Texas Instruments TLV320AIC10IPFB, TLV320AIC10EVM, TLV320AIC10CPFB Datasheet

GeneralĆPurpose3Vto5.5V 16ĆBit 22ĆKSPS DSP CODEC
TLV320AIC10
2000 AAP Data Converter Group
Data Manual
SLWS093C
IMPORTANT NOTICE
T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
Customers are responsible for their applications using TI components. In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 2000, Texas Instruments Incorporated
iii
Contents
Section Title Page
1 Introduction 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Features 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Functional Block Diagram 1–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Terminal Assignments 1–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 Ordering Information 1–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5 Terminal Functions 1–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.6 Definitions and Terminology 1–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.7 Register Functional Summary 1–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Functional Description 2–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Device Functions 2–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.1 Operating Frequencies 2–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.2 ADC Signal Channel 2–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.3 DAC Signal Channel 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.4 MIC Input 2–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.5 Antialiasing Filter 2–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.6 Sigma-Delta ADC 2–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.7 Decimation Filter 2–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.8 Sigma-Delta DAC 2–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.9 Interpolation Filter 2–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.10 Analog and Digital Loopback 2–5. . . . . . . . . . . . . . . . . . . . . . . . .
2.1.11 FIR Overflow Flag 2–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.12 Bypass Mode 2–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.13 Automatic Cascading Detection (ACD) 2–6. . . . . . . . . . . . . . . .
2.1.14 Low-Power Mode 2–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.15 Event-Monitor Mode 2–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Reset and Power-Down Functions 2–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1 Software and Hardware Reset 2–7. . . . . . . . . . . . . . . . . . . . . . . .
2.2.2 Software and Hardware Power Down 2–7. . . . . . . . . . . . . . . . . .
2.3 Clock Source 2–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Data Out (DOUT) 2–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.1 Data Out, Master Mode 2–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.2 Data Out, Slave Mode 2–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5 Data In (DIN) 2–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6 FC (Hardware Secondary Communication Request) 2–8. . . . . . . . . . . . .
2.7 Frame-Sync Function for TLV320AIC10 2–8. . . . . . . . . . . . . . . . . . . . . . . .
2.7.1 Frame-Sync (FS) Function—Continuous-Transfer
Mode (Master Only) 2–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
iv
2.7.2 Frame-Sync (FS) Function—Fast-Transfer
Mode (Slave Only) 2–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7.3 Frame-Sync (FS) Function—Master Mode 2–11. . . . . . . . . . . . .
2.7.4 Frame-Sync (FS) Function—Slave Mode 2–11. . . . . . . . . . . . . .
2.7.5 Frame-Sync Delayed (FSD) Function, Cascade Mode 2–12. . .
2.8 Multiplexed Analog Input and Output 2–13. . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8.1 Multiplexed Analog Input 2–13. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8.2 Analog Output 2–13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8.3 Single-Ended Analog Input 2–14. . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8.4 Single-Ended Analog Output 2–14. . . . . . . . . . . . . . . . . . . . . . . . .
3 Serial Communications 3–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Primary Serial Communication 3–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Secondary Serial Communication 3–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.1 Register Programming 3–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.2 Hardware Secondary Serial Communication Request 3–4. . . .
3.2.3 Software Secondary Serial Communication Request 3–5. . . .
3.3 Direct Configuration Mode 3–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 Continuous Data Transfer Mode 3–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5 DIN and DOUT Data Format 3–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.1 Primary Serial Communication DIN and
DOUT Data Format 3–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.2 Secondary Serial Communication DIN and
DOUT Data Format 3–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.3 Direct Configuration DCSI Data Format 3–8. . . . . . . . . . . . . . . .
4 Specifications 4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 Absolute Maximum Ratings Over Operating Free-Air
Temperature Range 4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Recommended Operating Conditions 4–1. . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 Electrical Characteristics Over Recommended Operating Free-Air Temperature Range, AV
DD
= 5 V/3.3 V, DVDD = 5 V/3.3 V 4–1. . . . . . . .
4.3.1 Digital Inputs and Outputs, Fs = 8 kHz,
Output Not Loaded 4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.2 ADC Path Filter, Fs = 8 kHz 4–2. . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.3 ADC Dynamic Performance, Fs = 8 kHz 4–2. . . . . . . . . . . . . . .
4.3.4 ADC Channel Characteristics 4–3. . . . . . . . . . . . . . . . . . . . . . . .
4.3.5 DAC Path Filter, Fs= 8 kHz 4–3. . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.6 DAC Dynamic Performance 4–3. . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.7 DAC Channel Characteristics 4–4. . . . . . . . . . . . . . . . . . . . . . . .
4.3.8 Op-Amp Interface (A1, A3, A4) 4–4. . . . . . . . . . . . . . . . . . . . . . .
4.3.9 Power-Supply Rejection 4–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.10 Power Supply 4–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4 Timing Requirements 4–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.1 Master Mode Timing Requirements 4–5. . . . . . . . . . . . . . . . . . .
v
5 Parameter Measurement Information 5–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 Mechanical Information 6–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Appendix A—Register Set A–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
List of Illustrations
Figure Title Page
2–1 Timing Sequence of ADC Channel (Primary Communication Only) 2–1. . . . . .
2–2 Timing Sequence of ADC Channel (Primary and Secondary
Communication) 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–3 Timing Sequence of DAC Channel (Primary Communication Only) 2–3. . . . . .
2–4 Timing Sequence of DAC Channel (Primary and
Secondary Communication) 2–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–5 Typical Microphone Interface 2–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–6 Cascading 2–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–7 Event Monitor Mode Timing 2–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–8 Internal Power-Down Logic 2–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–9 Timing Diagram for the FS Pulse Mode (M1M0 = 00) 2–9. . . . . . . . . . . . . . . . . .
2–10 Timing Diagram for the SPI_CP0 Mode (M1M0 = 01) 2–9. . . . . . . . . . . . . . . . .
2–11 Timing Diagram for the SPI_CP1 Mode (M1M0 = 10) 2–10. . . . . . . . . . . . . . . . .
2–12 Timing Diagram for the FS Frame Mode (M1M0 = 11) 2–10. . . . . . . . . . . . . . . .
2–13 Master Device Frame-Sync Signal With Primary and Secondary
Communication ( No Slaves) 2–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–14 Master Device’s FS Output to DSP and FSD Output to the Slave 2–11. . . . . . .
2–15 Cascade Mode Connection (to DSP Interface) 2–12. . . . . . . . . . . . . . . . . . . . . . .
2–16 Master-Slave Frame-Sync Timing 2–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–17 INP and INM Internal Self-Biased (2.5-V) Circuit 2–13. . . . . . . . . . . . . . . . . . . . .
2–18 Differential Output Drive (Ground-Referenced) 2–13. . . . . . . . . . . . . . . . . . . . . . .
2–19 Single-Ended Input 2–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–20 Single-Ended Output 2–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–1 Primary Serial Communication Timing 3–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–2 Hardware and Software Secondary Communication Request 3–2. . . . . . . . . . .
3–3 Device 3/Register 1 Read Operation Timing Diagram 3–3. . . . . . . . . . . . . . . . . .
3–4 Device 3/Register 1 Write Operation Timing Diagram 3–4. . . . . . . . . . . . . . . . . .
3–5 FS Output When Hardware Secondary Serial Communication
Is Requested Only Once (No Slave) 3–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–6 Output When Hardware Secondary Serial Communication Is Requested
(Three Slaves) 3–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–7 FS Output During Software Secondary Serial Communication Request
(No Slave) 3–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
vi
3–8 Direct Configuration 3–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–9 Direct Configuration Mode Timing 3–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–10 Continuous Data Transfer Mode Timing 3–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–11 Primary Communication DIN and DOUT Data Format 3–8. . . . . . . . . . . . . . . .
3–12 Secondary Communication DIN and DOUT Data Format 3–8. . . . . . . . . . . . . .
3–13 Direct Communication DCSI Data Format 3–8. . . . . . . . . . . . . . . . . . . . . . . . . . .
5–1 FS and FSD Timing 5–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5–2 Serial Communication Timing 5–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5–3 FFT–ADC Channel, f
s
= 8 kHz, Input = –3 dB 5–2. . . . . . . . . . . . . . . . . . . . . . . . .
5–4 FFT–ADC Channel, f
s
= 16 kHz, Input = –3 dB 5–2. . . . . . . . . . . . . . . . . . . . . . .
5–5 FFT–DAC Channel, f
s
= 8 kHz, Input = –3 dB 5–3. . . . . . . . . . . . . . . . . . . . . . . . .
5–6 FFT–DAC Channel, f
s
= 16 kHz, Input = –3 dB 5–3. . . . . . . . . . . . . . . . . . . . . . .
5–7 FFT–ADC Channel, f
s
= 8 kHz, Input = –1 dB 5–4. . . . . . . . . . . . . . . . . . . . . . . . .
5–8 FFT–ADC Channel, f
s
= 16 kHz, Input = –1 dB 5–4. . . . . . . . . . . . . . . . . . . . . . .
5–9 FFT–DAC Channel, f
s
= 8 kHz, Input = –0 dB 5–5. . . . . . . . . . . . . . . . . . . . . . . . .
5–10 FFT–DAC Channel, f
s
= 16 kHz, Input = –0 dB 5–5. . . . . . . . . . . . . . . . . . . . . .
List of Tables
Table Title Page
2–1 Serial Interface Modes 2–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–1 Least Significant Bit Control Function 3–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1–1
1 Introduction
The TL V320AIC10 provides high resolution signal conversion from digital-to-analog (D/A) and from analog-to-digital (A/D) using oversampling sigma-delta technology. It allows 2-to-1 MUX inputs with built-in antialiasing filter and amplification for general-purpose applications such as telephone hybrid interface, electret microphone preamp, etc. Both IN and AUX inputs accept normal analog signals. This device consists of a pair of 16-bit synchronous serial conversion paths (one for each direction), and includes an interpolation filter before the DAC and a decimation filter after the ADC. The FIR filters can be bypassed to offer flexibility and power savings. Other overhead functions provided on-chip include timing (programmable sample rate, continuous data transfer, and FIR bypass) and control (programmable-gain amplifier, communication protocol, etc.). The sigma-delta architecture produces high-resolution analog-to-digital and digital-to-analog conversion at low system cost.
The TL V320AIC10 design enhances communication with the DSP . The continuous data transfer mode fully supports TI’s DSP autobuffering (ABU) to reduce DSP interrupt service overhead. The automatic cascading detection (ACD) makes cascade programming simple and supports a cascade operation of one master and up to seven slaves. The direct-configuration mode for host interface uses a single-wire serial port to directly program internal registers without interference from the data conversion serial port, or without resetting the entire device. The event monitor mode allows the DSP to monitor external events like phone off-hook ring detection.
In the lower-power mode, the TLV320AIC10 converts data at a sampling rate of 8 KSPS consuming only 39 mW. The programmable functions of this device are configured through a serial interface that can be gluelessly interfaced
to any DSP that accepts 4-wire serial communications, such as the TMS320Cxx. The options include software reset, device power-down, separate control for ADC and DAC turnoff, communications protocol, signal-sampling rate, gain control, and system-test modes, as outlined in Appendix A.
The TLV320AIC10 is particularly suitable for a variety of applications in hands-free car kits, VOIP, cable modem, speech, and telephony area including low-bit rate, high-quality compression, speech enhancement, recognition, and synthesis. Its low-group delay characteristic makes it suitable for single or multichannel active-control applications.
The TL V320AIC10 is characterized for commercial operation from 0°C to 70°C, and industrial operation from –40°C to 85°C.
1.1 Features
C54xx software driver available
16-bit oversampling sigma-delta A/D converter
16-bit oversampling sigma-delta D/A converter
Maximum output conversion rate:
22 ksps with on-chip FIR filter – 88 ksps with FIR bypassed
Voiceband bandwidth in FIR-bypassed mode and final sampling rate at 8 ksps – 90-dB SNR/ADC and 87-dB SNR/DAC with DSP’s FIR (FIR bypassed at 88 ksps/5 V) – 87-dB SNR/ADC and 85-dB SNR/DAC with DSP’s FIR (FIR bypassed at 88 ksps/3.3 V)
On-chip FIR produced 84-dB SNR for ADC and 85-dB SNR for DAC over 11-kHz BW
Built-in functions including PGA, antialiasing analog filter, and operational amplifiers for general-purpose
interface (such as MIC interface and hybrid interface)
1–2
Glueless serial port interface to DSPs (TI TMS320Cxx, SPI, or standard DSPs)
Automatic cascading detection (ACD) makes cascade programming simple and allows up to 8 devices to
be connected in cascade.
On-fly reconfiguration modes include secondary-communication mode and direct-configuration mode (host interface).
Continuous data-transfer mode for use with autobuffering (ABU) to reduce DSP interrupt service overhead
Event-monitor mode provides external-event control, such as RING/OFF-HOOK detection
Programmable ADC and DAC conversion rate
Programmable input and output gain control
Separate software control for ADC and DAC power-down
Analog (3 V to 5.5 V) supply operation
Digital (3 V to 5.5 V) supply operation
Power dissipation (P
D
) of 39 mWrms typical for 8-ksps at 3.3 V
Hardware power-down mode to 0.5 mW
Internal and external reference voltage (V
ref
)
Differential and single-ended analog input/output
2s-complement data format
Test mode, which includes digital loopback and analog loopback
600-ohm output driver
VHDL code for serial interface available
1–3
1.2 Functional Block Diagram
Sigma–
Delta
ADC
Sync Filter
Low
Pass
Filter
Sigma–
Delta
DAC
ADREFP ADREFM
MCLK
Interface
Circuit
Div
256xN
DIN M/S FSD FS
SCLK
M0 M1
OUTP
OUTM
PGA
PGA
DOUT
Internal Clock Circuit
FIR
Filter
Analog
Loopback
Decimation Filter
Anti–
Aliasing
Filter
VMID
@ 5 mA
Vref
ALTI
FLAG
FC
DCSI
DAREFP DAREFM
MUX
AURXM
AURXFP
INM
INP
AURXCP
1.5 V or
2.5V
DTXOP
DTXIM
Receiver or MIC Amp
Transmitter Amp
DTXIP
DTXOM
+ –
+
+
A3
A4
A2
A1
Sync Filter
FIR
Filter
Interpolation Filter
Digital
Loopback
1–4
1.3 Terminal Assignments
14 15
NC NC AV
DD2
AV
SS
NC NC DV
DD2
DV
SS
NC M/S ALTIN DCSI
36 35 34 33 32 31 30 29 28 27 26 25
16
1 2 3 4 5 6 7 8 9 10 11 12
AURXFP
AURXM
AURXCP
DTXOP
DTXOM
DTXIP
DTXIM
OUTP
OUTM
M0 M1
PWRDWN
17 18 19 20
FILT
47 46 45 44 4348 42
INM
INPAVAV
NC
FS
FLAG
FC
DV
DIN
NC
SCLK
MCLK
FSD
40 39 3841
21
22 23 24
37
13
NC
VMID
DV
RESET
DOUT
PFB PACKAGE
(TOP VIEW)
SS
DD1
DD1
SS
SS
AV
NC
SS
AV
NC
NOTE: All NC pins should be left unconnected.
1.4 Ordering Information
PACKAGE
T
A
48-TQFP PFB
0°C to 70°C TLV320AIC10C
–40°C to 85°C TLV320AIC10I
1.5 Terminal Functions
TERMINAL
NAME NO.
I/O
DESCRIPTION
ALTIN 26 I Serial input in the
event monitor
mode AURXCP 3 I Receiver-path/GP amplifier noninverting input. It needs to be connected to AVSS if not used. AURXM 2 I Receiver-path amplifier A1 inverting input, or inverting input to auxiliary analog input. It needs to be connected to
AVSS if not used. Can also be used for general-purpose amplification.
AURXFP 1 I Receiver-path amplifier A1 feedback, or noninverting input to auxiliary analog input. It needs to be connected to
AVSS if not used. Can also be used for general-purpose amplification.
AV
DD1
AV
DD2
45 34
I Analog ADC power supply
AV
SS
33, 40,
42, 46
I Analog ground
DCSI 25 I Direct configuration serial input for directly programming of internal control registers DIN 17 I Data input. DIN receives the DAC input data and register data from the external digital signal processor (DSP),
and is synchronized to SCLK and FS. Data is latched at the falling edge of SCLK when FS is low. DIN is at high impedance when FS is not activated.
DOUT 16 O Data output. DOUT transmits the ADC output bits and registers data, and is synchronized to SCLK and FS. Data is
sent out at the rising edge of SCLK when FS is low. DOUT is at high impedance when FS is not activated.
1–5
1.5 Terminal Functions (Continued)
TERMINAL
NAME NO.
I/O
DESCRIPTION
DTXIM 7 I Transmitter-path amplifier A3 analog inverting input. Can also be used for general-purpose amplification. DTXIP 6 I Transmitter-path amplifier A4 analog noninverting input. Can also be used for general-purpose amplification. DTXOM 5 O Transmitter path amplifier A4 feedback for negative output. Can also be used for general-purpose
amplification. DTXOP 4 O Transmitter path amplifier A3 feedback for positive output. Can also be used for negative output. DV
DD1
15 I Digital power supply
DV
DD2
30 I Digital power supply
DV
SS
14, 29 I Digital ground FC 24 I Hardware request for secondary communication FILT 38 O Bandgap filter. FILT is provided for decoupling of the bandgap reference, and provides 2.5 V. The optimal
capacitor value is 0.1 µF (ceramic). This voltage node should be loaded only with a high-impedance dc load.
FLAG 23 O Controlled by bit D4 of control register 3. If D4=0 (default), the FLAG pin outputs the communication flag that
goes low/high to indicate primary-communication/secondary-communication interval, respectively. If D4=1, the FLAG pin outputs the value of D3.
FS 22 I/O Frame sync. When FS goes low, DIN begins receiving data bits and DOUT begins transmitting data bits. In
master mode, FS is internally generated and is low during data transmission to DIN and from DOUT . In slave mode, FS is externally generated.
FSD 21 O Frame-sync delayed output. The FSD output synchronizes a slave device to the frame sync of the master
device. FSD is applied to the slave FS input and has the same duration as the master FS signal. Requires a pullup resistor if not used.
INM 48 I Inverting input to analog modulator. INM requires an external R-C antialias filter with low output impedance if
the internal antialias filter is bypassed.
INP 47 I Noninverting input to analog modulator. INP requires an external R-C antialias filter with low output impedance
if the internal antialias filter is bypassed. M0 10 I Combine with M1 to select serial interface mode (frame-sync mode) M1 11 I Combine with M0 to select serial interface mode (frame-sync mode) MCLK 20 I Master clock. MCLK derives the internal clocks of the sigma-delta analog interface circuit. M/S 27 I Master/slave select input. When M/S is high, the device is the master, and when is low, it is a slave. NC 18, 28, 31,
32, 35, 36, 37, 39, 41,
44
No connection
OUTM 9 O DAC’s inverting output. OUTM is functionally identical with and complementary to OUTP. OUTP 8 O DAC’s noninverting output. OUTP can also be used alone for single-ended operation. PWRDWN 12 I Power down. When PWRDWN is pulled low, the device goes into a power-down mode, the serial interface is
disabled, and most of the high-speed clocks are disabled. However, all register values are sustained and the
device resumes full-power operation without reinitialization when PWRDWN is pulled high again. PWRDWN
resets the counters only and preserves the programmed register contents. See paragraph 2.2.2 for more
information. RESET 13 I Reset. The reset function is provided to initialize all the internal registers to their default values. The serial port
can be configured to the default state accordingly. See Appendix A,
Register Set
, and Subsection 2.2.1,
Reset
and Power-Down Functions
for detailed descriptions.
SCLK 19 I/O Shift clock. SCLK signal clocks serial data into DIN and out of DOUT during the frame-sync interval. When
configured as an output (M/S
high), SCLK is generated internally by multiplying the frame-sync signal frequency by 256 (cascade devices < 5) or 512 (cascade devices > 4). When configured as an input (M/S low), SCLK is generated externally and must be synchronous with the master clock and frame sync.
VMID 43 O Reference voltage output at A VDD/2
1–6
1.6 Definitions and Terminology
Data transfer interval The time during which data is transferred from DOUT to DIN. The interval is 16 shift clocks and the
data transfer is initiated by the falling edge of the FS signal.
Signal data This refers to the input signal and all of the converted representations through the ADC channel, and
the signal through the DAC channel to the analog output. This is in contrast with the purely-digital software control data.
Primary communication
Primary communication refers to the digital data-transfer interval. Since the device is synchronous, the signal data words from the ADC channel and to the DAC channel occur simultaneously.
Secondary communication
Secondary communication refers to the digital control and configuration data-transfer interval into DIN, and the register read-data cycle from DOUT . The data transfer occurs when requested by hard-
ware or software. SPI Serial peripheral interface standard set by Motorola Frame/pulse sync Frame/pulse sync refers only to the falling edge of the signal FS that initiates the data-transfer inter-
val. The primary FS starts the primary communication, and the secondary FS starts the secondary
communication. Frame/pulse sync and
sampling period
Frame/pulse sync and sampling period is the time between falling edges of successive primary FS
signals and it is always equal to 256xSCLK if the number of cascading devices is less than 5, or 512
xSCLK if the number of cascading devices is greater than 4. f
s
The sampling frequency ADC channel ADC channel refers to all signal-processing circuits between the analog input and the digital
conversion result at DOUT. DAC channel DAC channel refers to all signal-processing circuits between the digital data word applied to DIN and
the differential output analog signal available at OUTP and OUTM. Host A host is any processing system that interfaces to DIN, DOUT, SCLK, FS, and/or MCLK. Dxx Bit position in the primary data word (xx is the bit number). DSxx Bit position in the secondary data word (xx is the bit number). d The alpha character
d
represents valid programmed or default data in the control-register format
(see Section 3.2,
Secondary Serial Communication
) when discussing other data bit portions of the
register. PGA Programmable gain amplifier FIR Finite-duration impulse response DCSI Direct configuration serial interface for host control
1.7 Register Functional Summary
There are five control registers which are used as follows: Register 0 The no-op register . Addressing register 0 allows secondary-communication request without altering any
other registers.
Register 1 Control register 1. The data in this register has the following functions:
Produce the output flag to indicate a decimator FIR filter overflow (read cycle only)
Enable of general-purpose operational amplifiers A1, A3, and A4
Enable/bypass ADC’s analog antialiasing filter
Select normal or auxiliary analog input
Control 16-bit or (15+1)-bit mode of DAC operation
Enable/bypass the decimator FIR filter
Enable/bypass the interpolator FIR filter
1–7
Register 2 Control register 2. The data in this register has the following functions:
Control of the low-power mode that converts data at the rate of 8 ksps
Control of the N-divide register that determines the filter clock rate and sample period
Register 3 Control register 3. The data in this register has the following functions:
Software reset and power down
Selection of analog loopback, digital loopback, and event monitor mode
Control of continuous data transfer mode
Control of the value of one-bit general-purpose output flag
Control the output of FLAG pin
Enable/disable ADC path
Enable/disable DAC path
Control of 16-bit or (15+1)-bit mode of ADC operation
Register 4 Control register 4. The data in this register has the following functions:
Control of the 4-bit gain of input amplifier
Control of the 4-bit gain of output amplifier
1–8
2–1
2 Functional Description
2.1 Device Functions
2.1.1 Operating Frequencies
The sampling frequency represented by the frequency of the primary communication is derived from the master clock (MCLK) input with the following equation:
Fs = Sampling (conversion) frequency = MCLK/(256 × N), N = 1, 2..., 32
The inverse of the sampling frequency is the time between the falling edges of two successive primary frame-sync signals. This time is the conversion period. For example, to set the conversion rate to 8 kHz, MCLK = 256 × N × 8000.
NOTE: The value of N is defined in control register 2 and its power-up value is 32.
2.1.2 ADC Signal Channel
Both IN (INP, INM) and AUX (AURXFP, AURXM) inputs can use the built-in antialiasing filter that can be bypassed by writing a 1 to bit D5 of control register 1. The AUX input can also be connected to the general-purpose amplifier A1 for general-purpose applications, such as electret-microphone interface and 2-to-4-wire hybrid interface, by writing a 1 to bit D6 of control register 1. Bit D4 of control register 1 selects between IN or AUX for the ADC. The selected input signal is amplified by the PGA and applied to the ADC input. The ADC converts the signal into discrete-output digital words in 2s-complement data format, corresponding to the analog-signal value at sampling time. These 16-bit (or 15-bit) digital words, representing sampled values of the analog input signal after PGA, are clocked out of the serial port (DOUT) at the positive edge of SCLK during the frame-sync (FS) interval at the rate of one bit for each SCLK and one word for each primary communication. During secondary communication, the data previously programmed into the registers can be read out. If a register read is not required, all 16 bits are cleared to 0 in the secondary communication. This read operation is accomplished by sending the appropriate register address (D1 1-D9) with the read bit (D12) set to 1 during present secondary communication. The timing sequence is shown in Figures 2–1 and 2–2.
The decimation FIR filter can be bypassed by writing a
1
to bit D2 of control register 1. The whole ADC channel can
be turned off for power savings by writing
01
to bits D2 and D1 of control register 3.
D0
16 SCLKs
SCLK
FS
DOUT
(16-bit)
DOUT
(15+1-bit)
D1
MSB LSB
LSB
D15
M/SD1
0 1 15 16
MSB
D15
D14
D14
……
……
……
……
NOTES: A. M/S is used to indicate whether the 15-bit data comes from a master or a slave device (master: M/S=1, slave: M/S=0).
B. The MSB (D15) is stable (the host can latch the data in at this time) at the falling edging of SCLK number 0; the last bit (D0,M/S)
is stable at the falling edging of SCLK number 15.
Figure 2–1. Timing Sequence of ADC Channel (Primary Communication Only)
2–2
FS
DOUT
(16-bit)
DOUT
(15+1-bit)
Primary Secondary
16 SCLKs
# SCLKs Per Sampling Period (See Note C)
16–bit ADC Data
15–bit ADC Data + M/S
M/S+ Register Data/
M/S+ All 0 (See Note A)
# SCLKs (See Note B)
M/S+ Register Data/
M/S+ All 0 (See Note A)
Primary
16 SCLKs
NOTES: A. M/S bit (D15) in the secondary communication is used to indicate whether the register data (address and content) come from a
master device or a slave device if read bit is set. Otherwise, it is all 0s except M/S bit (master: M/S=1, slave: M/S=0).
B. The number of SCLKs between FS (primary) and FS (secondary) is 128 if cascading devices are less than 5, or 256 if cascading
devices are greater than 4.
C. The number of SCLKs per data sampling period is 256 if cascading devices are less than 5, or 512 if cascading devices are greater
than 4.
Figure 2–2. Timing Sequence of ADC Channel (Primary and Secondary Communication)
2.1.3 DAC Signal Channel
DIN received the 16-bit serial data word (2s complement) from the host during the primary communication interval. These 16-bit digital words, representing analog output signal before PGA, are clocked into the serial port (DIN) at the falling edge of SCLK during the frame-sync interval, one bit for each SCLK and one word for each primary communication interval. The data are converted to a pulse train by the sigma-delta DAC comprised of a digital-interpolation filter and a digital 1-bit modulator. The output of the modulator is then passed to an internal low-pass filter to complete the signal reconstruction. Finally, the resulting analog signal applied to the input of a programmable-gain amplifier is capable of differentially driving a 600-ohm load at OUTP and OUTM. The timing sequence is shown in Figure 2–3.
During secondary communication, the digital control and configuration data, together with the register address, are clocked in through DIN (see Appendix A for register map). These 16-bit data are used either to initialize the register or read out register content through DOUT . If a register initialization is not required, a no-operation word (D15-D9 are all set to 0) can be used. If D12 is set to 1, the content of the control register, specified by D7-D0, will be sent out through DOUT during the same secondary communication (see section 2.1.5). The timing sequence is shown in Figure 2–4.
The interpolation FIR filter can be bypassed by writing a
1
to bit D1 of control register 1. The whole DAC channel can
be turned off for power savings by writing 10 to bits D2 and D1 of control register 3.
2–3
D0
16 SCLKs
SCLK
FS
DIN
(16-bit)
DIN
(15+1-bit)
D1
MSB LSB
LSB
D15
D0=0D1
0 1 15 16
MSB
D15
D14
D14
……
……
……
……
14
(See Note A)
NOTE A: d0 = 0 means no secondary-communication request (software secondary-request control, see Section 3.2).
Figure 2–3. Timing Sequence of DAC Channel (Primary Communication Only)
FS
DIN (16-bit)
(See Note A)
DIN
(15+1-bit)
Primary Secondary
16 SCLKs
# SCLKs Between Sampling Period (See Note D)
16–bit DAC Data
# SCLKs Between
Primary
16 SCLKs
FS (Primary) and
FS (Secondary)
(See Note C)
15–bit DAC Data +
D0 = 1 (See Note B)
Register Read/Write
Register Read/Write
NOTES: A. FC has to be set high for a secondary communication request when 16-bit DAC data format is used (see Section 3.2).
B. D0 = 1 means secondary communication request (software secondary request control, see Section 3.2) C. The number of SCLKs between FS (Primary) and FS (Secondary) is 128 if cascading devices are less than 5, or 256 if cascading
devices are greater than 4.
D. The number of SCLKs per data sampling period is 256 if cascading devices are less than 5, or 512 if cascading devices are greater
than 4.
Figure 2–4. Timing Sequence of DAC Channel (Primary and Secondary Communication)
2–4
2.1.4 MIC Input
The auxiliary inputs (AURXFP, AURXCP, and AURXM) can be programmed to interface with a microphone such as an electret microphone, as illustrated in Figure 2.5, by writing a 1 to both bit D6 and bit D4 of control register 1.
Sigma-
Delta
ADC
PGA
TLV320AIC11
Anti-
Aliasing
Filter
Vref
AURXFP
Electret
Microphone
MIC_BIAS VMID
10 k
AURXM
AURXCP
20 k
S2D
+
1 k
Sigma-
Delta
ADC
PGA
TLV320AIC11
Anti-
Aliasing
Filter
Vref
AURXFP
Electret
Microphone
MIC_BIAS VMID
1 µF
20 k
10 k
AURXM
AURXCP
10 k
10 k
S2D
+
AVDD
1 k
10 k
0.1 µF
(a) Inverting Configuration
(b) Noninverting Configuration
Figure 2–5. Typical Microphone Interface
Loading...
+ 39 hidden pages