TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
D
Output Swing includes Both Supply Rails
D
Low Noise . . . 12 nV/√Hz Typ at f = 1 kHz
D
Low Input Bias Current ...1 pA Typ
D
Fully Specified for Both Single-Supply and
Split-Supply Operation
D
Low Power . . . 500 µ A Max
D
Common-Mode Input Voltage Range
Includes Negative Rail
description
The TLC2262 and TLC2264 are dual and
quadruple operational amplifiers from Texas
Instruments. Both devices exhibit rail-to-rail
output performance for increased dynamic range
in single- or split-supply applications. The
TLC226x family offers a compromise between the
micropower TLC225x and the ac performance of
the TLC227x. It has low supply current for
battery-powered applications, while still having
adequate ac performance for applications that
demand it. The noise performance has been
dramatically improved over previous generations
of CMOS amplifiers. Figure 1 depicts the low level
of noise voltage for this CMOS amplifier, which
has only 200 µA (typ) of supply current per
amplifier.
The TLC226x, exhibiting high input impedance
and low noise, are excellent for small-signal
conditioning for high-impedance sources, such as
piezoelectric transducers. Because of the micropower dissipation levels, these devices work well
in hand-held monitoring and remote-sensing
applications. In addition, the rail-to-rail output feature with single or split supplies makes this family a great
choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLC226xA
family is available and has a maximum input offset voltage of 950 µ V. This family is fully characterized at 5 V
and ± 5 V.
D
Low Input Offset Voltage
950 µ V Max at TA = 25°C (TLC2262A)
D
Macromodel Included
D
Performance Upgrade for the TS27M2/M4
and TLC27M2/M4
D
Available in Q-Temp Automotive
HighRel Automotive Applications
Configuration Control / Print Support
Qualification to Automotive Standards
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
60
VDD = 5 V
RS = 20 Ω
TA = 25°C
50
nV/ Hz
40
30
20
10
n
V
VN – Equivalent Input Noise Voltage – nv//Hz
0
10 10
2
f – Frequency – Hz
10
3
Figure 1
10
4
The TLC2262/4 also makes great upgrades to the TLC27M2/L4 or TS27M2/L4 in standard designs. They offer
increased output dynamic range, lower noise voltage and lower input offset voltage. This enhanced feature set
allows them to be used in a wider range of applications. For applications that require higher output drive and
wider input voltage range, see the TL V2432 and TL V2442. If your design requires single amplifiers, please see
the TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package.
Their small size and low power consumption, make them ideal for high density, battery-powered equipment.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Advanced LinCMOS is a trademark of Texas Instruments Incorporated.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Copyright 1999, Texas Instruments Incorporated
On products compliant to MIL-PRF-38535, all parameters are tested
unless otherwise noted. On all other products, production
processing does not necessarily include testing of all parameters.
1
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2262 A VAILABLE OPTIONS
PACKAGED DEVICES
T
A
0 °C to 70 °C 2.5 mV TLC2262CD — — TLC2262CP TLC2262CPWLE —
°
–
°
–
–55°C to 125°C
The D packages are available taped and reeled. Add R suffix to device type (e.g., TLC2262CDR). The PW package is available only left-end taped
and reeled. Chips are tested at 25°C.
0° C to 70° C 2.5 mV TLC2264CD — — TLC2264CN TLC2264CPWLE —
°
–
°
–
–55°C to 125°C
The D packages are available taped and reeled. Add R suffix to device type (e.g., TLC2264CDR). The PW package is available only left-end taped
and reeled. Chips are tested at 25°C.
°
°
T
A
°
°
VIOmax
AT 25°C
950 µV TLC2262AID — — TLC2262AIP TLC2262AIPWLE —
2.5 mV TLC2262ID — — TLC2262IP — —
950 µV TLC2262AQD — — — — —
2.5 mV TLC2262QD — — — — —
950 µ V
2.5 mV
VIOmax
AT 25°C
950 µV TLC2264AID — — TLC2264AIN TLC2264AIPWLE —
2.5 mV TLC2264ID — — TLC2264IN — —
950 µ V TLC2264AQD — — — — —
2.5 mV TLC2264QD — — — — —
950 µ V
2.5 mV
SMALL
OUTLINE
(D)
—
—
SMALL
OUTLINE
(D)
—
—
CHIP
CARRIER
(FK)
TLC2262AMFK
TLC2262MFK
TLC2264 AVAILABLE OPTIONS
CHIP
CARRIER
(FK)
TLC2264AMFK
TLC2264MFK
CERAMIC
DIP
(JG)
TLC2262AMJG
TLC2262MJG
PACKAGED DEVICES
CERAMIC
DIP
(J)
TLC2264AMJ
TLC2264MJ
PLASTIC
DIP
(P)
—
—
PLASTIC
DIP
(N)
—
—
TSSOP
(PW)
—
—
TSSOP
(PW)
—
—
CERAMIC
FLATPACK
(U)
TLC2262AMU
TLC2262MU
CERAMIC
FLATPACK
(W)
TLC2264AMW
TLC2264MW
2
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2262C, TLC2262AC
TLC2262I, TLC2262AI
TLC2262Q, TLC2262AQ
D, P, OR PW PACKAGE
(TOP VIEW)
1OUT
1IN–
1IN+
V
/GND
DD–
TLC2262M, TLC2262AM . . . JG PACKAGE
1OUT
1IN–
1IN+
V
/GND
DD–
1
2
3
4
(TOP VIEW)
1
2
3
4
8
7
6
5
8
7
6
5
V
DD+
2OUT
2IN–
2IN+
V
DD+
2OUT
2IN–
2IN+
TLC2262M, TLC2262AM . . . FK PACKAGE
NC
1IN–
NC
1IN+
NC
TLC2262M, TLC2262AM ...U PACKAGE
1OUT
1IN –
1IN +
V
/GND
CC–
(TOP VIEW)
NC
1OUT
3 2 1 20 19
4
5
6
7
8
910111213
NC
/GND
DD–
V
(TOP VIEW)
NC
1
2
3
4
5
NC
NC
V
2IN+
10
9
8
7
6
DD+
NC
18
17
16
15
14
NC
NC
V
CC
2OUT
2IN –
2IN +
NC
2OUT
NC
2IN–
NC
+
TLC2264C, TLC2264AC
TLC2264I, TLC2264AI
TLC2264Q, TLC2264AQ
D, N, OR PW PACKAGE
(TOP VIEW)
14
DD+
1
13
2
12
3
11
4
10
5
6
7
9
8
1OUT
1IN–
1IN+
V
2IN+
2IN–
2OUT
4OUT
4IN–
4IN+
V
DD–
3IN+
3IN–
3OUT
TLC2264M, TLC2264AM ...J OR W PACKAGE
(TOP VIEW)
14
1IN–
1IN+
DD+
2IN+
2IN–
1
2
3
4
5
6
7
13
12
11
10
9
8
4OUT
4IN–
4IN+
V
3IN+
3IN–
3OUT
/GND
1OUT
V
2OUT
DD–
/GND
TLC2264M, TLC2264AM . . . FK PACKAGE
(TOP VIEW)
4OUT
NC
NC
OUT
4IN –
18
17
16
15
14
3IN –
4IN+
NC
V
CC–
NC
3IN+
/GND
1IN+
V
CC+
2IN+
NC
NC
1IN –
1OUT
3 2 1 20 19
4
5
6
7
8
910111213
OUT
2IN –
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
3
4
equivalent schematic (each amplifier)
Q3 Q6 Q9 Q12 Q14 Q16
V
DD+
SLOS177A – FEBRUAR Y 1997 – REVISED JULY 1999
emp
ate
e
ease
TLC226x, TLC226xA
Advanced LinCMOS
OPERA TIONAL AMPLIFIERS
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
•
IN+
IN–
C1
R5
Q4 Q1
Q2 Q5 Q7 Q8 Q10 Q11
R3 R4 R1 R2
V
DD–/GND
ACTUAL DEVICE COMPONENT COUNT
COMPONENT TLC2262 TLC2264
Transistors 38 76
Resistors 28 56
Diodes 9 18
Capacitors 3 6
†
Includes both amplifiers and all ESD, bias, and trim circuitry
†
D1
RAIL-TO-RAIL
ate:
OUT
Q17 Q15 Q13
–
–
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, V
Supply voltage, V
Differential input voltage, V
Input voltage, VI (any input, see Note 1) V
Input current, II (each input) ±5 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, IO ± 50 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current into V
Total current out of V
Duration of short-circuit current at (or below) 25°C (see Note 3) unlimited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total dissipation See Dissipation Rating Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range, TA: C suffix 0°C to 70°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, T
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, P, and PW packages 260°C . . . . . . .
†
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V
2. Differential voltages are at IN+ with respect to IN–. Excessive current flows if input is brought below V
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
(see Note 1) 8 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DD+
(see Note 1) –8 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DD–
DD+
DD–
(see Note 2) ±16 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ID
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
– 0.3 V to V
DD–
± 50 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
± 50 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I suffix –40° C to 125°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Q suffix –40°C to 125°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M suffix –55°C to 125°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
–65°C to 150°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
stg
J, JG, U, and W packages 300°C . . . . . . .
DD+
and V
DD –
DD–
.
– 0.3 V.
DD+
†
DISSIPATION RATING TABLE
T
≤ 25° C DERATING FACTOR T
POWER RATING ABOVE TA = 25°C APOWER RATINGAPOWER RATING
D–8 725 mW 5.8 mW/°C 464 mW 377 mW 145 mW
D–14 950 mW 7.6 mW/° C 608 mW 494 mW 190 mW
FK 1375 mW 11.0 mW/° C 880 mW 715 mW 275 mW
J 1375 mW 1 1.0 mW/°C 880 mW 715 mW 275 mW
JG 1050 mW 8.4 mW/° C 672 mW 546 mW 210 mW
N 1150 mW 9.2 mW/° C 736 mW 598 mW 230 mW
P 1000 mW 8.0 mW/° C 640 mW 520 mW 200 mW
PW–8 525 mW 4.2 mW/° C 336 mW 273 mW 105 mW
PW–14 700 mW 5.6 mW/° C 448 mW 364 mW 140 mW
U 700 mW 5.5 mW/° C 452 mW 370 mW 150 mW
W 700 mW 5.5 mW/° C 452 mW 370 mW 150 mW
= 70°C T
= 85°C T
recommended operating conditions
C SUFFIX I SUFFIX Q SUFFIX M SUFFIX
MIN MAX MIN MAX MIN MAX MIN MAX
Supply voltage, V
Input voltage range, V
Common-mode input voltage, V
Operating free-air temperature, T
DD±
I
IC
A
± 2.2 ± 8 ± 2.2 ± 8 ± 2.2 ± 8 ± 2.2 ± 8 V
V
DD–VDD+
V
DD–VDD+
0 70 –40 125 –40 125 –55 125 ° C
–1.5 V
–1.5 V
DD–VDD+
DD–VDD+
–1.5 V
–1.5 V
DD–VDD+
DD–VDD+
–1.5 V
–1.5 V
DD–VDD+
DD–VDD+
= 125°C
POWER RATING
–1.5 V
–1.5 V
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
5
TLC226x, TLC226xA
Common-mode input voltage range
Common-mode rejection ratio
oltage rejection ratio (∆ VDD/∆ VIO)
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2262C electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise
noted)
A
p
α
V
V
A
r
i(d)
r
i(c)
c
z
†
Full range is 0° C to 70°C.
‡
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150° C extrapolated
Temperature coefficient of input offset voltage
VIO
Input offset voltage long-term drift
(see Note 4)
p
p
ICR
High-level output voltage
OH
Low-level output voltage
OL
Large-signal differential voltage amplification
VD
Differential input resistance 25°C
Common-mode input resistance 25°C
Common-mode input capacitance f = 10 kHz, P package 25°C 8 pF
i(c)
Closed-loop output impedance f = 100 kHz, AV = 10 25°C 240 Ω
o
pp
SVR
y-v
pp
to TA = 25° C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
p
VIC = 0,
VO = 0,
= 50 Ω,
S
IOH = –20 µA 25° C 4.99
= –
OH
= –
OH
VIC = 2.5 V, IOL = 50 µA 25° C 0.01
= 2.5 V,
IC
=
IC
=
IC
VIC = 2.5 V,
= 1 V to 4
V
= 0 to 2.7 V, V
RS = 50 Ω
V
= 4.4 V to 16 V,
VIC = VDD/2, No load
= 2.5 V,
O
,
,
VDD± = ±2.5 V,
RS = 50 Ω
|
IO
=
OL
=
OL
=
OL
= 50
L
RL = 1 MΩ
‡
= 2.5 V,
25° C 300 2500
Full range 3000
25°C
to 70°C
25° C
25° C 0.5
Full range 100
25° C 1
Full range 100
25° C
Full range
25° C 4.85 4.94
Full range 4.82
25° C 4.70 4.85
Full range 4.60
25° C 0.09 0.15
Full range 0.15
25°C 0.2 0.3
Full range 0.3
25°C 0.7 1
Full range 1.2
25°C 80 170
Full range 55
25° C 550
25°C 70 83
Full range 70
25°C 80 95
Full range 80
25°C 400 500
Full range 500
TLC2262C
MIN TYP MAX
2 µ V/° C
0.003 µ V/mo
0
–0.3
to
to
4
4.2
0
to
3.5
12
10
12
10
µ
p
p
V
V
V/mV
Ω
Ω
µ
6
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC226x, TLC226xA
VnEquivalent input noise voltage
Total harmonic distortion plus noise
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2262C operating characteristics at specified free-air temperature, VDD = 5 V
TLC2262C
MIN TYP MAX
0.017%
N(PP)
I
n
B
OM
φ
m
†
Full range is 0° C to 70°C.
‡
Referenced to 2.5 V
Peak-to-peak equivalent input noise
voltage
Equivalent input noise current 25°C 0.6
+
Gain-bandwidth product
Maximum output-swing bandwidth
Phase margin at unity gain
Gain margin
A
V
= 1.5 V to 3.5 V, R
CL = 100 pF
p
p
f = 10 Hz 25°C 40
f = 1 kHz 25°C 12
f = 0.1 Hz to 1 Hz 25°C 0.7
f = 0.1 Hz to 10 Hz
VO = 0.5 V to 2.5 V,
= 20 kHz,
RL = 50 kΩ
f = 10 kHz,
CL = 100 pF
V
O(PP)
RL = 50 kΩ ‡,
=–
= 1,
Step = 0.5 V to 2.5 V,
RL = 50 kΩ ‡,
CL = 100 pF
= 50
L
‡
‡
‡
= 2 V,
‡
,
= 50 kΩ ‡,
AV = 1
AV = 10
RL = 50 kΩ ‡,
AV = 1,
CL = 100 pF
p
=
L
25° C 0.35 0.55
Full range 0.3
25°C 1.3
°
25° C 0.71 MHz
25° C 185 kHz
‡
25° C 56°
25° C 11 dB
0.03%
n
µ
fA√ Hz
z
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
7
TLC226x, TLC226xA
Temperature coefficient of input offset voltage
Common-mode input voltage range
Common-mode rejection ratio
oltage rejection ratio (∆ V
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2262C electrical characteristics at specified free-air temperature, V
= ± 5 V (unless
DD±
otherwise specified)
A
p
α
VIO
ICR
V
OM+
V
OM–
A
VD
r
i(d)
r
i(c)
c
i(c)
z
o
SVR
†
Full range is 0° C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150° C extrapolated
p
Input offset voltage long-term drift (see Note 4)
p
p
p
Maximum positive peak output voltage
Maximum negative peak output voltage
Large-signal differential voltage amplification VO = ±4 V
Differential input resistance 25°C
Common-mode input resistance 25°C
Common-mode input capacitance f = 10 kHz, P package 25°C 8 pF
Closed-loop output impedance f = 100 kHz, AV = 10 25°C 220
pp
y-v
pp
to TA = 25° C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
p
DD±
VIC = 0,
= 50
| ≤5 mV,
IO
IO = –20 µA 25° C 4.99
= –
O
= –
O
VIC = 0, IO = 50 µA 25°C –4.99
= 0,
IC
= 0,
IC
= 0,
IC
V
= –5 V to 2.7 V,
VO = 0 V, RS = 50 Ω
V
= 2.2 V to ±8 V,
VIC = 0, No load
= 0 V,
O
VO = 0,
= 50
S
=
O
= 1
O
= 4
O
=
L
RL = 1 MΩ 25° C 1000
25° C 300 2500
Full range 3000
25° C
to 70°C
25°C
25° C 0.5
Full range 100
25° C 1
Full range 100
25°C
Full range
25° C 4.85 4.94
Full range 4.82
25° C 4.7 4.85
Full range 4.6
25° C –4.85 –4.91
Full range –4.85
25°C –4.7 –4.8
Full range –4.7
25°C –4 –4.3
Full range –3.8
25°C 80 200
Full range 55
25°C 75 88
Full range 75
25°C 80 95
Full range 80
25°C 425 500
Full range 500
TLC2262C
MIN TYP MAX
0.003 µ V/mo
–5 –5.3
–5
3.5
4 4.2
to
10
10
to
12
12
µ
°
p
p
V
V
V/mV
Ω
Ω
Ω
µ
8
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC226x, TLC226xA
VnEquivalent input noise voltage
Total harmonic distortion pulse duration
BOMMaximum output-swing bandwidth
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2262C operating characteristics at specified free-air temperature, V
A
25° C 0.35 0.55
,
Full
range
25°C 1.3
°
°
°
25° C 57°
p
25° C 11 dB
SR Slew rate at unity gain
p
N(PP)
I
n
φ
m
†
Full range is 0° C to 70°C.
Peak-to-peak equivalent input noise
voltage
Equivalent input noise current 25°C 0.6
+
p
p
Phase margin at unity gain
Gain margin
=
O
=
=
f = 10 Hz 25°C 43
f = 1 kHz 25°C 12
f = 0.1 Hz to 1 Hz 25°C 0.8
f = 0.1 Hz to 10 Hz
p
VO = ±2.3 V,
= 20 kHz,
RL = 50 kΩ
f = 10 kHz, R
CL = 100 pF
V
O(PP
RL = 50 kΩ,
=–
= 1,
Step = –2.3 V to 2.3 V,
RL = 50 kΩ,
CL = 100 pF
= 50 kΩ ,
L
,
p
= 4.6 V, AV = 1,
=
L
AV = 1
AV = 10
= 50 kΩ,
CL = 100 pF
=
L
= ±5 V
DD±
TLC2262C
MIN TYP MAX
0.014%
0.024%
V/µ s
n
µ
fA√ Hz
z
z
z
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
9
TLC226x, TLC226xA
Common-mode input voltage range
Common-mode rejection ratio
oltage rejection ratio (∆ VDD/∆ VIO)
IDDSupply current (four amplifiers)
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2264C electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise
noted)
A
p
α
V
V
A
r
i(d)
r
i(c)
c
z
†
Full range is 0° C to 70°C.
‡
Referenced to 2.5 V
NOTE 4. Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150° C extrapolated
Temperature coefficient of input offset voltage
VIO
Input offset voltage long-term drift (see Note 4)
p
p
ICR
High-level output voltage
OH
Low-level output voltage
OL
Large-signal differential voltage amplification
VD
Differential input resistance 25°C
Common-mode input resistance 25°C
Common-mode input capacitance f = 10 kHz, N package 25°C 8 pF
i(c)
Closed-loop output impedance f = 100 kHz, AV = 10 25°C 240 Ω
o
pp
SVR
y-v
pp
to TA = 25° C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
p
p
VIC = 0,
= 0,
=
S
IOH = –20 µA 25° C 4.99
= –
OH
= –
OH
VIC = 2.5 V, IOL = 50 µA 25° C 0.01
=
IC
= 2.5 V,
IC
= 2.5 V,
IC
VIC = 2.5 V,
= 1 V to 4
V
= 0 to 2.7 V , V
RS = 50 Ω
VDD = 4.4 V to 16 V, 25°C 80 95
VIC = VDD/2, No load Full range 80
= 2.5 V,
O
,
,
V
= ± 2.5 V ,
DD±
= 50
IO
=
OL
= 1
OL
= 4
OL
=
L
RL = 1 MΩ
= 2.5 V,
‡
25° C 300 2500
Full range 3000
25°C
to 70°C
25°C 0.003 µ V/mo
25° C 0.5
Full range 100
25° C 1
Full range 100
25° C
Full range
25° C 4.85 4.94
Full range 4.82
25° C 4.70 4.85
Full range 4.60
25° C 0.09 0.15
Full range 0.15
25°C 0.2 0.3
Full range 0.3
25°C 0.7 1
Full range 1.2
25°C 80 170
Full range 55
25° C 550
25°C 70 83
Full range 70
25° C 0.8 1
Full range 1
TLC2264C
MIN TYP MAX
2 µ V/° C
0
–0.3
to
to
3.5
to
4
4.2
0
12
10
12
10
µ
p
p
V
V
V/mV
Ω
Ω
10
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC226x, TLC226xA
VnEquivalent input noise voltage
Total harmonic distortion plus noise
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2264C operating characteristics at specified free-air temperature, VDD = 5 V
TLC2264C
MIN TYP MAX
0.017%
SR Slew rate at unity gain
p
N(PP)
I
n
B
OM
φ
m
†
Full range is 0° C to 70°C.
‡
Referenced to 2.5 V
Peak-to-peak equivalent input noise
voltage
Equivalent input noise current 25°C 0.6
+
Gain-bandwidth product
Maximum output-swing bandwidth
Phase margin at unity gain
Gain margin
A
= 1.4 V to 2.6 V,
O
=
=
f = 10 Hz 25°C 40
f = 1 kHz 25°C 12
f = 0.1 Hz to 1 Hz 25°C 0.7
f = 0.1 Hz to 10 Hz
p
VO = 0.5 V to 2.5 V,
= 20 kHz,
RL = 50 kΩ
f = 10 kHz,
CL = 100 pF
V
O(PP)
RL = 50 kΩ ‡,
=–
= 1,
Step = 0.5 V to 2.5 V,
RL = 50 kΩ ‡,
CL = 100 pF
= 50
L
p
‡
= 2 V,
‡
‡
‡
,
= 50
L
AV = 1
AV = 10
RL = 50 kΩ ‡,
AV = 1,
CL = 100 pF
=
L
25° C 0.35 0.55
,
Full
range
25°C 1.3
°
25° C 0.71 MHz
25° C 185 kHz
‡
25° C
p
25° C 11 dB
0.03%
56°
V/µ s
n
µ
fA/√ Hz
z
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
11
TLC226x, TLC226xA
Temperature coefficient of input offset voltage
Common-mode input voltage range
Common-mode rejection ratio
oltage rejection ratio (∆ V
IDDSupply current (four amplifiers)
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2264C electrical characteristics at specified free-air temperature, V
= ± 5 V (unless
DD±
otherwise specified)
A
p
α
VIO
ICR
V
OM+
V
OM–
A
VD
r
i(d)
r
i(c)
c
i(c)
z
o
SVR
†
Full range is 0° C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150° C extrapolated
p
Input offset voltage long-term drift (see Note 4)
p
p
p
Maximum positive peak output voltage
Maximum negative peak output voltage
Large-signal differential voltage amplification VO = ±4 V
Differential input resistance 25°C
Common-mode input resistance 25°C
Common-mode input capacitance f = 10 kHz, N package 25°C 8 pF
Closed-loop output impedance f = 100 kHz, AV = 10 25°C 220 Ω
pp
y-v
pp
to TA = 25° C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
p
VIC = 0,
= 50
| ≤5 mV,
IO
IO = –20 µA 25°C 4.99
= –
O
= –
O
VIC = 0, IO = 50 µA 25° C –4.99
= 0,
IC
= 0,
IC
,
=
IC
VIC = –5 V to 2.7 V, 25°C 75 88
VO = 0, RS = 50 Ω Full range 75
V
= ±2.2 V to ±8 V, 25°C 80 95
DD±
p
DD±
VIC = 0, No load Full range 80
= 0,
O
VO = 0,
= 50
S
=
O
= 1
O
=
O
= 50
L
RL = 1 MΩ 25° C 1000
25° C 300 2500
Full range 3000
25° C
to 70°C
25°C
25° C 0.5
Full range 100
25° C 1
Full range 100
25°C
Full range
25° C 4.85 4.94
Full range 4.82
25° C 4.7 4.85
Full range 4.6
25° C –4.85 –4.91
Full range –4.85
25°C –4.7 –4.8
Full range –4.7
25°C –4 –4.3
Full range –3.8
25°C 80 200
Full range 55
25° C 0.85 1
Full range 1
TLC2264C
MIN TYP MAX
0.003 µ V/mo
–5 –5.3
–5
3.5
4 4.2
to
10
10
to
12
12
µ
°
p
p
V
V
V/mV
Ω
Ω
12
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC226x, TLC226xA
VnEquivalent input noise voltage
Total harmonic distortion plus noise
BOMMaximum output-swing bandwidth
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2264C operating characteristics at specified free-air temperature, V
A
25° C 0.35 0.55
,
Full
range
25°C 1.3
°
°
°
25° C
p
25° C 11 dB
SR Slew rate at unity gain
p
N(PP)
I
n
φ
m
†
Full range is 0° C to 70°C.
Peak-to-peak equivalent input noise
voltage
Equivalent input noise current 25°C 0.6
+
p
p
Phase margin at unity gain
Gain margin
=
O
=
=
f = 10 Hz 25°C 43
f = 1 kHz 25°C 12
f = 0.1 Hz to 1 Hz 25°C 0.8
f = 0.1 Hz to 10 Hz
p
VO = ± 2.3 V,
= 20 kHz,
RL = 50 kΩ
f = 10 kHz, R
CL = 100 pF
V
RL = 50 kΩ,
=–
= 1,
Step = –2.3 V to 2.3 V,
RL = 50 kΩ,
CL = 100 pF
= 50 kΩ ,
L
,
p
= 4.6 V, A
=
L
AV = 1
AV = 10
= 50 kΩ,
= 1,
CL = 100 pF
=
L
= ±5 V
DD±
TLC2264C
MIN TYP MAX
0.014%
0.024%
57°
V/µ s
n
µ
fA/√ Hz
z
z
z
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
13
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2262I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise
noted)
A
p
α
V
V
A
r
r
c
z
†
‡
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150° C extrapolated
Temperature coefficient 25°C
VIO
of input offset voltage to 85°C
Input offset voltage
long-term drift
(see Note 4)
p
p
Common-mode input
ICR
voltage range
High-level output voltage
OH
Low-level output voltage
OL
VD
i(d)
i(c)
i(c)
o
SVR
Full range is – 40° C to 125°C.
Referenced to 2.5 V
arge-signal
Differential input
resistance
Common-mode input
resistance
Common-mode input
capacitance
Closed-loop output
impedance
Common-mode rejection VIC = 0 to 2.7 V, VO = 2.5 V,
ratio
Supply-voltage rejection VDD = 4.4 V to 16 V,
ratio (∆V DD/∆ VIO)
pp
to TA = 25° C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
erentia
p
V
= ±2.5 V,
DD±
VO = 0,
= 50 Ω,
S
IOH = –20 µA 25° C 4.99 4.99
= –
OH
= –
OH
VIC = 2.5 V, IOL = 50 µA 25° C 0.01 0.01
= 2.5 V,
IC
= 2.5 V,
IC
=
IC
= 1 V to 4
f = 10 kHz, P package 25°C 8 8 pF
f = 100 kHz, AV = 10 25°C 240 240
RS = 50 Ω
VIC = VDD/2, No load
= 2.5 V,
O
,
VIC = 0,
RS = 50 Ω
| ≤5
IO
=
OL
= 4
OL
=
L
RL = 1 MΩ
25° C 300 2500 300 950
Full range 3000 1500
25° C
25° C 0.5 0.5
Full range 500 500
25° C 1 1
Full range 500 500
25° C
Full range
25° C 4.85 4.94 4.85 4.94
Full range 4.82 4.82
25° C 4.7 4.85 4.7 4.85
Full range 4.5 4.5
25° C 0.09 0.15 0.09 0.15
Full range 0.15 0.15
25° C 0.8 1 0.7 1
Full range 1.2 1.2
25°C 80 100 80 170
Full range 50 50
‡
25° C 550 550
25°C 10
25°C 10
25°C 70 83 70 83
Full range 70 70
25°C 80 95 80 95
Full range 80 80
25°C 400 500 400 500
Full range 500 500
TLC2262I TLC2262AI
MIN TYP MAX MIN TYP MAX
0.003 0.003 µ V/mo
0 –0.3 0 –0.3
to to to to
4 4.2 4 4.2
0 0
to to
3.5 3.5
12
12
10
10
12
12
µ
°
p
p
V
V
V/mV
Ω
Ω
Ω
µ
14
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2262I operating characteristics at specified free-air temperature, VDD = 5 V
TLC2262I TLC2262AI
MIN TYP MAX MIN TYP MAX
0.35 0.55 0.35 0.55
0.017% 0.017%
0.03% 0.03%
SR
n
N(PP)
I
n
OM
φ
m
†
Full range is – 40° C to 125°C.
‡
Referenced to 2.5 V
Equivalent input
noise voltage
Peak-to-peak
equivalent inpu
noise voltage
Equivalent input
noise current
Total harmonic
+
on plus
noise
Gain-bandwidth
product
Maximum output- V
swing bandwidth
Phase margin at
unity gain
Gain margin
p
p
A
y
= 1.5 V to 3.5 V,
O
=
=
f = 10 Hz 25°C 40 40
f = 1 kHz
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
f = 0.1 Hz to 10 Hz
VO = 0.5 V to 2.5 V,
= 20 kHz,
RL = 50 kΩ
f = 50 kHz
CL = 100 pF
RL = 50 kΩ ‡,
=–
= 1,
Step = 0.5 V to 2.5 V,
RL = 50 kΩ ‡,
CL = 100 pF
RL = 50 kΩ ‡, CL = 100 pF
‡
p
‡
‡
= 2 V, A
‡
= 50
L
AV = 1
AV = 10
R
= 50 kΩ
50
= 1,
CL = 100 pF
25° C
,
Full
range
25°C 12 12
25°C 1.3 1.3
25°C 0.6 0.6
°
°
°
‡
25°C 56° 56°
25°C 11 11 dB
V/µ s
n
µ
fA√ Hz
z
z
z
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
15
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2262I electrical characteristics at specified free-air temperature, V
= ± 5 V (unless otherwise
DD±
noted)
A
p
α
V
V
A
r
r
c
z
†
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150° C extrapolated
Temperature coefficient of 25°C
VIO
input offset voltage to 85°C
Input offset voltage
long-term drift
(see Note 4)
p
p
Common-mode input
ICR
voltage range
Maximum positive peak
OM+
OM–
VD
i(d)
i(c)
i(c)
o
SVR
Full range is – 40° C to 125°C.
p
Maximum negative peak
p
Large-signal differential
Differential input
resistance
Common-mode input
resistance
Common-mode input
capacitance
Closed-loop output
impedance
Common-mode V
rejection ratio
Supply-voltage rejection V
ratio (∆V
to TA = 25° C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
pp
p
DD±
/∆V IO)
VIC = 0,
RS = 50 Ω
= 50 Ω,
S
IO = –20 µA 25° C 4.99 4.99
= –
O
= –
O
VIC = 0, IO = 50 µA 25° C –4.99 –4.99
=
IC
= 0,
IC
VO = ±4 V
f = 10 kHz, P package 25°C 8 8 pF
f = 100 kHz, AV = 10 25°C 220 220
= –5 V to 2.7 V,
VO = 0, RS = 50 Ω
= 4.4 V to 16 V,
VIC = VDD/2, No load
=
O
VO = 0,
| ≤5
IO
,
=
O
= 4
O
= 50
L
RL = 1 MΩ 25° C 1000 1000
,
25° C 300 2500 300 950
Full range 3000 1500
25°C
25° C 0.5 0.5
Full range 500 500
25° C 1 1
Full range 500 500
°
25° C 4.85 4.94 4.85 4.94
Full range 4.82 4.82
25° C 4.7 4.85 4.7 4.85
Full range 4.5 4.5
25° C –4.85 –4.91 –4.85 –4.91
Full range –4.85 –4.85
25° C –4 –4.3 –4 –4.3
Full range –3.8 –3.8
25°C 80 200 80 200
Full range 50 50
25°C
25°C
25°C 75 88 75 88
Full range 75 75
25°C 80 95 80 95
Full range 80 80
25°C 425 500 425 500
Full range 500 500
TLC2262I TLC2262AI
MIN TYP MAX MIN TYP MAX
0.003 0.003 µ V/mo
–5 –5.3 –5 –5.3
to 4 to 4.2 to 4 to 4.2
–5 –5
to 3.5 to 3.5
10
10
12
12
10
10
12
12
µ
°
p
p
V
V
V/mV
Ω
Ω
Ω
µ
16
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2262I operating characteristics at specified free-air temperature, V
TLC2262I TLC2262AI
MIN TYP MAX MIN TYP MAX
0.014% 0.014%
0.024% 0.024%
SR
n
N(PP)
I
n
OM
φ
m
†
Full range is –40° C to 125°C.
Equivalent input
noise voltage
Peak-to-peak
equivalent inpu
noise voltage
Equivalent input
noise current
Total harmonic
+
noise
Gain-bandwidth f =10 kHz, R
product
Maximum
p
output-swing
bandwidth
Phase margin at
unity gain
Gain margin
p
on plus
p
A
y
=
O
=
=
f = 10 Hz 25°C 43 43
f = 1 kHz
f = 0.1 Hz to 1 Hz 25°C 0.8 0.8
f = 0.1 Hz to 10 Hz
VO = ±2.3 V,
= 50 kΩ ,
L
f = 20 kHz
CL = 100 pF
V
RL = 50 kΩ,
=–
= 1,
Step = –2.3 V to 2.3 V,
RL = 50 kΩ,
CL = 100 pF
RL = 50 kΩ, C L = 100 pF
,
p
= 4.6 V, A
=
L
AV = 1
AV = 10
= 50 kΩ,
= 1,
CL = 100 pF
25° C 0.35 0.55 0.35 0.55
,
Full
range
25°C 12 12
25°C 1.3 1.3
25°C 0.6 0.6
°
°
°
25°C 57° 57°
25°C 11 11 dB
DD±
= ±5 V
V/µ s
n
µ
fA√ Hz
z
z
z
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
17
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2264I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise
noted)
A
p
α
V
V
A
r
r
c
z
†
‡
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150° C extrapolated
Temperature coefficient
VIO
of input offset voltage
Input offset voltage
long-term drift (see Note 4)
p
p
Common-mode input
ICR
voltage range
OH
OL
VD
i(d)
i(c)
i(c)
o
SVR
DD
Full range is – 40° C to 125°C.
Referenced to 2.5 V
evel outpu
ow-level outpu
arge-signal
Differential input
resistance
Common-mode
input resistance
Common-mode
input capacitance
Closed-loop
output impedance
Common-mode VIC = 0 to 2.7 V, VO = 2.5 V,
rejection ratio
Supply-voltage
(∆ VDD/∆ VIO)
Supply current
(four amplifiers)
to TA = 25° C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
erentia
p
V
=±2.5 V ,
DD±
VO = 0,
= 50 Ω,
S
IOH = –20 µA 25° C 4.99 4.99
= –
OH
= –
OH
VIC = 2.5 V, IOL = 50 µA 25° C 0.01 0.01
,
=
IC
= 2.5 V,
IC
= 2.5 V,
IC
= 1 V to 4
f = 10 kHz, N package 25°C 8 8 pF
f = 100 kHz, AV = 10 25°C 240 240 Ω
RS = 50 Ω
VDD = 4.4 V to 16 V,
VIC = VDD/2,
,
=
O
VIC = 0,
RS = 50 Ω
| ≤5
IO
=
OL
= 4
OL
= 50
L
RL = 1 MΩ
No load
25° C 300 2500 300 950
Full range 3000 1500
25°C
to 125°C
25° C 0.003 0.003 µ V/mo
25° C 0.5 0.5
Full range 500 500
25° C 1 1
Full range 500 500
25°C
Full range
25° C 4.85 4.94 4.85 4.94
Full range 4.82 4.82
25° C 4.7 4.85 4.7 4.85
Full range 4.5 4.5
25° C 0.09 0.15 0.09 0.15
Full range 0.15 0.15
25° C 0.8 1 0.7 1
Full range 1.2 1.2
25°C 80 100 80 170
Full range 50 50
‡
25° C 550 550
25°C 10
25°C 10
25°C 70 83 70 83
Full range 70 70
25°C 80 95 80 95
Full range
25°C 0.8 1 0.8 1
Full range 1 1
TLC2264I TLC2264AI
MIN TYP MAX MIN TYP MAX
2 2 µ V/° C
0
–0.3
to
to
4
4.2
0
to
3.5
12
12
80 80
3.5
0
–0.3
to
to
4
4.2
0
to
12
10
12
10
µ
p
p
V
V
V/mV
Ω
Ω
18
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2264I operating characteristics at specified free-air temperature, VDD = 5 V
TLC2264I TLC2264AI
MIN TYP MAX MIN TYP MAX
0.35 0.55 0.35 0.55
0.017% 0.017%
0.03% 0.03%
SR
n
N(PP)
I
n
OM
φ
m
†
Full range is – 40° C to 125°C.
‡
Referenced to 2.5 V
Equivalent input
noise voltage
Peak-to-peak
equivalent inpu
noise voltage
Equivalent input
noise current
Total harmonicpVO = 0.5 V to 2.5 V,
+
noise
Gain-bandwidth
product
Maximum output- V
swing bandwidth
Phase margin at
unity gain
Gain margin
p
on plus
A
y
= 1.4 V to 2.6 V,
O
=
p
=
f = 10 Hz 25°C 40 40
f = 1 kHz
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
f = 0.1 Hz to 10 Hz
= 20 kHz,
RL = 50 kΩ
f = 50 kHz
CL = 100 pF
RL = 50 kΩ ‡,
= 1,
Step = 0.5 V to 2.5 V,
RL = 50 kΩ ‡,
CL = 100 pF
RL = 50 kΩ ‡, CL = 100 pF
‡
‡
= 2 V, A
=–
‡
= 50
L
AV = 1
AV = 10
R
= 50 kΩ
50
= 1,
CL = 100 pF
25° C
,
Full
range
25°C 12 12
25°C 1.3 1.3
25°C 0.6 0.6
°
°
°
‡
25°C 56° 56°
25°C 11 11 dB
V/µ s
n
µ
fA/√ Hz
z
z
z
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
19
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2264I electrical characteristics at specified free-air temperature, V
= ± 5 V (unless otherwise
DD±
noted)
A
p
α
V
V
A
r
r
c
z
†
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150° C extrapolated
Temperature coefficient of 25°C
VIO
input offset voltage to 125°C
Input offset voltage
long-term drift
(see Note 4)
p
p
Common-mode input
ICR
voltage range
OM+
OM–
VD
i(d)
i(c)
i(c)
o
SVR
DD
Full range is – 40° C to 125°C.
mum pos
p
mum negative pea
p
arge-signal
Differential input
resistance
Common-mode input
resistance
Common-mode input
capacitance
Closed-loop output
impedance
Common-mode
rejection ratio
Supply-voltage rejection
ratio (∆V
Supply current
(four amplifiers)
to TA = 25° C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
p
DD±
ve pea
erentia
/∆ VIO)
VIC = 0,
RS = 50 Ω
= 50 Ω,
S
IO = –20 µA 25° C 4.99 4.99
= –
O
= –
O
VIC = 0, IO = 50 µA 25° C –4.99 –4.99
= 0,
IC
= 0,
IC
VO = ±4 V
f = 10 kHz, N package 25°C 8 8 pF
f = 100 kHz, AV = 10 25°C 220 220 Ω
VIC = –5 V to 2.7 V, 25°C 75 88 75 88
VO = 0,
V
= ±2.2 V to ±8 V, 25°C 80 95 80 95
DD±
VIC = VDD/2,
=
O
VO = 0,
| ≤5
IO
=
O
= 4
O
= 50
L
RL = 1 MΩ 25° C 1000 1000
RS = 50 Ω Full range 75 75
No load Full range 80 80
,
25° C 300 2500 300 950
Full range 3000 1500
25°C
25° C 0.5 0.5
Full range 500 500
25° C 1 1
Full range 500 500
25°C
Full range
25° C 4.85 4.94 4.85 4.94
Full range 4.82 4.82
25° C 4.7 4.85 4.7 4.85
Full range 4.5 4.5
25° C –4.85 –4.91 –4.85 –4.91
Full range –4.85 –4.85
25° C –4 –4.3 –4 –4.3
Full range –3.8 –3.8
25°C 80 200 80 200
Full range 50 50
25°C
25°C
25°C 0.85 1 0.85 1
Full range 1 1
TLC2264I TLC2264AI
MIN TYP MAX MIN TYP MAX
0.003 0.003 µ V/mo
–5 –5.3 –5 –5.3
to to to to
4 4.2 4 4.2
–5 –5
to to
3.5 3.5
10
10
12
12
10
10
12
12
µ
°
p
p
V
V
V/mV
Ω
Ω
20
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2264I operating characteristics at specified free-air temperature, V
TLC2264I TLC2264AI
MIN TYP MAX MIN TYP MAX
0.014% 0.014%
0.024% 0.024%
SR
n
N(PP)
I
n
OM
φ
m
†
Full range is –40° C to 125°C.
Equivalent input
noise voltage
Peak-to-peak
equivalent inpu
noise voltage
Equivalent input
noise current
Total harmonic
+
noise
Gain-bandwidth f =10 kHz, R
product
Maximum output- V
swing bandwidth
Phase margin at
unity gain
Gain margin
p
on plus
p
A
y
=
O
=
=
f = 10 Hz 25°C 43 43
f = 1 kHz
f = 0.1 Hz to 1 Hz 25°C 0.8 0.8
f = 0.1 Hz to 10 Hz
VO = ±2.3 V,
= 50 kΩ ,
L
f = 20 kHz
CL = 100 pF
RL = 50 kΩ,
=–
= 1,
Step = –2.3 V to 2.3 V,
RL = 50 kΩ,
CL = 100 pF
RL = 50 kΩ, C L = 100 pF
,
p
= 4.6 V, A
=
L
AV = 1
AV = 10
= 50 kΩ,
= 1,
CL = 100 pF
25° C 0.35 0.55 0.35 0.55
,
Full
range
25°C 12 12
25°C 1.3 1.3
25°C 0.6 0.6
°
°
°
25°C 57° 57°
25°C 11 11 dB
DD±
= ±5 V
V/µ s
n
µ
fA/√ Hz
z
z
z
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
21
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2262Q/M electrical characteristics at specified free-air temperature, VDD = 5 V (unless
otherwise noted)
TLC2262Q,
PARAMETER TEST CONDITIONS
p
α
V
V
A
r
r
c
z
†
‡
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150° C extrapolated
Temperature coefficient
VIO
of input offset voltage
Input offset voltage
long-term drift
(see Note 4)
p
p
Common-mode input
ICR
voltage range
OH
OL
VD
i(d)
i(c)
i(c)
o
SVR
Full range is –40° C to 125° C for Q suffix, – 55° C to 125° C for M suffix.
Referenced to 2.5 V
evel outpu
ow-level outpu
arge-signal
Differential input
resistance
Common-mode input
resistance
Common-mode input
capacitance
Closed-loop output
impedance
Common-mode VIC = 0 to 2.7 V, VO = 2.5 V,
rejection ratio
Supply-voltage rejection V
ratio (∆V DD/∆ VIO)
to TA = 25° C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
erentia
p
V
= ±2.5 V,
DD±
VO = 0,
= 50 Ω,
S
IOH = –20 µA 25° C 4.99 4.99
= –
OH
= –
OH
VIC = 2.5 V, IOL = 50 µA 25° C 0.01 0.01
= 2.5 V,
IC
= 2.5 V,
IC
= 2.5 V,
IC
= 1 V to 4
f = 10 kHz, P package 25°C 8 8 pF
f = 100 kHz, AV = 10 25°C 240 240 Ω
RS = 50 Ω
= 4.4 V to 16 V,
VIC = VDD/2, No load
VIC = 0,
RS = 50 Ω
| ≤5
IO
=
OL
= 4
OL
=
L
RL = 1 MΩ
‡
†
T
25° C 300 2500 300 950
Full range 3000 1500
25° C
25° C 0.5 0.5
125° C 500 500
25° C 1 1
125° C 500 500
25° C
Full range
25° C 4.85 4.94 4.85 4.94
Full range 4.82 4.82
25° C 4.7 4.85 4.7 4.85
Full range 4.5 4.5
25° C 0.09 0.15 0.09 0.15
Full range 0.15 0.15
25° C 0.8 1 0.7 1
Full range 1.2 1.2
25°C 80 100 80 170
Full range 50 50
25° C 550 550
25°C 10
25°C 10
25°C 70 83 70 83
Full range 70 70
25°C 80 95 80 95
Full range 80 80
TLC2262M
MIN TYP MAX MIN TYP MAX
0.003 0.003 µ V/mo
0 –0.3 0 –0.3
to to to to
4 4.2 4 4.2
0 0
to to
3.5 3.5
12
12
TLC2262AQ,
TLC2262AM
12
10
12
10
UNIT
µ
°
p
p
V
V
V/mV
Ω
Ω
22
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2262Q/M electrical characteristics at specified free-air temperature, VDD = 5 V (unless
otherwise noted) (continued)
TLC2262Q,
PARAMETER TEST CONDITIONS
pp
†
Full range is –40° C to 125° C for Q suffix, – 55° C to 125° C for M suffix.
O
=
,
†
T
25° C 400 500 400 500
Full range 500 500
TLC2262M
MIN TYP MAX MIN TYP MAX
TLC2262Q/M operating characteristics at specified free-air temperature, VDD = 5 V
TLC2262Q,
PARAMETER TEST CONDITIONS
SR
n
N(PP)
I
n
OM
φ
m
†
Full range is –40° C to 125° C for Q suffix, – 55° C to 125° C for M suffix.
‡
Referenced to 2.5 V
Equivalent input
noise voltage
Peak-to-peak
equivalent inpu
noise voltage
Equivalent input
noise current
Total harmonic
+
on plus
noise
Gain-bandwidth
product
Maximum output- V
swing bandwidth
Phase margin at
unity gain
Gain margin
y
p
p
= 0.5 V to 3.5 V,
O
=
=
f = 10 Hz 25°C 40 40
f = 1 kHz
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
f = 0.1 Hz to 10 Hz
VO = 0.5 V to 2.5 V,
= 20 kHz,
RL = 50 kΩ
f = 50 kHz
CL = 100 pF
RL = 50 kΩ ‡,
=–
= 1,
Step = 0.5 V to 2.5 V,
RL = 50 kΩ ‡,
CL = 100 pF
RL = 50 kΩ ‡, CL = 100 pF
‡
p
‡
‡
= 2 V, A
‡
= 50
L
AV = 1
AV = 10
R
= 50 kΩ
50
= 1,
CL = 100 pF
†
T
25° C
,
Full
range
25°C 12 12
25°C 1.3 1.3
25°C 0.6 0.6
°
°
°
‡
25°C 56° 56°
25°C 11 11 dB
TLC2262M
MIN TYP MAX MIN TYP MAX
0.35 0.55 0.35 0.55
0.017% 0.017%
0.03% 0.03%
TLC2262AQ,
TLC2262AM
TLC2262AQ,
TLC2262AM
UNIT
µ
UNIT
V/µ s
n
µ
fA√ Hz
z
z
z
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
23
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2262Q/M electrical characteristics at specified free-air temperature, V
= ± 5 V (unless
DD±
otherwise noted)
TLC2262Q,
PARAMETER TEST CONDITIONS
p
α
V
V
A
r
r
c
z
†
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150° C extrapolated
Temperature coefficient of
VIO
input offset voltage
Input offset voltage long-
term drift (see Note 4)
p
p
Common-mode input
ICR
voltage range
Maximum positive peak
OM+
OM–
VD
i(d)
i(c)
i(c)
o
SVR
Full range is –40° C to 125° C for Q suffix, – 55° C to 125° C for M suffix.
p
Maximum negative peak
p
Large-signal differential
Differential input
resistance
Common-mode input
resistance
Common-mode input
capacitance
Closed-loop output
impedance
Common-mode V
rejection ratio
Supply-voltage rejection V
ratio (∆V
to TA = 25° C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
p
DD±
/∆V IO)
VIC = 0,
RS = 50 Ω
= 50 Ω,
S
IO = –20 µA 25° C 4.99 4.99
= –
O
= –
O
VIC = 0, IO = 50 µA 25° C –4.99 –4.99
= 0,
IC
= 0,
IC
VO = ±4 V
f = 10 kHz, P package 25°C 8 8 pF
f = 100 kHz, AV = 10 25°C 220 220 Ω
= –5 V to 2.7 V,
VO = 0, RS = 50 Ω
= 4.4 V to 16 V,
VIC = VDD/2, No load
VO = 0,
|
IO
=
O
= 4
O
=
L
RL = 1 MΩ 25° C 1000 1000
†
T
25° C 300 2500 300 950
Full range 3000 1500
Full range 5 5 µ V/° C
25°C
25° C 0.5 0.5
125° C 500 500
25° C 1 1
125° C 500 500
25°C
Full range
25° C 4.85 4.94 4.85 4.94
Full range 4.82 4.82
25° C 4.7 4.85 4.7 4.85
Full range 4.5 4.5
25° C –4.85 –4.91 –4.85 –4.91
Full range –4.85 –4.85
25° C –4 –4.3 –4 –4.3
Full range –3.8 –3.8
25°C 80 200 80 200
Full range 50 50
25°C
25°C
25°C 75 88 75 88
Full range 75 75
25°C 80 95 80 95
Full range 80 80
TLC2262M
MIN TYP MAX MIN TYP MAX
0.003 0.003 µ V/mo
–5
–5.3
to
to
4
4.2
–5
to
3.5
12
10
12
10
TLC2262AQ,
TLC2262AM
–5
–5.3
to
4
4.2
–5
to
3.5
12
10
12
10
UNIT
µ
p
p
to
V
V
V/mV
Ω
Ω
24
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2262Q/M electrical characteristics at specified free-air temperature, V
otherwise noted) (continued)
TLC2262Q,
PARAMETER TEST CONDITIONS
pp
†
Full range is –40° C to 125° C for Q suffix, – 55° C to 125° C for M suffix.
O
= 0,
†
T
25° C 425 500 425 500
Full range 500 500
TLC2262Q/M operating characteristics at specified free-air temperature, V
PARAMETER TEST CONDITIONS
y
= ±2 V,
SR
n
N(PP)
I
n
OM
φ
m
†
Full range is –40° C to 125° C for Q suffix, – 55° C to 125° C for M suffix.
Equivalent input
noise voltage
Peak-to-peak
equivalent inpu
noise voltage
Equivalent input
noise current
Total harmonic
+
noise
Gain-bandwidth f =10 kHz, R
product
Maximum output- V
swing bandwidth
Phase margin at
unity gain
Gain margin
p
on plus
p
O
=
=
p
f = 10 Hz 25°C 43 43
f = 1 kHz
f = 0.1 Hz to 1 Hz 25°C 0.8 0.8
f = 0.1 Hz to 10 Hz
VO = ±2.3 V,
=
L
f = 20 kHz
CL = 100 pF
RL = 50 kΩ,
= 1,
Step = –2.3 V to 2.3 V,
RL = 50 kΩ,
CL = 100 pF
RL = 50 kΩ, C L = 100 pF
,
= 4.6 V, A
=–
= 50 kΩ ,
L
AV = 1
AV = 10
= 50 kΩ,
= 1,
CL = 100 pF
†
T
25° C 0.35 0.55 0.35 0.55
Full
range
25°C 12 12
25°C 1.3 1.3
25°C 0.6 0.6
°
°
°
25°C 57° 57°
25°C 11 11 dB
TLC2262M
MIN TYP MAX MIN TYP MAX
DD±
TLC2262Q,
TLC2262M
MIN TYP MAX MIN TYP MAX
0.014% 0.014%
0.024% 0.024%
= ± 5 V (unless
DD±
TLC2262AQ,
TLC2262AM
= ±5 V
TLC2262AQ,
TLC2262AM
UNIT
µ
UNIT
V/µ s
n
µ
fA√ Hz
z
z
z
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
25
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2264Q/M electrical characteristics at specified free-air temperature, VDD = 5 V (unless
otherwise noted)
TLC2264Q,
PARAMETER TEST CONDITIONS
p
α
V
V
A
r
r
c
z
†
‡
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150° C extrapolated
Temperature coefficient
VIO
of input offset voltage
Input offset voltage long-
term drift (see Note 4)
p
p
Common-mode input
ICR
voltage range
OH
OL
VD
i(d)
i(c)
i(c)
o
SVR
Full range is –40° C to 125° C for Q suffix, – 55° C to 125° C for M suffix.
Referenced to 2.5 V
evel outpu
ow-level outpu
arge-signal
Differential input resistance
Common-mode
input resistance
Common-mode
input capacitance
Closed-loop
output impedance
Common-mode VIC = 0 to 2.7 V , VO = 2.5 V,
rejection ratio
Supply-voltage
(∆ VDD/∆ VIO)
to TA = 25° C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
erentia
p
V
= ±2.5 V,
DD±
VO = 0,
= 50 Ω,
S
IOH = –20 µA 25° C 4.99 4.99
= –
OH
= –
OH
VIC = 2.5 V, IOL = 50 µA 25° C 0.01 0.01
= 2.5 V,
IC
= 2.5 V,
IC
=
IC
= 1 V to 4
f = 10 kHz, N package 25°C 8 8 pF
f = 100 kHz, AV = 10 25°C 240 240 Ω
RS = 50 Ω
VDD = 4.4 V to 16 V,
VIC = VDD/2, No load
,
VIC = 0,
RS = 50 Ω
| ≤5
IO
=
OL
= 4
OL
=
L
RL = 1 MΩ
T
25° C 300 2500 300 950
Full range 3000 1500
Full range 2 2 µ V/° C
25° C 0.003 0.003 µ V/mo
25° C 0.5 0.5
125° C 500 500
25° C 1 1
125° C 500 500
25°C
Full range
25° C 4.85 4.94 4.85 4.94
Full range 4.82 4.82
25° C 4.7 4.85 4.7 4.85
Full range 4.5 4.5
25° C 0.09 0.15 0.09 0.15
Full range 0.15 0.15
25° C 0.8 1 0.7 1
Full range 1.2 1.2
25°C 80 100 80 170
Full range 50 50
‡
25° C 550 550
25°C 10
25°C 10
25°C 70 83 70 83
Full range 70 70
25°C 80 95 80 95
Full range 80 80
TLC2264M
MIN TYP MAX MIN TYP MAX
0
–0.3
to
to
4
4.2
0
to
3.5
12
12
TLC2264AQ,
TLC2264AM
0
–0.3
to
to
4
4.2
0
to
3.5
12
10
12
10
UNIT
µ
p
p
V
V
V/mV
Ω
Ω
26
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2264Q/M electrical characteristics at specified free-air temperature, VDD = 5 V (unless
otherwise noted) (continued)
TLC2264Q,
PARAMETER TEST CONDITIONS
Supply current
DD
(four amplifiers)
†
Full range is –40° C to 125° C for Q suffix, – 55° C to 125° C for M suffix.
O
=
,
T
25°C 0.8 1 0.8 1
Full range 1 1
TLC2264M
MIN TYP MAX MIN TYP MAX
TLC2264Q/M operating characteristics at specified free-air temperature, VDD = 5 V
TLC2264Q,
PARAMETER TEST CONDITIONS
y
=
SR
n
N(PP)
I
n
OM
φ
m
†
Full range is –40° C to 125° C for Q suffix, – 55° C to 125° C for M suffix.
‡
Referenced to 2.5 V
Equivalent input
noise voltage
Peak-to-peak
equivalent inpu
noise voltage
Equivalent input
noise current
Total harmonicpVO = 0.5 V to 2.5 V,
+
noise
Gain-bandwidth
product
Maximum output- V
swing bandwidth
Phase margin at
unity gain
Gain margin
p
on plus
O
=
=
p
f = 10 Hz 25°C 40 40
f = 1 kHz
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
f = 0.1 Hz to 10 Hz
= 20 kHz,
RL = 50 kΩ
f = 50 kHz
CL = 100 pF
= 2 V, A
RL = 50 kΩ ‡,
=–
= 1,
Step = 0.5 V to 2.5 V,
RL = 50 kΩ ‡,
CL = 100 pF
RL = 50 kΩ ‡, CL = 100 pF
,
= 50
‡
‡
‡
‡
L
AV = 1
AV = 10
R
= 50 kΩ
50
= 1,
CL = 100 pF
T
25° C
,
Full
range
25°C 12 12
25°C 1.3 1.3
25°C 0.6 0.6
°
°
°
‡
25°C 56° 56°
25°C 11 11 dB
TLC2264M
MIN TYP MAX MIN TYP MAX
0.35 0.55 0.35 0.55
0.017% 0.017%
0.03% 0.03%
TLC2264AQ,
TLC2264AM
TLC2264AQ,
TLC2264AM
UNIT
UNIT
V/µ s
n
µ
fA/√ Hz
z
z
z
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
27
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2264Q/M electrical characteristics at specified free-air temperature, V
= ± 5 V (unless
DD±
otherwise noted)
TLC2264Q,
PARAMETER TEST CONDITIONS
p
α
V
V
A
r
r
c
z
†
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150° C extrapolated
Temperature coefficient of
VIO
input offset voltage
Input offset voltage
long-term drift (see Note 4)
p
p
Common-mode input R
ICR
voltage range
Maximum positive peak
OM+
OM–
VD
i(d)
i(c)
i(c)
o
SVR
Full range is –40° C to 125° C for Q suffix, – 55° C to 125° C for M suffix.
p
Maximum negative peak
p
Large-signal differential
Differential input resistance 25°C
Common-mode input
resistance
Common-mode input
capacitance
Closed-loop output
impedance
Common-mode
rejection ratio
Supply-voltage rejection
ratio (∆V
to TA = 25° C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
p
DD±
/∆ VIO)
VIC = 0,
RS = 50 Ω
= 50 Ω,
| VIO | ≤ 5 mV
IO = –20 µA 25° C 4.99 4.99
= –
O
= –
O
VIC = 0, IO = 50 µA 25° C –4.99 –4.99
= 0,
IC
,
=
IC
VO = ±4 V
f = 10 kHz, N package 25°C 8 8 pF
f = 100 kHz, AV = 10 25°C 220 220 Ω
VIC = –5 V to 2.7 V, 25°C 75 88 75 88
VO = 0,
V
= ±2.2 V to ±8 V, 25°C 80 95 80 95
DD±
VIC = VDD/2, No load Full range 80 80
VO = 0,
=
O
=
O
= 50
L
RL = 1 MΩ 25° C 1000 1000
RS = 50 Ω Full range 75 75
T
25° C 300 2500 300 950
Full range 3000 1500
25°C
25° C 0.5 0.5
125° C 500 500
25° C 1 1
125° C 500 500
25° C
Full range
25° C 4.85 4.94 4.85 4.94
Full range 4.82 4.82
25° C 4.7 4.85 4.7 4.85
Full range 4.5 4.5
25° C –4.85 –4.91 –4.85 –4.91
Full range –4.85 –4.85
25° C –4 –4.3 –4 –4.3
Full range –3.8 –3.8
25°C 80 200 80 200
Full range 50 50
25°C
TLC2264M
MIN TYP MAX MIN TYP MAX
0.003 0.003 µ V/mo
–5 –5.3 –5 –5.3
4 4.2 4 4.2
–5 –5
3.5 3.5
12
10
12
10
TLC2264AQ,
TLC2264AM
to
to
12
10
12
10
UNIT
µ
°
p
p
V
V
V/mV
Ω
Ω
28
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TLC2264Q/M electrical characteristics at specified free-air temperature, V
otherwise noted) (continued)
TLC2264Q,
PARAMETER TEST CONDITIONS
Supply current
DD
(four amplifiers)
†
Full range is –40° C to 125° C for Q suffix, – 55° C to 125° C for M suffix.
O
= 0,
T
25°C 0.85 1 0.85 1
Full range 1 1
TLC2264Q/M operating characteristics at specified free-air temperature, V
PARAMETER TEST CONDITIONS
y
= ±2 V,
SR
n
N(PP)
I
n
OM
φ
m
†
Full range is –40° C to 125° C for Q suffix, – 55° C to 125° C for M suffix.
Equivalent input
noise voltage
Peak-to-peak
equivalent inpu
noise voltage
Equivalent input
noise current
Total harmonic
+
noise
Gain-bandwidth f =10 kHz, R
product
Maximum output- V
swing bandwidth
Phase margin at
unity gain
Gain margin
p
on plus
p
O
=
=
p
f = 10 Hz 25°C 43 43
f = 1 kHz
f = 0.1 Hz to 1 Hz 25°C 0.8 0.8
f = 0.1 Hz to 10 Hz
VO = ±2.3 V,
=
L
f = 20 kHz
CL = 100 pF
RL = 50 kΩ,
= 1,
Step = –2.3 V to 2.3 V,
RL = 50 kΩ,
CL = 100 pF
RL = 50 kΩ, C L = 100 pF
,
= 4.6 V, A
=–
= 50 kΩ ,
L
AV = 1
AV = 10
= 50 kΩ,
= 1,
CL = 100 pF
T
25° C 0.35 0.55 0.35 0.55
Full
range
25°C 12 12
25°C 1.3 1.3
25°C 0.6 0.6
°
°
°
25°C 57° 57°
25°C 11 11 dB
TLC2264M
MIN TYP MAX MIN TYP MAX
DD±
TLC2264Q,
TLC2264M
MIN TYP MAX MIN TYP MAX
0.014% 0.014%
0.024% 0.024%
= ± 5 V (unless
DD±
TLC2264AQ,
TLC2264AM
= ±5 V
TLC2264AQ,
TLC2264AM
UNIT
UNIT
V/µ s
n
µ
fA/√ Hz
z
z
z
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
29
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TYPICAL CHARACTERISTICS
V
IO
α
VIO
IIB/I
IO
V
I
V
OH
V
OL
V
OM+
V
OM–
V
O(PP)
I
OS
V
O
A
VD
z
o
CMRR Common-mode rejection ratio
k
SVR
I
DD
SR Slew rate
O
V
n
THD + N Total harmonic distortion plus noise vs Frequency 55
φ
m
B
1
Input offset voltage
Input offset voltage temperature coefficient Distribution 8 – 11
Input bias and input offset currents vs Free-air temperature 12
Input voltage range
High-level output voltage vs High-level output current 15
Low-level output voltage vs Low-level output current 16, 17
Maximum positive peak output voltage vs Output current 18
Maximum negative peak output voltage vs Output current 19
Maximum peak-to-peak output voltage vs Frequency 20
Short-circuit output current
Output voltage vs Differential input voltage 23, 24
Differential gain vs Load resistance 25
Large-signal differential voltage amplification
Output impedance vs Frequency 30, 31
Supply-voltage rejection ratio
Supply current
Inverting large-signal pulse response 43, 44
Voltage-follower large-signal pulse response 45, 46
Inverting small-signal pulse response 47, 48
Voltage-follower small-signal pulse response 49, 50
Equivalent input noise voltage vs Frequency 51, 52
Noise voltage (referred to input) Over a 10-second period 53
Integrated noise voltage vs Frequency 54
Gain-bandwidth product
Phase margin
Gain margin vs Load capacitance 59
Unity-gain bandwidth vs Load capacitance 60
Overestimation of phase margin vs Load capacitance 61
Table of Graphs
Distribution
vs Common-mode input voltage
vs Supply voltage
vs Free-air temperature
vs Supply voltage
vs Free-air temperature
vs Frequency
vs Free-air temperature
vs Frequency
vs Free-air temperature
vs Frequency
vs Free-air temperature
vs Supply voltage
vs Free-air temperature
vs Load capacitance
vs Free-air temperature
vs Supply voltage
vs Free-air temperature
vs Frequency
vs Load capacitance
FIGURE
2 – 5
6, 7
13
14
21
22
26, 27
28, 29
32
33
34, 35
36
37, 38
39, 40
41
42
56
57
26, 27
58
30
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Advanced LinCMOS RAIL-TO-RAIL
TYPICAL CHARACTERISTICS
TLC226x, TLC226xA
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
DISTRIBUTION OF TLC2262
INPUT OFFSET VOLTAGE
25
1274 Amplifiers From 2 Wafer Lots
V
= ± 2.5 V
DD±
TA = 25°C
20
15
10
Precentage of Amplifiers – %
5
0
–1.6 –0.8 0 0.8 1.6
VIO – Input Offset Voltage – mV
Figure 2
DISTRIBUTION OF TLC2264
INPUT OFFSET VOLTAGE
20
2272 Amplifiers From 2 Wafer Lots
V
= ±2.5 V
DD±
TA = 25°C
16
DISTRIBUTION OF TLC2262
INPUT OFFSET VOLTAGE
25
1274 Amplifiers From 2 Wafer Lots
V
= ± 5 V
DD±
TA = 25°C
20
15
10
Percentage of Amplifiers – %
5
0
–1.6 –0.8 0 0.8 1.6
VIO – Input Offset Voltage – mV
Figure 3
DISTRIBUTION OF TLC2264
INPUT OFFSET VOLTAGE
20
2272 Amplifiers From 2 Wafer Lots
V
= ±5 V
DD±
TA = 25°C
16
12
8
Percentage of Amplifiers – %
4
0
–1.6 –0.8 0 0.8 1.6
VIO – Input Offset Voltage – mV
Figure 4
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
12
8
Percentage of Amplifiers – %
4
0
–1.6 –0.8 0 0.8 1.6
VIO – Input Offset Voltage – mV
Figure 5
31
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TYPICAL CHARACTERISTICS
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
1
VDD = 5 V
RS = 50 Ω
TA = 25°C
0.5
0
–0.5
IO
VIO – Input Offset Voltage – mV
V
–1
– 101234 5
VIC – Common-Mode Input Voltage – V
†
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
Figure 6
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
1
V
= ±5 V
DD±
RS = 50 Ω
TA = 25°C
0.5
0
–0.5
IO
VIO – Input Offset Voltage – mV
V
–1
–6 –5 –4 –3 –2 –1 0 1 2 3 4 5
VIC – Common-Mode Input Voltage – V
Figure 7
DISTRIBUTION OF TLC2262 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
30
128 Amplifiers From 2 Wafer Lots
V
= ± 2.5 V
DD±
P Package
25
TA = 25° C to 125°C
20
15
10
Percentage of Amplifiers – %
5
0
–5 –4 –3 –2 –1 0 1 2 3 4 5
α
– Temperature Coefficient – µV/°C
VIO
Figure 8
DISTRIBUTION OF TLC2262 INPUT OFFSET
†
Percentage of Amplifiers – %
VOLTAGE TEMPERATURE COEFFICIENT
30
128 Amplifiers From 2 Wafer Lots
V
= ± 5 V
DD±
P Package
25
TA = 25° C to 125°C
20
15
10
5
0
–5 –4 –3 –2 –1 0 1 2 3 4 5
α
– Temperature Coefficient – µV/°C
VIO
†
Figure 9
†
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
32
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Advanced LinCMOS RAIL-TO-RAIL
TYPICAL CHARACTERISTICS
TLC226x, TLC226xA
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
DISTRIBUTION OF TLC2264 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
35
128 Amplifiers From
2 Wafer Lots
30
V
= ± 2.5 V
DD±
N Package
TA = 25° C to 125°C
25
20
15
10
Percentage of Amplifiers – %
5
0
–5 –4 –3 –2 –1 0 1 2 3 4 5
α
– Temperature Coefficient of
VIO
Input Offset Voltage – µV/°C
Figure 10
INPUT BIAS AND INPUT OFFSET CURRENTS
vs
FREE-AIR TEMPERATURE
35
V
= ±2.5 V
DD±
VIC = 0 V
30
VO = 0
RS = 50 Ω
25
20
15
10
IO
5
I
0
IB
IIB and IIO – Input Bias and Input Offset Currents – pA
I
25 45 65 85
TA – Free-Air Temperature – °C
I
IB
105 125
DISTRIBUTION OF TLC2264 INPUT OFFSET
†
Percentage of Amplifiers – %
VOLTAGE TEMPERATURE COEFFICIENT
35
128 Amplifiers From
2 Wafer Lots
30
V
= ± 5 V
DD±
N Package
TA = 25°C
25
to 125°C
20
15
10
5
0
–5 –4 –3 –2 –1 0 1 2 3 4 5
α
– Temperature Coefficient of
VIO
Input Offset Voltage – µV/°C
†
Figure 11
INPUT VOLTAGE RANGE
vs
SUPPLY VOLTAGE
10
RS = 50 Ω
8
TA = 25°C
6
4
2
0
I
IO
–2
–4
I
VI – Input Voltage Range – V
V
–6
–8
–10
2345
| V
DD±
| VIO | ≤ 5 mV
678
| – Supply Voltage – V
Figure 12
†
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Figure 13
33
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TYPICAL CHARACTERISTICS
INPUT VOLTAGE RANGE
vs
FREE-AIR TEMPERATURE
5
VDD = 5 V
4
3
2
1
I
VI – Input Voltage Range – V
V
0
–1
–75 –55 –35 –15 25 45 65 85 105 125
TA – Free-Air Temperature – °C
| VIO | ≤5 mV
5
Figure 14
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
1.2
VDD = 5 V
TA = 25°C
1
VIC = 0
0.8
0.6
0.4
VIC = 1.25 V
VIC = 2.5 V
†‡
HIGH-LEVEL OUTPUT VOLTAGE
†‡
vs
HIGH-LEVEL OUTPUT CURRENT
6
VDD = 5 V
5
4
3
2
OH
1
VOH – High-Level Output Voltage – V
V
0
TA = 125°C
TA = 25°C
TA = –40°C
0 500 1000
|IOH| – High-Level Output Current – µA
1500 2000 3000 3500 2500
TA = –55°C
Figure 15
‡
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
1.4
VDD = 5 V
VIC = 2.5 V
1.2
TA = 125°C
1
0.8
0.6
TA = –40°C
0.4
TA = 25°C
†‡
TA = –55°C
OL
0.2
V
VOL – Low-Level Output Voltage – V
0
0123
IOL – Low-Level Output Current – mA
45
Figure 16
†
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
‡
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
34
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
OL
VOL – Low-Level Output Voltage – V
V
0.2
0
0123
IOL – Low-Level Output Current – mA
456
Figure 17
Advanced LinCMOS RAIL-TO-RAIL
TYPICAL CHARACTERISTICS
TLC226x, TLC226xA
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
MAXIMUM POSITIVE OUTPUT VOLTAGE
vs
OUTPUT CURRENT
6
V
= ±5 V
DD±
5
4
TA = 125°C
3
2
1
OM +
VOM + – Maximum Positive Output Voltage – V
V
0
0 500 1000
| IO | – Output Current – µA
TA = 25°C
TA = –40°C
1500 2000 3000
Figure 18
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
10
V
9
8
7
6
5
= ±5 V
DD±
VDD = 5 V
TA = –55°C
RL = 10 kΩ
TA = 25°C
†
MAXIMUM NEGATIVE OUTPUT VOLTAGE
†
vs
OUTPUT CURRENT
–3.8
V
= ±5 V
DD±
VIC = 0
–4
TA = 125°C
–4.2
–4.4
TA = –40°C
–4.6
–4.8
OM –
V
VOM – – Maximum Negative Output Voltage – V
–5
3500 2500
01 2
TA = 25°C
TA = –55°C
3456
IO – Output Current – mA
Figure 19
†‡
12
10
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
VID = –100 mV
8
VO = 0
6
TA = 25°C
4
4
3
2
1
O(PP)
0
V
VO(PP ) – Maximum Peak-to-Peak Output Voltage – V
‡
For curves where VDD = 5 V , all loads are referenced to 2.5 V .
10
3
4
10
f – Frequency – Hz
10
5
10
6
2
0
OS
–2
I
IOS – Short-Circuit Output Current – mA
–4
2345678
VID = 100 mV
| V
| – Supply Voltage – V
DD±
Figure 20 Figure 21
†
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
35
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TYPICAL CHARACTERISTICS
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
13
12
11
10
9
8
7
1
0
–1
–2
OS
IOS – Short-Circuit Output Current – mA
I
–3
–4
–75
VID = –100 mV
VID = 100 mV
–50
–25
0 25 50 75 100 125
TA – Free-Air Temperature – °C
Figure 22
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
5
V
= ±5 V
DD±
VIC = 0 V
RL = 50 kΩ
TA = 25°C
3
VO = 0
V
DD±
= ±5 V
†
OUTPUT VOLTAGE
‡
vs
DIFFERENTIAL INPUT VOLTAGE
5
VDD = 5 V
RL = 50 kΩ
VIC = 2.5 V
TA = 25°C
4
3
2
– Output Voltage – V
O
V
1
0
–1000 –750 –250 –500
VID – Differential Input Voltage – µV
0 250
500 750 1000
Figure 23
‡
10
10
4
V
TA = 25°C
3
O(PP)
DIFFERENTIAL GAIN
vs
LOAD RESISTANCE
= 2 V
V
= ±5 V
DD±
1
2
10
–1
– Output Voltage – V
O
V
–3
–5
–1000 –750 –250 –500
VID – Differential Input Voltage – µV
0 250
500 750 1000
Figure 24
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
‡
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
36
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Differential Gain – V/ mV
10
1
3
10
RL – Load Resistance – kΩ
10
Figure 25
4
VDD = 5 V
10
5
10
6
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
80
VDD = 5 V
CL= 100 pF
TA = 25°C
60
†
180°
135°
40
20
Gain
0
Voltage Amplification – dB
VD
A
A VD – Large-Signal Differential
–20
–40
3
10
†
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
4
10
f – Frequency – Hz
10
5
Phase Margin
6
10
Figure 26
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
80
V
= ±5 V
DD±
CL = 100 pF
TA = 25°C
60
10
90°
45°
0°
–45°
–90°
7
m
om – Phase Margin
φ
180°
135°
40
20
0
Voltage Amplification – dB
VD
A
A VD – Large-Signal Differential
–20
–40
10
3
4
10
f – Frequency – Hz
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Gain
5
10
Figure 27
Phase Margin
6
10
10
90°
45°
0°
–45°
–90°
7
m
om – Phase Margin
φ
37
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
4
10
VDD = 5 V
VIC = 2.5 V
VO = 1 V to 4 V
3
10
RL = 50 kΩ
2
10
Voltage Amplification – V/mV
VD
A
A VD – Large-Signal Differential
1
10
–75 –50 –25 0 25 50 75 100 125
TA – Free-Air Temperature – °C
RL = 1 MΩ
RL = 10 kΩ
Figure 28
†‡
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
FREE-AIR TEMPERATURE
4
10
3
10
RL = 50 kΩ
2
10
Voltage Amplification – V/mV
VD
A
A VD – Large-Signal Differential
1
10
–75 –50 –25 0 25 50 75 100 125
TA – Free-Air Temperature – °C
Figure 29
vs
RL = 1 MΩ
RL = 10 kΩ
†
V
= ±5 V
DD±
VIC = 0 V
VO = ±4 V
OUTPUT IMPEDANCE
‡
vs
FREQUENCY
1000
VDD = 5 V
TA = 25°C
Ω
100
AV = 100
10
AV = 10
o
1
z
zo – Output Impedance – 0
AV = 1
0.1
10
2
3
10
f – Frequency – Hz
10
4
10
5
10
6
1000
V
DD±
TA = 25°C
Ω
100
AV = 100
10
0.1
1
10
AV = 10
AV = 1
2
o
z
zo – Output Impedance – 0
Figure 30
†
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
‡
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
OUTPUT IMPEDANCE
vs
FREQUENCY
= ±5 V
3
10
10
f – Frequency – Hz
Figure 31
4
10
5
10
6
38
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Advanced LinCMOS RAIL-TO-RAIL
TYPICAL CHARACTERISTICS
TLC226x, TLC226xA
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
100
V
= ±5 V
DD±
80
VDD = 5 V
60
40
20
CMRR – Common-Mode Rejection Ratio – dB
0
10
1
10
2
10
f – Frequency – Hz
3
10
4
Figure 32
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
100
80
60
k
SVR–
40
5
10
VDD = 5 V
TA = 25°C
k
SVR+
†
COMMON-MODE REJECTION RATIO
†‡
vs
FREE-AIR TEMPERATURE
90
V
= ±5 V
DD±
88
86
84
VDD = 5 V
82
CMRR – Common-Mode Rejection Ratio – dB
10
6
80
–75 –50 –25 0 25 50 75 100
TA – Free-Air Temperature – °C
125
Figure 33
†
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
100
80
60
k
SVR–
40
V
= ±5 V
DD±
TA = 25°C
k
SVR+
20
0
SVR
k
KSVR – Supply-Voltage Rejection Ratio – dB
–20
10
1
2
10
10
f – Frequency – Hz
3
10
4
10
5
10
6
Figure 34
†
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
‡
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
20
0
SVR
k
KSVR – Supply-Voltage Rejection Ratio – dB
–20
10
1
2
10
f – Frequency – Hz
Figure 35
10
3
10
4
10
5
10
6
39
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TYPICAL CHARACTERISTICS
SUPPLY-VOLTAGE REJECTION RATIO
FREE-AIR TEMPERATURE
110
V
= ±2.2 V to ±8 V
DD±
VO = 0
105
100
95
SVR
KSVR – Supply-Voltage Rejection Ratio – dB
k
90
–75
–50 –25 0 25 50 75 100 125
TA – Free-Air Temperature – °C
Figure 36
vs
TLC2262
†
SUPPLY CURRENT
†
vs
SUPPLY VOLTAGE
600
VO = 0
No Load
500
Aµ
400
300
200
DD
I
IDD – Supply Current – uA
100
0
012345
TA = –55°C
TA = 125°C
| V
| – Supply Voltage – V
DD±
TA = 25°C
TA = 40°C
678
Figure 37
TLC2264
SUPPLY CURRENT
†
vs
SUPPLY VOLTAGE
1200
VO = 0
No Load
1000
Aµ
800
600
400
DD
I
IDD – Supply Current – uA
200
0
012345
TA = –55°C
TA = 125°C
| V
| – Supply Voltage – V
DD±
TA = 40°C
TA = 25°C
678
600
500
Aµ
400
300
200
DD
I
IDD – Supply Current – uA
100
0
–75 –50 –25 0 25 50 75 100
FREE-AIR TEMPERATURE
V
DD±
VO = 0
TA – Free-Air Temperature – °C
Figure 38
†
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
‡
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
TLC2262
SUPPLY CURRENT
vs
= ±5 V
VDD = 5 V
VO = 2.5 V
Figure 39
†‡
125
40
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Advanced LinCMOS RAIL-TO-RAIL
TYPICAL CHARACTERISTICS
TLC226x, TLC226xA
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
SUPPLY CURRENT
FREE-AIR TEMPERATURE
1200
V
1000
Aµ
800
600
400
DD
I
IDD – Supply Current – uA
200
0
–75
DD±
VO = 0
–50 –25 0 25 50 75 100 125
TA – Free-Air Temperature – °C
TLC2264
vs
= ±5 V
VDD = 5 V
VO = 2.5 V
Figure 40
†‡
1
VDD = 5 V
AV = –1
TA = 25°C
0.8
sµ
V/
0.6
0.4
SR – Slew Rate – v/us
0.2
0
1
10
CL – Load Capacitance – pF
SLEW RATE
‡
vs
LOAD CAPACITANCE
10
2
10
3
Figure 41
SR–
SR+
10
4
SLEW RATE
†‡
vs
FREE-AIR TEMPERATURE
1.2
1
SR–
0.8
V/
0.6
0.4
SR – Slew Rate – v/us sµ
VDD = 5 V
RL = 50 kΩ
0.2
CL = 100 pF
AV = 1
0
–75 –50 –25 0 25 50 75 100
TA – Free-Air Temperature – °C
SR+
Figure 42
125
INVERTING LARGE-SIGNAL PULSE
5
VDD = 5 V
RL = 50 kΩ
CL = 100 pF
4
AV = –1
TA = 25°C
3
2
O
V
VO – Output Voltage – V
1
0
0 2 4 6 8 10 12
RESPONSE
t – Time – µs
Figure 43
‡
14 16 18 20
†
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
‡
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
41
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TYPICAL CHARACTERISTICS
INVERTING LARGE-SIGNAL PULSE
RESPONSE
5
V
= ±5 V
DD±
RL = 50 kΩ
4
CL = 100 pF
3
AV = –1
TA = 25°C
2
1
0
–1
O
–2
V
VO – Output Voltage – V
–3
–4
–5
024681 01 2
Figure 44
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
5
V
= ±5 V
DD±
RL = 50 kΩ
4
CL = 100 pF
3
AV = 1
TA = 25°C
2
t – Time – µs
14 16 18 20
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
5
VDD = 5 V
RL = 50 kΩ
CL = 100 pF
4
AV = 1
TA = 25°C
3
2
O
V
VO – Output Voltage – V
1
0
0 2 4 6 8 10 12
INVERTING SMALL-SIGNAL
2.65
VDD = 5 V
RL = 50 kΩ
CL = 100 pF
2.6
AV = –1
TA = 25°C
14 16 18 20
t – Time – µs
Figure 45
PULSE RESPONSE
†
†
1
0
–1
O
–2
V
VO – Output Voltage – V
–3
–4
–5
024681 01 2
t – Time – µs
14 16 18 20
Figure 46 Figure 47
†
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
42
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
2.55
2.5
O
V
VO – Output Voltage – V
2.45
2.4
0 2 4 6 8 10 12
14 16 18 20
t – Time – µs
Advanced LinCMOS RAIL-TO-RAIL
TYPICAL CHARACTERISTICS
TLC226x, TLC226xA
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
INVERTING SMALL-SIGNAL
PULSE RESPONSE
100
50
0
O
V
VO – Output Voltage – mV
–50
–100
024681 01 2
t – Time – µs
Figure 48
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
100
V
= ±5 V
DD±
RL = 50 kΩ
CL = 100 pF
AV = 1
TA = 25°C
50
V
= ±5 V
DD±
RL = 50 kΩ
CL = 100 pF
AV = –1
TA = 25°C
14 16 18 20
nV/ Hz
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
2.65
VDD = 5 V
RL = 50 kΩ
CL = 100 pF
2.6
AV = 1
TA = 25°C
2.55
2.5
O
V
VO – Output Voltage – V
2.45
2.4
0 2 4 6 8 10 12
EQUIVALENT INPUT NOISE VOLTAGE
60
VDD = 5 V
RS = 20 Ω
TA = 25°C
50
40
†
14 16 18 20
t – Time – µs
Figure 49
†
vs
FREQUENCY
0
O
V
VO – Output Voltage – V
–50
–100
0 2 4 6 8 10 12
t – Time – µs
14 16 18 20
Figure 50
†
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
30
20
10
n
V
VN – Equivalent Input Noise Voltage – nv//Hz
0
1
10
2
10
f – Frequency – Hz
Figure 51
10
3
10
4
43
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TYPICAL CHARACTERISTICS
EQUIVALENT INPUT NOISE VOLTAGE
60
V
DD±
RS = 20 Ω
TA = 25°C
50
nV/ Hz
40
30
20
10
n
V
VN – Equivalent Input Noise Voltage – nv//Hz
0
1
10
100
Calculated Using Ideal Pass-Band Filter
Low Frequency = 1 Hz
Vµ
TA = 25°C
vs
FREQUENCY
= ±5 V
2
10
f – Frequency – Hz
10
3
Figure 52
INTEGRATED NOISE VOLTAGE
vs
FREQUENCY
10
4
EQUIVALENT INPUT NOISE VOLTAGE OVER
A 10-SECOND PERIOD
1000
750
500
250
0
–250
Noise Voltage – nV
–500
–750
–1000
VDD = 5 V
f = 0.1 Hz to 10 Hz
TA = 25°C
0246
t – Time – s
Figure 53
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
0.1
AV = 100
†
81 0
†
10
1
Integrated Noise Voltage –
0.1
10
0
1
10
f – Frequency – Hz
10
2
10
3
10
4
Figure 54
†
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
44
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
10
0.01
THD + N – Total Harmonic Distortion Plus Noise – %
5
0.001
VDD = 5 V
RL = 50 kΩ
TA = 25°C
1
10
AV = 10
AV = 1
10
2
f – Frequency – Hz
10
3
Figure 55
10
4
10
5
Advanced LinCMOS RAIL-TO-RAIL
TYPICAL CHARACTERISTICS
TLC226x, TLC226xA
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
940
f = 10 kHz
RL = 50 kΩ
CL = 100 pF
900
TA = 25°C
860
820
780
Gain-Bandwidth Product – kHz
740
14 6
02 35
| VDD ±| – Supply Voltage – V
Figure 56
PHASE MARGIN
vs
LOAD CAPACITANCE
75°
TA = 25°C
78
GAIN-BANDWIDTH PRODUCT
vs
FREE-AIR TEMPERATURE
1200
1000
800
600
Gain-Bandwidth Product – kHz
400
–75 –25 0 25 50 75 100 125
–50
TA – Free-Air Temperature – °C
VDD = 5 V
f = 10 kHz
CL = 100 pF
Figure 57
GAIN MARGIN
vs
LOAD CAPACITANCE
20
TA = 25°C
†‡
60°
R
= 100 Ω
null
R
= 50 Ω
45°
30°
m
om – Phase Margin
φ
15°
50 kΩ
V
I
0°
1
10
50 kΩ
V
DD+
R
null
–
+
V
DD–
10
CL – Load Capacitance – pF
C
2
null
R
= 20 Ω
null
R
= 10 Ω
null
L
10
R
= 0
null
3
10
4
Figure 58
†
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
‡
For curves where VDD = 5 V, all loads are referenced to 2.5 V.
15
10
R
null
Gain Margin – dB
5
0
1
10
R
= 100 Ω
null
= 50 Ω
R
= 20 Ω
null
R
= 10 Ω
null
R
2
10
CL – Load Capacitance – pF
10
3
Figure 59
null
= 0
10
4
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
45
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
TYPICAL CHARACTERISTICS
UNITY-GAIN BANDWIDTH
LOAD CAPACITANCE
1000
TA = 25°C
800
600
– Unity-Gain Bandwidth – kHz
400
1
B
200
1
10
†
See application information
10
CL – Load Capacitance – pF
vs
2
Figure 60
10
†
OVERESTIMATION OF PHASE MARGIN
†
vs
LOAD CAPACITANCE
14°
TA = 25°C
12°
R
= 100 Ω
10°
8°
6°
4°
R
Overestimation of Phase Margin
3
10
4
null
2°
0
1
10
null
R
= 10 Ω
2
10
CL – Load Capacitance – pF
null
10
= 50 Ω
R
null
3
= 20 Ω
10
4
Figure 61
46
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
APPLICATION INFORMATION
driving large capacitive loads
The TLC226x is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 58
and Figure 59 illustrate its ability to drive loads greater than 400 pF while maintaining good gain and phase
margins (R
A smaller series resistor (R
when driving large capacitive loads. Figure 58 and Figure 59 show the effects of adding series resistances of
10 Ω , 20 Ω, 50 Ω , and 100 Ω. The addition of this series resistor has two effects: the first is that it adds a zero
to the transfer function and the second is that it reduces the frequency of the pole associated with the output
load in the transfer function.
The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To
calculate the improvement in phase margin, equation 1 can be used.
where :
= 0).
null
) at the output of the device (see Figure 62) improves the gain and phase margins
null
–1
∆Θm1+
∆Θm1+
UGBW+ unity-gainbandwidthfrequency
R
+
null
CL+
ǒ
tan
improvementinphasemargin
outputseriesresistance
loadcapacitance
2 × π × UGBW × R
null
× C
Ǔ
L
(1)
The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 60). To
use equation 1, UGBW must be approximated from Figure 60.
Using equation 1 alone overestimates the improvement in phase margin, as illustrated in Figure 61. The
overestimation is caused by the decrease in the frequency of the pole associated with the load, thus providing
additional phase shift and reducing the overall improvement in phase margin. The pole associated with the load
is reduced by the factor calculated in equation 2.
F
+
1) g
Where :
F+ factorreducingfrequencyofpole
gm+
R
null
For the TLC226x, the pole associated with the load is typically 7 MHz with 100-pF load capacitance. This value
varies inversely with CL: at CL = 10 pF, use 70 MHz, at CL = 1000 pF, use 700 kHz, and so on.
Reducing the pole associated with the load introduces phase shift, thereby reducing phase margin. This results
in an error in the increase in phase margin expected by considering the zero alone (equation 1). Equation 3
approximates the reduction in phase margin due to the movement of the pole associated with the load. The
result of this equation can be subtracted from the result of the equation in equation 1 to better approximate the
improvement in phase margin.
small-signaloutputtransconductance(typically 4.83 × 10–3mhos)
+
output series resistance
1
R
×
m
null
(2)
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
47
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
APPLICATION INFORMATION
driving large capacitive loads (continued)
ȱ
UGBW
∆Θm2+
Where :
∆Θm2+
UGBW+ unity-gain bandwidth frequency
F
P2+
Using these equations with Figure 60 and Figure 61 enables the designer to choose the appropriate output
series resistance to optimize the design of circuits driving large capacitive loads.
–1
tan
ȧ
ǒ
Ȳ
reduction in phase margin
+
factor from equation 2
unadjusted pole (70 MHz@10 pF, 7 MHz@100 pF, etc.)
ȳ
–tan
ȧ
Ǔ
F× P
ȴ
2
50 kΩ
V
I
Figure 62. Series-Resistance Circuit
–1
UGBW
ǒ
50 kΩ
V
–
+
V
Ǔ
P
2
DD+
DD–/GND
R
null
(3)
C
L
48
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
macromodel information
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
APPLICATION INFORMATION
Macromodel information provided was derived using Microsim
with Microsim
PSpice
. The Boyle macromodel (see Note 5) and subcircuit in Figure 63 are generated using
the TLC226x typical electrical and operating characteristics at T
Parts
, the model generation software used
= 25° C. Using this information, output
A
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
D
Maximum positive output voltage swing
D
Maximum negative output voltage swing
D
Slew rate
D
Quiescent power dissipation
D
Input bias current
D
Open-loop voltage amplification
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Intergrated Circuit Operational Amplifiers,”
Journal of Solid-State Circuits,
V
CC+
RSS ISS
RP
2
IN –
DP
IN+
1
V
CC–
.SUBCKT TLC226x 1 2 3 4 5
C1 11 12 3.560E–12
C2 6 7 15.00E–12
DC 5 53 DX
DE 54 5 DX
DLP 90 91 DX
DLN 92 90 DX
D P 43D X
EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5
FB 7 99 POLY (5) VB VC VE VLP
+ VLN 0 21.04E6 –30E6 30E6 30E6 –30E6
GA 6 0 11 12 47.12E–6
GCM 0 6 10 99 4.9E–9
ISS 3 10 DC 8.250E–6
HLIM 90 0 VLIM 1K
J1 11 2 10 JX
J2 12 1 10 JX
R2 6 9 100.0E3
11
RD1
VAD
SC-9, 353 (1974).
3
10
J1 J2
C1
+
–
4
12
RD2
60
VE
+
VC
DC
54
+ –
DE
R2
–
53
6
9
GCM
D
Unity-gain frequency
D
Common-mode rejection ratio
D
Phase margin
D
DC output resistance
D
AC output resistance
D
Short-circuit output current limit
99
EGND
+
FB
+
–
–
VB
C2
GA
RD1 60 1 1 21.22E3
RD2 60 12 21.22E3
R01 8 5 120
R02 7 99 120
RP 3 4 26.04E3
RSS 10 99 24.24E6
VAD 60 4 –.6
VB 9 0 DC 0
VC 3 53 DC .65
VE 54 4 DC .65
VLIM 7 8 DC 0
VLP 91 0 DC 1.4
VLN 0 92 DC 9.4
.MODEL DX D (IS=800.0E–18)
.MODEL JX PJF (IS=500.0E–15 BETA=281E–6
+ VTO=–.065)
.ENDS
7
VLIM
RO2
HLIM
8
5
OUT
+
–
RO1
90
+
DLP
–
+
–
DLN
92
91
–
+
IEEE
VLN VLP
PSpice
and
Figure 63. Boyle Macromodel and Subcircuit
Parts
are trademarks of MicroSim Corporation.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
49
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
MECHANICAL INFORMATION
D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
14
1
0.069 (1,75) MAX
0.050 (1,27)
A
0.020 (0,51)
0.014 (0,35)
0.010 (0,25)
0.004 (0,10)
8
7
0.010 (0,25)
0.157 (4,00)
0.150 (3,81)
M
0.244 (6,20)
0.228 (5,80)
Seating Plane
0.004 (0,10)
PINS **
DIM
A MAX
A MIN
0.008 (0,20) NOM
Gage Plane
0° –8°
8
0.197
(5,00)
0.189
(4,80)
14
0.344
(8,75)
0.337
(8,55)
0.044 (1,12)
0.016 (0,40)
4040047/B 03/95
16
0.394
(10,00)
0.386
(9,80)
0.010 (0,25)
NOTES: A. All linear dimensions are in inches (millimeters).
50
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
D. Four center pins are connected to die mount pad.
E. Falls within JEDEC MS-012
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
MECHANICAL INFORMATION
FK (S-CQCC-N**) LEADLESS CERAMIC CHIP CARRIER
28 TERMINAL SHOWN
A SQ
B SQ
19
20
21
22
23
24
25
1 28 26 27
12
13 14 15 16 18 17
0.020 (0,51)
0.010 (0,25)
MIN
0.342
(8,69)
0.442
0.640
0.740
0.938
1.141
A
0.358
(9,09)
0.458
(11,63)
0.660
(16,76)
0.761
(19,32) (18,78)
0.962
(24,43)
1.165
(29,59)
NO. OF
TERMINALS
**
11
10
9
8
7
6
5
4 3 2
20
28
44
52
68
84
0.020 (0,51)
0.010 (0,25)
(11,23)
(16,26)
(23,83)
(28,99)
MIN MAX
0.307
(7,80)
0.406
(10,31)
0.495
(12,58)
0.495
(12,58)
0.850
(21,6)
1.047
(26,6)
0.080 (2,03)
0.064 (1,63)
B
MAX
0.358
(9,09)
0.458
(11,63)
0.560
(14,22)
0.560
(14,22)
0.858
(21,8)
1.063
(27,0)
0.055 (1,40)
0.045 (1,14)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
0.045 (1,14)
0.035 (0,89)
0.045 (1,14)
0.035 (0,89)
4040140/C 11/95
51
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
MECHANICAL INFORMATION
J (R-GDIP-T**) CERAMIC DUAL-IN-LINE PACKAGE
14 PIN SHOWN
14
1
B
0.100 (2,54)
0.070 (1,78)
0.065 (1,65)
0.045 (1,14)
8
C
7
0.020 (0,51) MIN
0.200 (5,08) MAX
PINS **
DIM
A MAX
A MIN
B MAX
B MIN
C MAX
C MIN
Seating Plane
0.310
(7,87)
0.290
(7,37)
0.785
(19,94)
0.755
(19,18)
0.280
(7,11)
0.245
(6,22)
0.310
(7,87)
0.290
(7,37)
0.785
(19,94)
0.755
(19,18)
0.300
(7,62)
0.245
(6,22)
0.310
(7,87)
0.290
(7,37)
0.910
(23,10)
0.300
(7,62)
0.245
(6,22)
A
20 18 16 14
0.310
(7,87)
0.290
(7,37)
0.975
(24,77)
0.930
(23,62)
0.300
(7,62)
0.245
(6,22)
22
0.410
(10,41)
0.390
(9,91)
1.100
(28,00)
0.388
(9,65)
0.130 (3,30) MIN
0.100 (2,54)
0.023 (0,58)
0.015 (0,38)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL-STD-1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, GDIP1-T20, and GDIP1-T22
0° –15°
0.014 (0,36)
0.008 (0,20)
4040083/B 04/95
52
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
MECHANICAL INFORMATION
JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE PACKAGE
0.400 (10,20)
0.355 (9,00)
5 8
0.280 (7,11)
0.245 (6,22)
14
0.065 (1,65)
0.045 (1,14)
0.310 (7,87)
0.020 (0,51) MIN
0.290 (7,37)
0.063 (1,60)
0.015 (0,38)
0.100 (2,54)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only
E. Falls within MIL-STD-1835 GDIP1-T8
0.023 (0,58)
0.015 (0,38)
0.200 (5,08) MAX
Seating Plane
0.130 (3,30) MIN
0° –15°
0.015 (0,38)
0.008 (0,20)
4040107/B 04/95
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
53
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
MECHANICAL INFORMATION
N (R-PDIP-T**) PLASTIC DUAL-IN-LINE PACKAGE
16 PIN SHOWN
16
1
0.035 (0,89) MAX
PINS **
DIM
A
9
0.260 (6,60)
0.240 (6,10)
8
0.070 (1,78) MAX
0.020 (0,51) MIN
0.200 (5,08) MAX
A MAX
A MIN
Seating Plane
14
0.775
(19,69)
0.745
(18,92)
16
0.775
(19,69)
0.745
(18,92)
18
0.920
(23.37)
0.850
(21.59)
20
0.975
(24,77)
0.940
(23,88)
0.310 (7,87)
0.290 (7,37)
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)
0.010 (0,25)
M
0.125 (3,18) MIN
0° –15°
0.010 (0,25) NOM
14/18 PIN ONL Y
4040049/C 08/95
54
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
MECHANICAL INFORMATION
P (R-PDIP-T8) PLASTIC DUAL-IN-LINE PACKAGE
0.400 (10,60)
0.355 (9,02)
5 8
0.260 (6,60)
0.240 (6,10)
4 1
0.070 (1,78) MAX
0.020 (0,51) MIN
0.200 (5,08) MAX
0.125 (3,18) MIN
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001
0.010 (0,25)
M
0.310 (7,87)
0.290 (7,37)
Seating Plane
0° –15°
0.010 (0,25) NOM
4040082/B 03/95
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
55
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
MECHANICAL INFORMATION
PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
0,65
14
1
1,20 MAX
A
7
0,10 MIN
0,32
0,19
8
4,50
4,30
6,70
6,10
M
0,13
Seating Plane
0,10
0,15 NOM
Gage Plane
0,25
0° –8°
0,75
0,50
PINS **
DIM
A MAX
A MIN
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153
8
3,10
2,90
14
5,10
4,90
16
5,10
20
6,60
6,40 4,90
24
7,90
7,70
28
9,80
9,60
4040064/D 10/95
56
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
MECHANICAL INFORMATION
U (S-GDFP-F10) CERAMIC DUAL FLATPACK
0.250 (6,35)
0.246 (6,10)
0.006 (0,15)
0.080 (2,03)
0.050 (1,27)
0.004 (0,10)
0.045 (1,14)
0.026 (0,66)
0.250 (6,35)
1
0.250 (6,35)
5
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA
0.300 (7,62)
1.000 (25,40)
0.750 (19,05)
10
0.350 (8,89) 0.350 (8,89)
0.250 (6,35)
0.019 (0,48)
0.015 (0,38)
0.050 (1,27)
6
0.025 (0,64)
0.005 (0,13)
4040179/B 03/95
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
57
TLC226x, TLC226xA
Advanced LinCMOS RAIL-TO-RAIL
OPERATIONAL AMPLIFIERS
SLOS177A – FEBRUARY 1997 – REVISED JULY 1999
MECHANICAL INFORMATION
W (R-GDFP-F16) CERAMIC DUAL FLATPACK
0.085 (2,16)
0.045 (1,14)
0.440 (11,18)
0.371 (9,42)
0.285 (7,24)
0.245 (6,22)
0.305 (7,75)
0.355 (9,02) 0.355 (9,02)
0.235 (5,97)
0.275 (6,99)
16 1
Base and Seating Plane
0.235 (5,97)
0.006 (0,15)
0.004 (0,10)
0.045 (1,14)
0.026 (0,66)
0.019 (0,48)
0.015 (0,38)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL-STD-1835 GDFP1-F16 and JEDEC MO-092AC
0.025 (0,64)
0.015 (0,38)
9 8
1.025 (26,04)
0.745 (18,92)
4040180-3/B 03/95
58
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
IMPORTANT NOTICE
T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty . Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICA TIONS USING SEMICONDUCT OR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICA TIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERST OOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1999, Texas Instruments Incorporated