Flatpack (Top View) 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31 TMS320VC5407/TMS320VC5404 Functional Block Diagram 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32 5407 Program and Data Memory Map 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33 5407 Extended Program Memory Map 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34 5404 Program and Data Memory Map 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35 5404 Extended Program Memory Map 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
36 Processor Mode Status (PMST) Register 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
37 Software Wait-State Register (SWWSR) [Memory-Mapped Register (MMR) Address 0028h] 30. . .
38 Software Wait-State Control Register (SWCR) [MMR Address 002Bh] 31. . . . . . . . . . . . . . . . . . . . . . .
39 Bank-Switching Control Register (BSCR) [MMR Address 0029h] 32. . . . . . . . . . . . . . . . . . . . . . . . . . . .
310 Host-Port Interface — Nonmultiplexed Mode 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
311 HPI Memory Map 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
312 Multichannel Control Register (MCR1) 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
313 Multichannel Control Register (MCR2) 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
314 Pin Control Register (PCR) 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
315 Nonconsecutive Memory Read and I/O Read Bus Sequence 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
316 Consecutive Memory Read Bus Sequence (n = 3 reads) 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
317 Memory Write and I/O Write Bus Sequence 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
318 DMA Transfer Mode Control Register (DMMCRn) 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
319 On-Chip DMA Memory Map for Program Space (DLAXS = 0 and SLAXS = 0) 45. . . . . . . . . . . . . . . .
320 On-Chip DMA Memory Map for Data and IO Space (DLAXS = 0 and SLAXS = 0) 46. . . . . . . . . . . . .
321 DMPREC Register 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
322 UART Functional Block Diagram 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
323 General-Purpose I/O Control Register (GPIOCR) [MMR Address 003Ch] 59. . . . . . . . . . . . . . . . . . . .
324 General-Purpose I/O Status Register (GPIOSR) [MMR Address 003Dh] 60. . . . . . . . . . . . . . . . . . . . .
325 Device ID Register (CSIDR) [MMR Address 003Eh] 60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
326 IFR and IMR 67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
51 3.3-V Test Load Circuit 71. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
52 Internal Divide-by-Two Clock Option With External Crystal 73. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
53 External Divide-by-Two Clock Timing 74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
54 Multiply-by-One Clock Timing 75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
55 Nonconsecutive Mode Memory Reads 77. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
56 Consecutive Mode Memory Reads 78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
57 Memory Write (MSTRB = 0) 80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
58 Parallel I/O Port Read (IOSTRB = 0) 82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
59 Parallel I/O Port Write (IOSTRB = 0) 83. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
November 2001 Revised April 2004SPRS007D
Figures
Figure Page
510 Memory Read With Externally Generated Wait States 85. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
511 Memory Write With Externally Generated Wait States 85. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
512 I/O Read With Externally Generated Wait States 86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
513 I/O Write With Externally Generated Wait States 86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
514 HOLD
and HOLDA Timings (HM = 1) 87. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
515 Reset and BIO Timings 88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
516 Interrupt Timing 89. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
517 MP/MC Timing 89. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
518 Instruction Acquisition (IAQ) and Interrupt Acknowledge (IACK) Timings 90. . . . . . . . . . . . . . . . . . . . .
519 External Flag (XF) Timing 91. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
520 TOUT Timing 91. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
521 McBSP Receive Timings 93. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
522 McBSP Transmit Timings 94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
523 McBSP General-Purpose I/O Timings 95. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
524 McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 96. . . . . . . . . . . . . . . . . . . . . . . .
525 McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 97. . . . . . . . . . . . . . . . . . . . . . . .
526 McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 98. . . . . . . . . . . . . . . . . . . . . . . .
527 McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 99. . . . . . . . . . . . . . . . . . . . . . . .
528 Using HDS to Control Accesses (HCS Always Low) 102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
529 Using HCS to Control Accesses 103. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
530 HINT Timing 103. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
531 GPIOx Timings 103. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
532 Nonmultiplexed Read Timings 105. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
533 Nonmultiplexed Write Timings 106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
534 HRDY Relative to CLKOUT 106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
535 UART Timings 107. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61 TMS320VC5407/TMS320VC5404 144-Ball MicroStar BGA Plastic Ball Grid Array Package 108. . . .
62 TMS320VC5407/TMS320VC5404 144-Pin Low-Profile Quad Flatpack (PGE) 109. . . . . . . . . . . . . . . .
November 2001 Revised April 2004 SPRS007D
9
Tables
List of Tables
Table Page
21 Terminal Assignments for the 144-Pin BGA Package 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22 Signal Descriptions 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31 Standard On-Chip ROM Layout 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32 Processor Mode Status (PMST) Register Bit Fields 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33 Software Wait-State Register (SWWSR) Bit Fields 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34 Software Wait-State Control Register (SWCR) Bit Fields 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35 Bank-Switching Control Register (BSCR) Fields 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
36 Bus Holder Control Bits 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
37 Sample Rate Input Clock Selection 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
38 Clock Mode Settings at Reset 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
39 DMD Section of the DMMCRn Register 44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
310 DMA Reload Register Selection 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
311 DMA Interrupts 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
312 DMA Synchronization Events 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
313 DMA/CPU Channel Interrupt Selection 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
314 UART Reset Functions 51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
315 Summary of Accessible Registers 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
316 Receiver FIFO Trigger Level 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
317 Interrupt Control Functions 55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
318 Serial Character Word Length 55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
319 Number of Stop Bits Generated 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
320 Baud Rates Using a 1.8432-MHz Clock 58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
321 Baud Rates Using a 3.072-MHz Clock 58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
322 Device ID Register (CSIDR) Bit Functions 60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
323 CPU Memory-Mapped Registers 61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
324 Peripheral Memory-Mapped Registers for Each DSP Subsystem 62. . . . . . . . . . . . . . . . . . . . . . . . . .
325 McBSP Control Registers and Subaddresses 63. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
326 DMA Subbank Addressed Registers 64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
327 Interrupt Locations and Priorities 66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
51 Thermal Resistance Characteristics 72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
52 Input Clock Frequency Characteristics 72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
53 Clock Mode Pin Settings for the Divide-By-2 and By Divide-by-4 Clock Options 73. . . . . . . . . . . . . .
54 Divide-By-2 and Divide-by-4 Clock Options Timing Requirements 74. . . . . . . . . . . . . . . . . . . . . . . . . .
55 Divide-By-2 and Divide-by-4 Clock Options Switching Characteristics 74. . . . . . . . . . . . . . . . . . . . . . .
56 Multiply-By-N Clock Option Timing Requirements 75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
57 Multiply-By-N Clock Option Switching Characteristics 75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
58 Memory Read Timing Requirements 76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
59 Memory Read Switching Characteristics 76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
510 Memory Write Switching Characteristics 79. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
511 I/O Read Timing Requirements 81. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
512 I/O Read Switching Characteristics 81. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
513 I/O Write Switching Characteristics 83. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10
November 2001 Revised April 2004SPRS007D
Tables
Table Page
514 Ready Timing Requirements for Externally Generated Wait States 84. . . . . . . . . . . . . . . . . . . . . . . . .
515 Ready Switching Characteristics for Externally Generated Wait States 84. . . . . . . . . . . . . . . . . . . . . .
516 HOLD
and HOLDA Timing Requirements 87. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
517 HOLD and HOLDA Switching Characteristics 87. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
518 Reset, BIO, Interrupt, and MP/MC Timing Requirements 88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
519 Instruction Acquisition (IAQ) and Interrupt Acknowledge (IACK) Switching Characteristics 90. . . . .
520 External Flag (XF) and TOUT Switching Characteristics 91. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
521 McBSP Transmit and Receive Timing Requirements 92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
522 McBSP Transmit and Receive Switching Characteristics 93. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
523 McBSP General-Purpose I/O Timing Requirements 95. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
524 McBSP General-Purpose I/O Switching Characteristics 95. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
525 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0) 96. . . . . . . . . .
526 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0) 96. . . . . .
527 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0) 97. . . . . . . . . .
528 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0) 97. . . . . . .
529 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1) 98. . . . . . . . . .
530 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1) 98. . . . . .
531 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1) 99. . . . . . . . . .
532 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1) 99. . . . . . .
533 HPI8 Mode Timing Requirements 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
534 HPI8 Mode Switching Characteristics 101. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
535 HPI16 Mode Timing Requirements 104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
536 HPI16 Mode Switching Characteristics 105. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
537 UART Timing Requirements 107. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
538 UART Switching Characteristics 107. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
November 2001 Revised April 2004 SPRS007D
11
Tables
12
November 2001 Revised April 2004SPRS007D
1 TMS320VC5407/TMS320VC5404 Features
Features
D Advanced Multibus Architecture With Three
Separate 16-Bit Data Memory Buses and One Program Memory Bus
D 40-Bit Arithmetic Logic Unit (ALU)
Including a 40-Bit Barrel Shifter and Two Independent 40-Bit Accumulators
D 17- × 17-Bit Parallel Multiplier Coupled to a
40-Bit Dedicated Adder for Non-Pipelined Single-Cycle Multiply/Accumulate (MAC) Operation
D Compare, Select, and Store Unit (CSSU) for
the Add/Compare Selection of the Viterbi Operator
D Exponent Encoder to Compute an
Exponent Value of a 40-Bit Accumulator Value in a Single Cycle
D Two Address Generators With Eight
Auxiliary Registers and Two Auxiliary Register Arithmetic Units (ARAUs)
D Data Bus With a Bus Holder Feature D Extended Addressing Mode for 8M × 16-Bit
Maximum Addressable External Program Space
D On-Chip ROM
128K × 16-Bit (5407) Configured for Program Memory
64K × 16-Bit (5404) Configured for Program Memory
D On-Chip RAM
40K x 16-Bit (5407) Composed of Five Blocks of 8K × 16-Bit On-Chip Dual-Access Program/Data RAM
16K x 16-Bit (5404) Composed of Two Blocks of 8K × 16-Bit On-Chip Dual-Access Program/Data RAM
D Enhanced External Parallel Interface (XIO2) D Single-Instruction-Repeat and
Block-Repeat Operations for Program Code
D Block-Memory-Move Instructions for Better
Program and Data Management
D Instructions With a 32-Bit Long Word
Operand
D Instructions With Two- or Three-Operand
Reads
D Arithmetic Instructions With Parallel Store
and Parallel Load
D Conditional Store Instructions D Fast Return From Interrupt D On-Chip Peripherals
Software-Programmable Wait-State Generator and Programmable Bank-Switching
On-Chip Programmable Phase-Locked Loop (PLL) Clock Generator With External Clock Source
Two 16-Bit Timers
Six-Channel Direct Memory Access
(DMA) Controller
Three Multichannel Buffered Serial Ports (McBSPs)
8/16-Bit Enhanced Parallel Host-Port Interface (HPI8/16)
Universal Asynchronous Receiver/ Transmitter (UART) With Integrated Baud Rate Generator
D Power Consumption Control With IDLE1,
IDLE2, and IDLE3 Instructions With Power-Down Modes
D CLKOUT Off Control to Disable CLKOUT D On-Chip Scan-Based Emulation Logic,
IEEE Std 1149.1 Logic
(JTAG) Boundary Scan
D 144-Pin Ball Grid Array (BGA)
(GGU Suffix)
D 144-Pin Low-Profile Quad Flatpack (LQFP)
(PGE Suffix)
D 8.33-ns Single-Cycle Fixed-Point
Instruction Execution Time (120 MIPS)
D 3.3-V I/O Supply Voltage D 1.5-V Core Supply Voltage
IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.
All trademarks are the property of their respective owners.
November 2001 − Revised April 2004 SPRS007D
13
Introduction
2 Introduction
This data manual discusses features and specifications of the TMS320VC5407 and TMS320VC5404 (hereafter referred to as the 5407/5404 unless otherwise specified) digital signal processors (DSPs). The 5407 and 5404 are essentially the same device except for differences in their memory maps.
This section lists the pin assignments and describes the function of each pin. This data manual also provides a detailed description section, electrical specifications, parameter measurement information, and mechanical data about the available packaging.
NOTE: This data manual is designed to be used in conjunction with the TMS320C54x DSP Functional Overview (literature number SPRU307).
2.1 Description
The 5407/5404 are based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. These processors provide an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of these DSPs is a highly specialized instruction set.
Separate program and data spaces allow simultaneous access to program instructions and data, providing a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle. These DSPs also include the control mechanisms to manage interrupts, repeated operations, and function calls.
2.2 Pin Assignments
Figure 21 illustrates the ball locations for the 144-pin ball grid array (BGA) package and is used in conjunction with Table 21 to locate signal names and ball grid numbers. Figure 2−2 provides the pin assignments for the 144-pin low-profile quad flatpack (LQFP) package.
TMS320C54x is a trademark of Texas Instruments.
14
November 2001 Revised April 2004SPRS007D
2.2.1 Terminal Assignments for the GGU Package
Figure 21. 144-Ball GGU MicroStar BGA (Bottom View)
Introduction
12
3456781012 1113 9
A
B
C
D
E
F
G
H
J
K
L
M
N
Table 21 lists each signal name and BGA ball number for the 144-pin TMS320VC5407/ TMS320VC5404GGU package. Table 2−2 lists each terminal name, terminal function, and operating modes for the TMS320VC5407/TMS320VC5404.
MicroStar BGA is a trademark of Texas Instruments.
November 2001 Revised April 2004 SPRS007D
15
Introduction
SIGNAL
QUADRANT 4
SIGNAL
QUADRANT 1
V
SS
Table 21. Terminal Assignments for the 144-Pin BGA Package
SIGNAL
BGA BALL #
QUADRANT 2
BGA BALL #
A1 BCLKRX2 N13 V
SIGNAL
QUADRANT 3
SS
BGA BALL #
N1 A19 A13
A22 B1 BDX2 M13 TX N2 A20 A12
V
DV
SS
DD
C2 DV
C1 V
SS
DD
L12 HCNTL0 M3 V
L13 V
SS
N3 DV
SS
DD
A10 D4 CLKMD1 K10 BCLKR0 K4 D6 D10
HD7 D3 CLKMD2 K11 BCLKR1 L4 D7 C10
A11 D2 CLKMD3 K12 BFSR0 M4 D8 B10
A12 D1 HPI16 K13 BFSR1 N4 D9 A10
A13 E4 HD2 J10 BDR0 K5 D10 D9
A14 E3 TOUT J11 HCNTL1 L5 D11 C9
A15 E2 EMU0 J12 BDR1 M5 D12 B9
CV
DD
E1 EMU1/OFF J13 BCLKX0 N5 HD4 A9
HAS F4 TDO H10 BCLKX1 K6 D13 D8
V
SS
V
SS
CV
DD
HCS G2 TMS G12 BFSX0 M7 CV
HR/W G1 V
READY G3 CV
PS G4 HPIENA G10 DV
DS H1 V
IS H2 CLKOUT F12 HD0 M8 DV
F3 TDI H11 V
SS
L6 D14 C8
F2 TRST H12 HINT/TOUT1 M6 D15 B8
F1 TCK H13 CVDD N6 HD5 A8
DD
SS
DD
SS
G13 BFSX1 N7 V
SS
G11 HRDY L7 HDS1 C7
K7 V
SS
N8 HDS2 A6
DD
F13 V
DD
SS
R/W H3 HD3 F11 BDX0 L8 A0 C6
MSTRB H4 X1 F10 BDX1 K8 A1 D6
IOSTRB J1 X2/CLKIN E13 IACK N9 A2 A5
MSC J2 RS E12 HBIL M9 A3 B5
XF J3 D0 E11 NMI L9 HD6 C5
HOLDA J4 D1 E10 INT0 K9 A4 D5
IAQ K1 D2 D13 INT1 N10 A5 A4
HOLD K2 D3 D12 INT2 M10 A6 B4
BIO K3 D4 D11 INT3 L10 A7 C4
MP/MC L1 D5 C13 CV
DV
DD
V
SS
L2 A16 C12 HD1 M11 A9 B3
L3 V
SS
C11 V
DD
SS
N11 A8 A3
L11 CV
DD
BDR2 M1 A17 B13 RX N12 A21 A2
BFSRX2 M2 A18 B12 V
SS
M12 V
SS
BGA BALL #
B11
A11
B7
A7
D7
B6
C3
B2
DVDD is the power supply for the I/O pins while CVDD is the power supply for the core CPU. VSS is the ground for both the I/O pins and the core CPU.
16
November 2001 Revised April 2004SPRS007D
2.2.2 Pin Assignments for the PGE Package
The TMS320VC5407/TMS320VC5404PGE 144-pin low-profile quad flatpack (LQFP) pin assignments are shown in Figure 2−2.
Introduction
V A22 V
DV
DD
A10
HD7
A11 A12 A13 A14 A15
CV
DD
HAS
V V
CV
DD
HCS
HR/W
READY
PS DS
R/W
MSTRB
IOSTRB
MSC
XF
HOLDA
IAQ
HOLD
BIO
MP/MC
DV
DD
V
BDR2
BFSRX2
DD
SS
A9
A21
V
144CV143
142
141A8140A7139A6138A5137A4136
1
SS
2
3
SS
4
5
6
7
8
9
10
11
12
13
14
SS
15
SS
16
17
18
19
20
21
22
IS
23
24
25
26
27
28
29
30
31
32
33
34
SS
35
36
373839404142434445464748495051525354555657585960616263646566676869
HD6
135A3134A2133A1132A0131DV130
DD
HDS2SSV
129
128
SS
V
HDS1
127
126
DD
CV
125
HD5
124
D15
123
D14
122
D13
121
HD4
120
D12
119
D11
118
D10
117D9116D8115D7114D6113
DD
DV
112
SS
V
A20
111
110
707172
A19
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
A18 A17 V
SS
A16 D5 D4 D3 D2 D1 D0 RS X2/CLKIN X1 HD3 CLKOUT V
SS
HPIENA CV
DD
V
SS
TMS TCK TRST TDI TDO EMU1/OFF EMU0 TOUT HD2 HPI16 CLKMD3 CLKMD2 CLKMD1 V
SS
DV
DD
BDX2 BCLKRX2
V
SS
TX
V
HCNTL0SSBCLKR0
BFSR0
BCLKR1
BDR0
BFSR1
BDR1
BCLKX0
HCNTL1
SS
V
BCLKX1
DD
CV
BFSX0
BFSX1
DD
HRDY
DV
SS
HD0
V
BDX0
IACK
BDX1
HBIL
NMI
INT0
INT1
INT2
INT3
DD
CV
HD1
SS
SS
RX
V
V
HINT/TOUT1
NOTE A: DVDD is the power supply for the I/O pins while CVDD is the power supply for the core CPU. VSS is the ground for both the I/O pins and
the core CPU.
Figure 22. 144-Pin PGE Low-Profile Quad Flatpack (Top View)
November 2001 − Revised April 2004 SPRS007D
17
Introduction
2.3 Signal Descriptions
Table 22 lists each signal, function, and operating mode(s) grouped by function. See Section 2.2 for exact pin locations based on package type.
Table 22. Signal Descriptions
TERMINAL
NAME
A22 (MSB) A21 A20 A19 A18 A17 A16
A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 (LSB)
D15 (MSB) D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 (LSB)
IACK O/Z Interrupt acknowledge signal. IACK Indicates receipt of an interrupt and that the program counter is fetching
INT0 INT1 INT2 INT3
NMI I Nonmaskable interrupt. NMI is an external interrupt that cannot be masked by way of the INTM or the IMR.
I = Input, O = Output, Z = High-impedance, S = Supply
I/O
EXTERNAL MEMORY INTERFACE PINS
O/Z Parallel address bus A22 (MSB) through A0 (LSB). The lower sixteen address pins—A0 to A15—are
I/O/Z D15 (MSB)
multiplexed to address all external memory (program, data) or I/O, while the upper seven address pins—A22 to A16—are only used to address external program space. These pins are placed in the high-impedance state when the hold mode is enabled, or when OFF
A15 (MSB) A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 (LSB)
D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 (LSB)
the interrupt vector location designated by A15–0. IACK is low.
I External user interrupt inputs. INT03 are prioritized and maskable via the interrupt mask register and
interrupt mode bit. The status of these pins can be polled by way of the interrupt flag register.
When NMI
I These pins can be used to address internal memory via the HPI when the HPI16 pin
is high.
I/O Parallel data bus D15 (MSB) through D0 (LSB). The sixteen data pins, D0 to D15,
are multiplexed to transfer data between the core CPU and external data/program memory, I/O devices, or HPI in 16-bit mode. The data bus is placed in the high-impedance state when not outputting or when RS data bus also goes into the high-impedance state when OFF
The data bus includes bus holders to reduce the static power dissipation caused by floating, unused pins. The bus holders also eliminate the need for external bias resistors on unused pins. When the data bus is not being driven by the DSP, the bus holders keep the pins at the logic level that was most recently driven. The data bus holders of the DSP are disabled at reset, and can be enabled/disabled via the BH bit of the BSCR.
INITIALIZATION, INTERRUPT, AND RESET PINS
is activated, the processor traps to the appropriate vector location.
DESCRIPTION
is low.
or HOLD is asserted. The
is low.
also goes into the high-impedance state when OFF
18
November 2001 − Revised April 2004SPRS007D
Introduction
Table 22. Signal Descriptions (Continued)
TERMINAL
NAME
RS I Reset input. RS causes the DSP to terminate execution and causes a re-initialization of the CPU and
MP/MC I Microprocessor/microcomputer mode select pin. If active low at reset, microcomputer mode is selected, and
BIO I Branch control input. A branch can be conditionally executed when BIO is active. If low, the processor
XF O/Z External flag output (latched software-programmable signal). XF is set high by the SSBX XF instruction, set
DS PS IS
MSTRB O/Z Memory strobe signal. MSTRB is always high unless low-level asserted to indicate an external bus access
READY I Data ready input. READY indicates that an external device is prepared for a bus transaction to be
R/W O/Z Read/write signal. R/W indicates transfer direction during communication to an external device. Normally in
IOSTRB O/Z I/O strobe signal. IOSTRB is always high unless low level asserted to indicate an external bus access to an
HOLD I Hold input. HOLD is asserted to request control of the address, data, and control lines. When
HOLDA O/Z Hold acknowledge signal. HOLDA indicates that the DSP is in a hold state and that the address, data, and
MSC O/Z Microstate complete. MSC indicates completion of all software wait states. When two or more software wait
IAQ O/Z Instruction acquisition signal. IAQ is asserted (active low) when there is an instruction address on the
I = Input, O = Output, Z = High-impedance, S = Supply
INITIALIZATION, INTERRUPT, AND RESET PINS (CONTINUED)
peripherals. When RS
affects various registers and status bits.
RS
the internal program ROM is mapped into the upper 16K words of program memory space. If the pin is driven high during reset, microprocessor mode is selected, and the on-chip ROM is removed from program space. This pin is only sampled at reset, and the MP/MC that is selected at reset.
MULTIPROCESSING AND GENERAL PURPOSE PINS
executes the conditional instruction. The BIO for XC instruction, and all other instructions sample BIO
low by RSBX XF instruction or by loading ST1. XF is used for signaling other processors in multiprocessor configurations or as a general-purpose output pin. XF goes into the high-impedance state when OFF is low, and is set high at reset.
O/Z Data, program, and I/O space select signals. DS, PS, and IS are always high unless driven low for
accessing a particular external memory space. Active period corresponds to valid address information. Placed into a high-impedance state in hold mode. DS, PS, and IS also go into the high-impedance state when OFF
to data or program memory. Placed in high-impedance state in hold mode. MSTRB also goes into the high-impedance state when OFF is low.
completed. If the device is not ready (READY is low), the processor waits one cycle and checks READY again. Note that the processor performs ready detection if at least two software wait states are programmed. The READY signal is not sampled until the completion of the software wait states.
read mode (high), unless asserted low when the DSP performs a write operation. Placed in high-impedance state in hold mode. R/W also goes into the high-impedance state when OFF is low.
I/O device. Placed in high-impedance state in hold mode. IOSTRB when OFF
acknowledged by the C54x DSP, these lines go into high-impedance state.
control lines are in a high-impedance state, allowing the external memory interface to be accessed by other devices. HOLDA also goes into the high-impedance state when is OFF low.
states are enabled, the MSC inactive (high) at the beginning of the last software wait state. If connected to the ready input, MSC one external wait state after the last internal wait state is completed. MSC impedance state when OFF
address bus and goes into the high-impedance state when OFF
is low.
is low.
is brought to a high level, execution begins at location 0FF80h of program memory.
MEMORY CONTROL PINS
pin goes active at the beginning of the first software wait state, and goes
is low.
DESCRIPTIONI/O
bit of the PMST register can override the mode
condition is sampled during the decode phase of the pipeline
during the read phase of the pipeline.
also goes into the high-impedance state
also goes into the high
is low.
forces
C54x is a trademark of Texas Instruments.
November 2001 Revised April 2004 SPRS007D
19
Introduction
Table 22. Signal Descriptions (Continued)
TERMINAL
NAME
CLKOUT O/Z Master clock output signal. CLKOUT cycles at the machine-cycle rate of the CPU. The internal machine
CLKMD1 CLKMD2 CLKMD3
X2/CLKIN I Input pin to internal oscillator from the crystal. If the internal oscillator is not being used, an external clock
X1 O Output pin from the internal oscillator for the crystal. If the internal oscillator is not used, X1 should be left
TOUT O Timer output. TOUT signals a pulse when the on-chip timer counts down past zero. The pulse is a CLKOUT
TOUT1 I/O/Z Timer1 output. TOUT1 signals a pulse when the on-chip timer1 counts down past zero. The pulse is a
BCLKR0 BCLKR1 BCLKRX2
BDR0 BDR1 BDR2
BFSR0 BFSR1 BFSRX2
BCLKX0 BCLKX1
OSCILLATOR/TIMER PINS
cycle is bounded by the rising edges of this signal. CLKOUT also goes into the high-impedance state when OFF
is low.
I Clock mode external/internal input signals. CLKMD1CLKMD3 allows you to select and configure different
clock modes such as crystal, external clock, various PLL factors.
source can be applied to this pin. The internal machine cycle time is determined by the clock operating mode pins (CLKMD1, CLKMD2 and CLKMD3).
unconnected. X1 does not go into the high-impedance state when OFF see Section 3.10 for additional information.)
cycle wide. TOUT also goes into the high-impedance state when OFF
CLKOUT cycle wide. The TOUT1 output is multiplexed with the HINT available when the HPI is disabled.
MULTICHANNEL BUFFERED SERIAL PORT PINS
I/O/Z Receive clock input. BCLKR serves as the serial shift clock for the buffered serial port receiver. BCLKRX2
I/O/Z Frame synchronization pulse for receive input. The BFSR pulse initiates the receive data process over
I/O/Z Transmit clock. BCLKX serves as the serial shift clock for the buffered serial port transmitter. The BCLKX
is McBSP2 transmit AND receive clock.
I Serial data receive input.
BDR. BFSRX2 is McBSP2 transmit AND receive frame sync.
pins are configured as inputs after reset. BCLKX goes into the high-impedance state when OFF
DESCRIPTIONI/O
is low. (This is revision depended,
is low.
pin of the HPI, and TOUT1 is only
is low.
BDX0 BDX1 BDX2
BFSX0 BFSX1
TX O UART asynchronous serial transmit data output.
RX I UART asynchronous serial receive data input.
I = Input, O = Output, Z = High-impedance, S = Supply
20
O/Z Serial data transmit output. BDX is placed in the high-impedance state when not transmitting, when RS is
I/O/Z Frame synchronization pulse for transmit output. The BFSX pulse initiates the transmit data process over
asserted or when OFF
BDX. The BFSX pins are configured as inputs after reset. BFSX goes into the high-impedance state when OFF
is low.
is low.
UART
November 2001 Revised April 2004SPRS007D
Introduction
Table 22. Signal Descriptions (Continued)
TERMINAL
NAME
A0A15 I These pins can be used to address internal memory via the HPI when the HPI16 pin is HIGH.
D0D15 I/O These pins can be used to read/write internal memory via the HPI when the HPI16 pin is high. The sixteen
HD0HD7 I/O/Z Parallel bi-directional data bus. These pins can also be used as general-purpose I/O pins when the HPI16 pin
HCNTL0 HCNTL1
HBIL I Byte identification input. Identifies first or second byte of transfer. (Pullup only enabled when HPIENA=0, invalid
HCS I Chip select input. This pin is the select input for the HPI, and must be driven low during accesses.
HDS1 HDS2
HAS I Address strobe input. Address strobe input. Hosts with multiplexed address and data pins require this input,
HR/W I Read/write input. This input controls the direction of an HPI transfer. (Pullup only enabled when HPIENA=0)
HRDY O/Z Ready output. The ready output informs the host when the HPI is ready for the next transfer. HRDY goes into
HINT O/Z Interrupt output. This output is used to interrupt the host. When the DSP is in reset, this signal is driven
HPIENA I HPI enable input. This pin must be tied directly to DVDD to enable the HPI. An internal pulldown resistor is
HPI16 I HPI 16-bit Select Pin. This pin must be tied directly to DVDD to enable HPI16 mode. This input pin has an
I = Input, O = Output, Z = High-impedance, S = Supply
HOST PORT INTERFACE PINS
data pins, D0 to D15, are multiplexed to transfer data between the core CPU and external data/program memory, I/O devices, or HPI in 16-bit mode. The data bus is placed in the high-impedance state when not outputting or when RS OFF
is low.
The data bus includes bus holders to reduce the static power dissipation caused by floating, unused pins. The bus holders also eliminate the need for external bias resistors on unused pins. When the data bus is not being driven by the DSP, the bus holders keep the pins at the logic level that was most recently driven. The data bus holders of the DSP are disabled at reset, and can be enabled/disabled via the BH bit of the BSCR.
is high. HD0HD7 is placed in the high-impedance state when not outputting data or when OFF HPI data bus includes bus holders to reduce the static power dissipation caused by floating, unused pins. When the HPI data bus is not being driven by the DSP, the bus holders keep the pins at the logic level that was most recently driven. The HPI data bus holders are disabled at reset, and can be enabled/disabled via the HBH bit of the BSCR.
I Control inputs. These inputs select a host access to one of the three HPI registers. (Pullup only enabled when
HPIENA=0, HPI16=1)
when HPI16=1)
(Pullup only enabled when HPIENA=0, or HPI16=1)
I Data strobe inputs. These pins are driven by the host read and write strobes to control transfers.
(Pullup only enabled when HPIENA=0)
to latch the address in the HPIA register. (Pull-up only enabled when HPIENA=0)
the high-impedance state when OFF
high
. HINT can also be used for timer 1 output (TOUT1), when the HPI is disabled. The signal goes into the
high-impedance state when OFF
always active and the HPIENA pin is sampled on the rising edge of RS during reset, the HPI module is disabled. Once the HPI is disabled, the HPIENA pin has no effect until the DSP is reset.
internal pulldown resistor which is always active. If HPI16 is left open or driven low, HPI16 mode is disabled. The non-multiplexed mode allows hosts with separate address/data buses to access the HPI address range via the 16 address pins A0−A15. 16-bit Data is also accessible through pins D0−D15. HOST-to-DSP and DSP-to-HOST interrupts are not supported. There are no HPIC and HPIA registers in the non-multiplexed mode since there are HCNTRL0,1 signals available.
or HOLD is asserted. The data bus also goes into the high-impedance state when
is low.
is low. (invalid when HPI16=1)
DESCRIPTIONI/O
is low. The
. If HPIENA is left open or driven low
November 2001 Revised April 2004 SPRS007D
21
Introduction
Table 22. Signal Descriptions (Continued)
TERMINAL
NAME
CV
DD
DV
DD
V
SS
TCK I IEEE standard 1149.1 test clock. TCK is normally a free-running clock signal with a 50% duty cycle. The
TDI I IEEE standard 1149.1 test data input, pin with internal pullup device. TDI is clocked into the selected register
TDO O/Z IEEE standard 1149.1 test data output. The contents of the selected register (instruction or data) are shifted
TMS I IEEE standard 1149.1 test mode select. Pin with internal pullup device. This serial control input is clocked into
TRST I IEEE standard 1149.1 test reset. TRST, when high, gives the IEEE standard 1149.1 scan system control of
EMU0 I/O/Z Emulator 0 pin. When TRST is driven low, EMU0 must be high for activation of the OFF condition. When TRST
EMU1/OFF I/O/Z Emulator 1 pin/disable all outputs. When TRST is driven high, EMU1/OFF is used as an interrupt to or from
I = Input, O = Output, Z = High-impedance, S = Supply
DESCRIPTIONI/O
SUPPLY PINS
S +VDD. Dedicated 1.5V power supply for the core CPU.
S +VDD. Dedicated 3.3V power supply for I/O pins.
S Ground.
changes on test access port (TAP) of input signals TMS and TDI are clocked into the TAP controller, instruction register, or selected test data register on the rising edge of TCK. Changes at the TAP output signal (TDO) occur on the falling edge of TCK.
(instruction or data) on a rising edge of TCK.
out of TDO on the falling edge of TCK. TDO is in the high-impedance state except when scanning of data is in progress. TDO also goes into the high-impedance state when OFF is low.
the test access port (TAP) controller on the rising edge of TCK.
the operations of the device. If TRST
is not connected or driven low, the device operates in its functional
mode, and the IEEE standard 1149.1 signals are ignored. Pin with internal pulldown device.
is driven high, EMU0 is used as an interrupt to or from the emulator system and is defined as input/output by way of IEEE standard 1149.1 scan system. Should be pulled up to DV
with a separate 4.7-k resistor.
DD
the emulator system and is defined as input/output via IEEE standard 1149.1 scan system. When TRST driven low, EMU1/OFF into the high-impedance state. Note that OFF multiprocessing applications). Thus, for the OFF EMU0=high, EMU1/OFF
is configured as OFF. The EMU1/OFF signal, when active low, puts all output drivers
is used exclusively for testing and emulation purposes (not for
feature, the following conditions apply: TRST=low,
= low. Should be pulled up to DVDD with a separate 4.7-k resistor.
is
22
November 2001 Revised April 2004SPRS007D
3 Functional Overview
The following functional overview is based on the block diagram in Figure 31.
P, C, D, E Buses and Control Signals
Cbus
54X cLEAD
TI BUS
Dbus
Ebus
RHEA Bridge
Pbus
Cbus
Pbus
40K RAM
Dual Access
Program/Data
RHEA Bus
Dbus
Ebus
MBus
Pbus
128K Program
ROM
GPIO
McBSP0
Functional Overview
16K for 5404
64K for 5404
Figure 31. TMS320VC5407/TMS320VC5404 Functional Block Diagram
3.1 Memory
The 5407/5404 device provides both on-chip ROM and RAM memories to aid in system performance and integration.
3.1.1 Data Memory
XIO
16HPI
Enhanced XIO
16 HPI
xDMA
logic
RHEAbus
RHEA bus
MBus
MBus
Clocks
McBSP1
McBSP2
UART
TIMER
APLL
JTAG
The data memory space addresses up to 64K of 16-bit words. The device automatically accesses the on-chip RAM when addressing within its bounds. When an address is generated outside the RAM bounds, the device automatically generates an external access.
The advantages of operating from on-chip memory are as follows:
Higher performance because no wait states are required
Higher performance because of better flow within the pipeline of the central arithmetic logic unit (CALU)
Lower cost than external memory
Lower power than external memory
The advantage of operating from off-chip memory is the ability to access a larger address space.
November 2001 − Revised April 2004 SPRS007D
23
Functional Overview
3.1.2 Program Memory
Software can configure their memory cells to reside inside or outside of the program address map. When the cells are mapped into program space, the device automatically accesses them when their addresses are within bounds. When the program-address generation (PAGEN) logic generates an address outside its bounds, the device automatically generates an external access. The advantages of operating from on-chip memory are as follows:
Higher performance because no wait states are required
Lower cost than external memory
Lower power than external memory
The advantage of operating from off-chip memory is the ability to access a larger address space.
3.1.3 Extended Program Memory
The 5407/5404 uses a paged extended memory scheme in program space to allow access of up to 8192K of program memory. In order to implement this scheme, the 5407/5404 includes several features which are also present on C548/549/5410:
Twenty-three address lines, instead of sixteen
An extra memory-mapped register, the XPC
Six extra instructions for addressing extended program space
Program memory in the 5407/5404 is organized into 128 pages that are each 64K in length.
The value of the XPC register defines the page selection. This register is memory-mapped into data space to address 001Eh. At a hardware reset, the XPC is initialized to 0.
3.2 On-Chip ROM With Bootloader
The 5407 features a 128K-word × 16-bit on-chip maskable ROM that is mapped into program memory space, but 16K words of which can also optionally be mapped into data memory. The 5404 features a 64K-word 16-bit on-chip maskable ROM that is mapped into program memory space.
Customers can also arrange to have the ROM of the 5407/5404 programmed with contents unique to any particular application.
A bootloader is available in the standard 5407/5404 on-chip ROM. This bootloader can be used to automatically transfer user code from an external source to anywhere in the program memory at power up. If MP/MC on-chip ROM. This location contains a branch instruction to the start of the bootloader program.
The standard 5407/5404 devices provide different ways to download the code to accommodate various system requirements:
Parallel from 8-bit or 16-bit-wide EPROM
Parallel from I/O space, 8-bit or 16-bit mode
Serial boot from serial ports, 8-bit or 16-bit mode
UART boot mode
Host-port interface boot
Warm boot
of the device is sampled low during a hardware reset, execution begins at location FF80h of the
×
24
November 2001 − Revised April 2004SPRS007D
The standard on-chip ROM layout is shown in Table 31.
ADDRESS RANGE DESCRIPTION
C000hD4FFh ROM tables for the GSM EFR speech codec
D500hF7FFh Reserved
F800hFBFFh Bootloader
FC00hFCFFh µ-Law expansion table
FD00hFDFFh A-Law expansion table
FE00hFEFFh Sine look-up table
FF00hFF7Fh Reserved
FF80hFFFFh Interrupt vector table
In the 5407/5404 ROM, 128 words are reserved for factory device-testing purposes. Application code to be implemented in on-chip ROM must reserve these 128 words at addresses FF00hFF7Fh in program space.
3.3 On-Chip RAM
The 5407 device contains 40K-words × 16-bit of on-chip dual-access RAM (DARAM), while the 5404 device contains 16K-words x 16-bit of DARAM.
The DARAM is composed of five blocks of 8K words each. Each block in the DARAM can support two reads in one cycle, or a read and a write in one cycle. The five blocks of DARAM on the 5407 are located in the address range 0080h9FFFh in data space, and can be mapped into program/data space by setting the OVLY bit to one.
Table 31. Standard On-Chip ROM Layout
Functional Overview
On the 5404, the two blocks of DARAM are located at 0080h3FFFh in data space and can also be mapped into data space by setting OVLY to one.
3.4 On-Chip Memory Security
The 5407/5404 device provides maskable options to protect the contents of on-chip memories. When the ROM protect option is selected, no externally originating instruction can access the on-chip ROM; when the RAM protect option is selected, HPI RAM is protected; HPI writes are not restricted, but HPI reads are restricted to 2000h − 3FFFh.
November 2001 − Revised April 2004 SPRS007D
25
Functional Overview
3.5 Memory Maps
3.5.1 5407 Memory Map
Page 0 Program
Hex
0000
007F 0080
9FFF A000
FF7F
FF80
FFFF
Reserved
(OVLY = 1)
External
(OVLY = 0)
On-Chip DARAM04 (OVLY = 1)
External
(OVLY = 0)
External
Interrupts (External)
MP/MC
(Microprocessor Mode)
Page 0 Program
= 1
Hex
0000
007F
0080
5FFF 6000
FEFF
FF00
FF7F
FF80
FFFF
Reserved
(OVLY = 1)
External
(OVLY = 0)
On-Chip DARAM02 (OVLY = 1)
External
(OVLY = 0)
On-Chip ROM
(40K x 16-bit)
Reserved
Interrupts (On-Chip)
= 0
MP/MC
(Microcomputer Mode)
Hex
0000
005F
0060 007F 0080
9FFF
A000
BFFF
C000
FFFF
Memory-Mapped
Figure 32. 5407 Program and Data Memory Map
Data
Registers
Scratch-Pad
RAM
On-Chip
DARAM04
(40K x 16-bit)
External
On-Chip
PDROM01
(DROM=1)
or
External
(DROM=0)
Hex
010000
017FFF
018000
01FFFF
The lower 32K words of pages 1 through 127 are only available when the OVLY bit is cleared to 0. If the OVLY bit is set to 1, the on-chip memory is mapped to the lower 32K words of all program space pages.
Program
External
On-Chip
ROM
Page 1 XPC=1
Hex
020000
027FFF
028000
02FFFF
Program
External
On-Chip
ROM
Page 2 XPC=2
Hex
030000
038000
03DFFF
03E000 03FFFF
Program
External
On-Chip
ROM
External
Page 3 XPC=3
Hex
040000
047FFF037FFF
048000
04FFFF
Program
External
External
Page 4 XPC=4
......
Hex
7F0000
7F7FFF
7F8000
7FFFFF
Program
External
External
Page 127
XPC=7Fh
Figure 33. 5407 Extended Program Memory Map
26
November 2001 − Revised April 2004SPRS007D
3.5.2 5404 Memory Map
Page 0 Program
Hex
0000
007F 0080
3FFF
4000
9FFF
A000
FF7F
FF80
FFFF
Reserved
(OVLY = 1)
External
(OVLY = 0)
On-Chip
DARAM01
(OVLY = 1)
External
(OVLY = 0)
Reserved
(OVLY = 1)
External
(OVLY = 0)
External
Interrupts (External)
MP/MC
(Microprocessor Mode)
Page 0 Program
= 1
Hex
0000
007F
0080
3FFF
4000
5FFF
6000
7FFF
8000
FEFF
FF00 FF7F
FF80
FFFF
Reserved
(OVLY = 1)
External
(OVLY = 0)
On-Chip DARAM01 (OVLY = 1)
External
(OVLY = 0)
Reserved
(OVLY = 1)
External
(OVLY = 0)
Reserved
On-Chip ROM
(32K x 16-bit)
Reserved
Interrupts (On-Chip)
MP/MC
(Microcomputer Mode)
= 0
Hex
0000
005F
0060 007F 0080
3FFF
4000
9FFF
A000
BFFF
C000
FFFF
Memory-Mapped
Figure 34. 5404 Program and Data Memory Map
Data
Registers
Scratch-Pad
RAM
On-Chip
DARAM01
(32K x 16-bit)
Reserved
External
PDROM01 (DROM = 1)
or
External
(DROM = 0)
Functional Overview
November 2001 − Revised April 2004 SPRS007D
27
Functional Overview
Hex
010000
013FFF
014000
017FFF
018000
01FFFF
The lower 16K words of pages 1 through 127 are only available when the OVLY bit is cleared to 0. If the OVLY bit is set to 1, the on-chip memory is mapped to the lower 16K words of all program space pages.
Program
External
Reserved
(OVLY = 1)
External
(OVLY = 0)
On-Chip
ROM
Page 1 XPC=1
Hex
020000
023FFF
024000
027FFF 028000
02FFFF
Program
External
Reserved
(OVLY = 1)
(OVLY = 0)
Reserved
External
Page 2 XPC=2
Hex
030000
034000
037FFF
038000
03DFFF
03E000
03FFFF
Program
External
Reserved
(OVLY = 1)
External
(OVLY = 0)
Reserved
External
Page 3 XPC=3
Hex
040000
043FFF033FFF
044000
047FFF
048000
04FFFF
Program
External
Reserved
(OVLY = 1)
External
(OVLY = 0)
External
Page 4 XPC=4
......
Hex
7F0000
7F3FFF
7F4000
7F7FFF
7F8000
7FFFFF
Program
External
Reserved
(OVLY = 1)
External
(OVLY = 0)
External
Page 127
XPC=7Fh
Figure 35. 5404 Extended Program Memory Map
3.5.3 Relocatable Interrupt Vector Table
The reset, interrupt, and trap vectors are addressed in program space. These vectors are soft — meaning that the processor, when taking the trap, loads the program counter (PC) with the trap address and executes the code at the vector location. Four words, either two 1-word instructions or one 2-word instruction, are reserved at each vector location to accommodate a delayed branch instruction which allows branching to the appropriate interrupt service routine without the overhead.
At device reset, the reset, interrupt, and trap vectors are mapped to address FF80h in program space. However, these vectors can be remapped to the beginning of any 128-word page in program space after device reset. This is done by loading the interrupt vector pointer (IPTR) bits in the PMST register with the appropriate 128-word page boundary address. After loading IPTR, any user interrupt or trap vector is mapped to the new 128-word page.
NOTE: The hardware reset (RS with 1s. Therefore, the reset vector is always fetched at location FF80h in program space.
) vector cannot be remapped because the hardware reset loads the IPTR
28
November 2001 − Revised April 2004SPRS007D
15
RESET
Functional Overview
IPTR
R/W-1FF
7
IPTR MP/MC OVLY AVIS DROM CLKOFF SMUL SST
LEGEND: R = Read, W = Write, n = value after reset
654321 0
MP/MC Pin R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
Figure 36. Processor Mode Status (PMST) Register
Table 32. Processor Mode Status (PMST) Register Bit Fields
BIT
NO. NAME
157 IPTR 1FFh
6 MP/MC
5 OVLY 0
4 AVIS 0
3 DROM 0
2 CLKOFF 0
1 SMUL N/A
0 SST N/A
RESET VALUE
MP/MC
pin
FUNCTION
Interrupt vector pointer. The 9-bit IPTR field points to the 128-word program page where the interrupt vectors reside. The interrupt vectors can be remapped to RAM for boot-loaded operations. At reset, these bits are all set to 1; the reset vector always resides at address FF80h in program memory space. The RESET instruction does not affect this field.
Microprocessor/microcomputer mode. MP/MC enables/disables the on-chip ROM to be addressable in program memory space.
- MP/MC
- MP/MC
MP/MC pin is not sampled again until the next reset. The RESET instruction does not affect this bit. This bit can also be set or cleared by software.
RAM overlay. OVLY enables on-chip dual-access data RAM blocks to be mapped into program space. The values for the OVLY bit are:
- OVLY = 0: The on-chip RAM is addressable in data space but not in program space.
- OVLY = 1: The on-chip RAM is mapped into program space and data space. Data page 0 (addresses
Address visibility mode. AVIS enables/disables the internal program address to be visible at the address pins.
- AVIS = 0: The external address lines do not change with the internal program address. Control and
- AVIS = 1: This mode allows the internal program address to appear at the pins of the 5407/5404 so
Data ROM. DROM enables on-chip ROM to be mapped into data space. The DROM bit values are:
- DROM = 0: The on-chip ROM is not mapped into data space.
- DROM = 1: A portion of the on-chip ROM is not mapped into data space.
The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for the base number of wait states.
CLOCKOUT off. When the CLKOFF bit is 1, the output of CLKOUT is disabled and remains at a high level.
Saturation on multiplication. When SMUL = 1, saturation of a multiplication result occurs before performing the accumulation in a MAC of MAS instruction. The SMUL bit applies only when OVM = 1 and FRCT = 1.
Saturation on store. When SST = 1, saturation of the data from the accumulator is enabled before storing in memory. The saturation is performed after the shift operation.
= 0: The on-chip ROM is enabled and addressable.
= 1: The on-chip ROM is not available.
is set to the value corresponding to the logic level on the MP/MC pin when sampled at reset. This
0h to 7Fh), however, is not mapped into program space.
data lines are not affected and the address bus is driven with the last address on the bus.
that the internal program address can be traced. Also, it allows the interrupt vector to be decoded in conjunction with IACK
when the interrupt vectors reside on on-chip memory.
November 2001 − Revised April 2004 SPRS007D
29
Functional Overview
3.6 On-Chip Peripherals
The 5407/5404 device has the following peripherals:
Software-programmable wait-state generator
Programmable bank-switching
A host-port interface (HPI8/16)
Three multichannel buffered serial ports (McBSPs)
Two hardware timers
A clock generator with a multiple phase-locked loop (PLL)
Enhanced external parallel interface (XIO2)
A DMA controller (DMA)
A UART with an integrated baud rate generator
3.6.1 Software-Programmable Wait-State Generator
The software wait-state generator of the 5407/5404 can extend external bus cycles by up to fourteen machine cycles. Devices that require more than fourteen wait states can be interfaced using the hardware READY line. When all external accesses are configured for zero wait states, the internal clocks to the wait-state generator are automatically disabled. Disabling the wait-state generator clocks reduces the power consumption of the 5407/5404.
The software wait-state register (SWWSR) controls the operation of the wait-state generator. The 14 LSBs of the SWWSR specify the number of wait states (0 to 7) to be inserted for external memory accesses to five separate address ranges. This allows a different number of wait states for each of the five address ranges. Additionally, the software wait-state multiplier (SWSM) bit of the software wait-state control register (SWCR) defines a multiplication factor of 1 or 2 for the number of wait states. At reset, the wait-state generator is initialized to provide seven wait states on all external memory accesses. The SWWSR bit fields are shown in Figure 37 and described in Table 3−3.
15
XPA I/O DATA DATA
R/W-0 R/W-111 R/W-111
DATA PROGRAM PROGRAM
R/W-111 R/W-111 R/W-111
LEGEND: R = Read, W = Write, n = value after reset
14 12 11 9 8
65 32 0
Figure 37. Software Wait-State Register (SWWSR) [Memory-Mapped Register (MMR) Address 0028h]
30
November 2001 − Revised April 2004SPRS007D
Loading...
+ 80 hidden pages