Texas Instruments TCM4300 User Manual


      )
Data Manual
1996 Mixed-Signal Products
Printed in U.S.A. 10/96
SLWS010F
TCM4300
Data Manual
Advanced RF Cellular Telephone Interface Circuit
(ARCTIC
SLWS010F
October 1996
)
Printed on Recycled Paper
IMPORTANT NOTICE
T exas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify , before placing orders, that the information being relied on is current.
TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI’s standard warranty . T esting and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
Certain applications using semiconductor products may involve potential risks of death, personal injury , or severe property or environmental damage (“Critical Applications”).
TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.
Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer . Questions concerning potential risk applications should be directed to TI through a local SC sales office.
In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.
Copyright 1996, Texas Instruments Incorporated
Contents
Section Title Page
1 Introduction 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Features 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 TCM4300 Functional Block Diagram 1–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Pin Assignments 1–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 Terminal Functions 1–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Electrical Specifications 2–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range 2–1. . . .
2.2 Dissipation Rating Table 2–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Recommended Operating Conditions 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Electrical Characteristics Over Full Range Of Operating Conditions 2–2. . . . . . . . . . .
2.4.1 Power Consumption 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.2 Reference Characteristics 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.3 Terminal Impedance 2–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.4 RXIP, RXIN, RXQP, and RXQN Inputs (AVDD = 3 V, 4.5 V, 5 V) 2–3. . . . . . .
2.4.5 Transmit I and Q Channel Outputs 2–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.6 Auxiliary D/A Converters 2–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.7 Auxiliary D/A Converters Slope (AGC, AFC, PWRCONT) 2–5. . . . . . . . . . . .
2.4.8 Auxiliary D/A Converters Slope (LCDCONTR) 2–5. . . . . . . . . . . . . . . . . . . . . .
2.4.9 RSSI/Battery A/D Converter 2–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5 Operating Characteristics Over Full Range of Operating Conditions 2–6. . . . . . . . . .
2.5.1 Receive (RX) Channel Frequency Response
(RXI, RXQ Input in Digital Mode) 2–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.2 Receive (RX) Channel Frequency Response
(FM Input in Analog Mode) 2–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.3 Transmit (TX) Channel Frequency Response (Digital Mode) 2–6. . . . . . . . . .
2.5.4 Transmit (TX) Channel Frequency Response (Analog Mode) 2–7. . . . . . . . .
3 Parameter Measurement Information 3–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 MCLKOUT Timing Requirements 3–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 TCM4300 to Microcontroller Interface Timing Requirements
(Mitsubishi Read Cycle) 3–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 TCM4300 to Microcontroller Interface Timing Requirements
(Mitsubishi Write Cycle) 3–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 TCM4300 to Microcontroller Interface Timing Requirements
(Intel Read Cycle) 3–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5 TCM4300 to Microcontroller Interface Timing Requirements
(Intel Write Cycle)) 3–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6 TCM4300 to Microcontroller Interface Timing Requirements
(Motorola 16-Bit Read Cycle) 3–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7 TCM4300 to Microcontroller Interface Timing Requirements
(Motorola 16-Bit Write Cycle) 3–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8 TCM4300 to Microcontroller Interface Timing Requirements
(Motorola 8-Bit Read Cycle) 3–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
iii
3.9 TCM4300 to Microcontroller Interface Timing Requirements
(Motorola 8-Bit Write Cycle) 3–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.10 Switching Characteristics, TCM4300 to DSP Interface (Read Cycle) 3–10. . . . . . . . .
3.11 Switching Characteristics, TCM4300 to DSP Interface (Write Cycle) 3–11. . . . . . . . .
4 Principles of Operation 4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 Data Transfer 4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Receive Section 4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 Transmit Section 4–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4 Transmit Burst Operation (Digital Mode) 4–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5 Transmit I And Q Output Level 4–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6 Wide-Band Data Demodulator 4–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7 Wide-band Data Interrupts 4–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.8 Wide-band Data Demodulator General Information 4–9. . . . . . . . . . . . . . . . . . . . . . . .
4.9 Auxiliary DACs, LCD Contrast Converter 4–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.10 RSSI, Battery Monitor 4–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.11 Timing And Clock Generation 4–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.11.1 Clock Generation 4–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.11.2 Speech-Codec Clock Generation 4–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.11.3 Microcontroller Clock 4–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.11.4 Sample Interrupt SINT 4–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.11.5 Phase-Adjustment Strategy 4–13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.12 Frequency Synthesizer Interface 4–15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.13 Power Control Port 4–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.14 Microcontroller-DSP Communications 4–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.15 Microcontroller Register Map 4–21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.16 Wide-Band Data/Control Register 4–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.17 Microcontroller Status and Control Registers 4–23. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.18 LCD Contrast 4–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.19 DSP Register Map 4–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.20 Wide-Band Data Registers 4–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.21 Base Station Offset Register 4–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.22 DSP Status and Control Registers 4–27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.23 Reset 4–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.23.1 Power-On Reset 4–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.23.2 Internal Reset State 4–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.24 Microcontroller Interface 4–29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.24.1 Intel Microcontroller Mode Of Operation 4–29. . . . . . . . . . . . . . . . . . . . . . . . . .
4.24.2 Mitsubishi Microcontroller Mode of Operation 4–30. . . . . . . . . . . . . . . . . . . . .
4.24.3 Motorola Microcontroller Mode of Operation 4–30. . . . . . . . . . . . . . . . . . . . . .
5 Mechanical Data 5–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
iv
List of Illustrations
Figure Title Page
3–1 MCLKOUT Timing Diagram 3–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–2 Microcontroller Interface Timing Requirements
(Mitsubishi Configuration Read Cycle, MTS [1:0] = 10) 3–2. . . . . . . . . . . . . . . . . . . . . .
3–3 Microcontroller Interface Timing Requirements
(Mitsubishi Configuration Write Cycle, MTS [1:0] = 10) 3–3. . . . . . . . . . . . . . . . . . . . . .
3–4 Microcontroller Interface Timing Requirements
(Intel Configuration Read Cycle, MTS [1:0] = 00) 3–4. . . . . . . . . . . . . . . . . . . . . . . . . . .
3–5 Microcontroller Interface Timing Requirements
(Intel Configuration Write Cycle, MTS [1:0] = 00) 3–5. . . . . . . . . . . . . . . . . . . . . . . . . . .
3–6 Microcontroller Interface Timing Requirements
(Motorola 16-Bit Read Cycle, MTS [1:0] = 10) 3–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–7 Microcontroller Interface Timing Requirements
(Motorola 16-Bit Write Cycle, MTS [1:0] = 10) 3–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–8 Microcontroller Interface Timing Requirements
(Motorola 8-Bit Read Cycle, MTS [1:0] = 01) 3–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–9 Microcontroller Interface Timing Requirements
(Motorola 8-Bit Write Cycle, MTS [1:0] = 01) 3–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–10 TCM4300 to DSP Interface (Read Cycle) 3–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–11 TCM4300 to DSP Interface (W rite Cycle) 3–1 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–1 Power Ramp-Up/Ramp-Down TIming Diagram 4–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–2 Transmit Power Ramp-Up/Ramp-Down Functional Diagram 4–7. . . . . . . . . . . . . . . . .
4–3 WBD Manchester-Coded Data Stream 4–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–4 Codec Master and Sample Clock Timing 4–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–5 Timing and Clock Generation for 38.88-MHz Clock 4–14. . . . . . . . . . . . . . . . . . . . . . . . .
4–6 Synthesizer Interface Circuit Block Diagram 4–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–7 Contents of SynData Registers 4–17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–8 Example Synthesizer Output 4–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–9 Internal and External Power Control Logic 4–19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–10 Microcontroller-DSP Data Buffers 4–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–11 DSP Interface 4–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–12 Power-On Reset Timing 4–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
v
List of Tables
Table Title Page
4–1 TCM4300 Receive Channel Control Signals 4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–2 RXIP, RXIN, RXQP, and RXQN Inputs (AV
4–3 Receive (RX) Channel Frequency Response (FM Input in Analog Mode) 4–3. . . . . .
4–4 Receive (RX) Channel Frequency Response (RXI, RXQ Input in Digital Mode) 4–3.
4–5 Transmit (TX) I and Q Channel Outputs 4–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–6 Transmit (TX) Channel Frequency Response (Digital Mode) 4–5. . . . . . . . . . . . . . . . .
4–7 Transmit (TX) Channel Frequency Response (Analog Mode) 4–5. . . . . . . . . . . . . . . .
4–8 Typical Bit-Error-Rate Performance (WBD_BW = 000) 4–8. . . . . . . . . . . . . . . . . . . . . .
4–9 Bits in Control Register WBDCtrl 4–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–10 Auxiliary D/A Converters 4–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–11 Auxiliary D/A Converters Slope (AGC, AFC, PWRCONT) 4–10. . . . . . . . . . . . . . . . . . .
4–12 Auxiliary D/A Converters Slope (LCDCONTR) 4–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–13 RSSI/Battery A/D Converter 4–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–14 Synthesizer Control Fields 4–17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–15 External Power Control Signals 4–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–16 Microcontroller Register Map 4–21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–17 Microcontroller Register Definitions 4–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–18 WBDCtrl Register 4–23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–19 MStatCtrl Register Bits 4–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–20 DSP Register Map 4–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–21 DSP Register Definitions 4–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–22 DStatCtrl Register Bits 4–27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–23 Power-On Reset Register Initialization 4–28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–24 Microcontroller Interface Configuration 4–29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–25 Microcontroller Interface Connections for Intel Mode 4–29. . . . . . . . . . . . . . . . . . . . . . . .
4–26 Microcontroller Interface Connections for Mitsubishi Mode 4–30. . . . . . . . . . . . . . . . . . .
4–27 Microcontroller Interface Connections for Motorola Mode (8 bits) 4–30. . . . . . . . . . . . .
4–28 Microcontroller Interface Connections for Motorola Mode (16 bits) 4–31. . . . . . . . . . . .
= 3 V, 4.5 V, 5 V) 4–2. . . . . . . . . . . . . .
DD
vi
1 Introduction
Texas Instruments (TI) TCM4300 IS-54B advanced RF cellular telephone interface circuit (ARCTIC) provides a baseband interface between the digital signal processor (DSP), the microcontroller, and the RF modulator/demodulator in a dual-mode IS-54B cellular telephone. See the TCM4300 functional block diagram.
In the analog mode, the TCM4300 provides all required baseband filtering as well as transmit D/A conversion and receive A/D conversion using dual 10-bit sigma-delta converters. In addition, a WBD wide-band data (WBD) –10 kb/s Manchester frequency shift key (FSK) demodulator is provided to allow reduced DSP processing load during subscriber standby mode.
In the digital mode, the TCM4300 accepts I and Q baseband data and performs A/D and D/A conversion and square-root raised-cosine filtering using dual 10-bit sigma-delta converters. The TCM4300 also has a π/4-DQPSK modulation encoder for dibit-to-symbol conversion in the digital transmit mode.
The microcontroller interface is compatible with a wide range of microcontrollers. A microcontroller can be used to communicate with the user interface (keyboard, display , etc.) and to program up to three frequency synthesizers by using the on-chip synthesizer interface circuit.
The TCM4300 provides advanced power control to minimize the power consumption of many dual-mode telephone functional blocks such as the speech codec, FM receiver, I and Q demodulator , transmitter signal processor, and RF power amplifier. In addition, the TCM4300 is designed to reduce system power consumption through low-voltage operation and standby mode.
The TCM4300 is offered in the 100-pin PZ package and is characterized for free-air operation from –40°C to 85°C.
1.1 Features
Compliance With TIA IS-54B Dual-Mode Cellular Standard
Baseband Transmit Digital-to-Analog (D/A) Conversion and Receive Analog-to-Digital (A/D)
Conversion in Analog Transmit Mode Using Dual 10-Bit Sigma-Delta Converters
Square Root Raised Cosine (SQRC) Filtering in the Digital Mode Using Dual 10-Bit Sigma-Delta Converters
π/4-Differential Quadrature Phase-Shift Key (DQPSK) Modulation Encoder in Digital Transmit Mode
Power Control Supervision for Radio Frequency (RF) Power Amplifier, Automatic Frequency Control (AFC), Automatic Gain Control (AGC), and Synthesizer
Received Signal Strength Indicator (RSSI) and Battery-Level A/D Conversion Circuitry
Internal Clock Generation
Wide-Band Data Clock Recovery and Manchester Decoding
General-Purpose Digital Signal Processor (DSP) and Microcontroller Interface
3.3-V and 5-V Operation
Low Power Consumption
TI and ARCTIC are trademarks of Texas Instruments Incorporated.
1–1
1.2 TCM4300 Functional Block Diagram
TXIP
TXIN
TXQP TXQN
RXIP RXIN
RXQN
RXQP
FM
AGC
AFC
PWRCONT
PAEN
OUT1
FMRXEN
IQRXEN
TXEN SCEN
SYNOL
TXONIND
SYNCLK
SYNDTA
SYNLE
[2:0]
RSSI
BAT
LCDCONTR
Low­Pass Filter
Low­Pass Filter
0Fh 10h
Anti-
aliasing
Filter
Anti-
aliasing
Filter
Low­Pass Filter
D/A
D/A
D/A
Power
Control
Synthesizer
Interface
3
03h – 09h
TX
Offset
8
8
8
D/A
D/A
A/D
A/D
Wide-band
Demodulator
D/As
09h(D)
0Ah(D)
Control
Registers
0Bh(D)
A/D
D/A
AUX
Data
DStatCtrl
Register
MStatCtrl
Register
Digital Filter
Analog
Mode (LPF)
Digital
Mode (SQRC)
Digital Filter
Analog
Mode (LPF)
Digital
Mode (SQRC)
Internal
Clocks
7
8
0Ch
0Eh
Microcontroller
to DSP FIFO
4
6
RXI 02h
RXQ 03h
WBD
Register
WBD
Control
Clock
Generation
and
Timing
Adjustment
Logic
10
8
8
RSSI
0Bh BAT
0Ch
LCD
0Dh
I
Q
Sample
Register
00h
01h 00h
06h 01h
A D
A
D
ModeSel
8
8
4
8
10
8 8
5
5
8
π/4 Shifted
DQPSK
Modulation
10
38.88MHz
10
8
TXI (04b)
TX Data
Registers
TXQ (05b)
DSP
Interface
Control
Data
Address
Internal RESET
Clock
Oscillator
TX
Common Mode Input
Bias
Control
Vref
8
06h
8
01h
Micro-
controller
Interface Control
Data
Address
Power On
RESET
Ref
Gen
DSP to
Microcontroller
FIFO
6 8 5
10
3
CONTROL
10
DATA
4
ADDRESS
RSINL
RSOUTH RSOUTL
SINT MCCLK CSCLK CMCLK
XTAL MCLKIN MCLKOUT
VCM
RBIAS
VHR
REFCAP MWBDFINT
DWBDINT CINT
DINT
CONTROL DATA
ADDRESS
1–2
1.3 Pin Assignments
PZ PACKAGE
(TOP VIEW)
BAT
RSSI
AV
REF
DD
FM
RXQN RXQP
AVDDRX
RXIN RXIP
AGC
AFC
RX
AV
SS
V
SS
VHR
VCM
PWRCONT
TXIP TXIN
AV
TX
DD
TXQP TXQN
AV
TX
SS
TXEN
TXONIND
PAEN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
SS
AV REF
REFCAP
RBIAS
98
99
100
28
27
26
SS
IQRXEN
V
96
97
30
29
FMRXEN
SCEN
CSCLK
CMCLK
93
94
95
33
32
31
92
34
SS
DVDDDV
90
91
36
35
DSPD9
DSPD8
88
89
38
37
DSPD6
DSPD7
85
86
87
41
40
39
DSPD5
DSPD4
DSPD3
83
84
43
42
DSPD2
DSPD1
DSPD0
80
81
82
46
45
44
SINT
DWBDINT
CINT
77
78
79
49
48
47
SS
DV
76
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
50
DV
DD
DSPA0 DSPA1 DSPA2 DSPA3 DSPCSL DSPRW DSPSTRBL MCLKOUT XTAL
DV
SS
MCLKIN DV
DD
MCCLK RSOUTL RSOUTH RSINL MCD7 MCD6 MCD5 MCD4 MCD3 MCD2 MCD1 MCD0
OUT1
SYNOL
SYNLE0
SYNLE1
SYNLE2
SYNDTA
SYNCLK
SS
DD
MTS1
MTS0
DV
DV
LCDCONTR
MCA0
MCCSL
MCCSH
MCA1
MCA2
MCA3
MCA4
DD
DV
SS
DV
MCRW
MCDS
DINT
MWBDFINT
1–3
1.4 Terminal Functions
I/O
DESCRIPTION
pgp
pgp
TERMINAL
NAME NO.
AFC 11 O Automatic frequency control. The AFC DAC output provides the means to adjust
AGC 10 O Automatic gain control. The AGC digital-to-analog converter (DAC) output can be
AVDDREF 3 Analog supply voltage for FM receive path. Power applied to A VDDREF powers the
AVDDRX 7 Analog supply voltage for receive path. Power applied to AVDDRX powers the receive
AVDDTX 19 Analog supply voltage for transmit path. Power applied to AVDDTX powers the
AVSSREF 98 Analog ground for REFCAP AVSSRX 12 Analog ground for receive path AVSSTX 22 Analog ground for transmit path BAT 1 I Battery strength monitor. A sample of the battery voltage is applied to BA T, and this
CINT 77 O Controller data interrupt. CINT is the microcontroller data interrupt (active low) signal
CMCLK 92 O Codec master clock. CMCLK provides a 2.048-MHz clock that is used as the master
CSCLK 93 O Codec sample clock. CSCLK provides an 8-kHz frame synchronization pulse for the
DINT 49 O Microcontroller interrupt request. DINT is output when the DSP writes to the SEND
DSPA0 74 DSPA1 73 DSPA2 72 DSPA3 71 DSPCSL 70 I DSP chip select (active low). A low signal at DSPCSL enables the specific DSP
DSPD0 80 DSPD1 81 DSPD2 82 DSPD3 83 DSPD4 84 DSPD5 85 DSPD6 86 DSPD7 87 DSPD8 88 DSPD9 89
Z = high impedance
system temperature-compensated reference oscillator (TCXO).
used to control the gain of system receiver circuits.
FM receive path circuitry.
path circuitry.
transmit path circuitry .
sample monitors the battery strength.
that is sent to the DSP. CINT is caused by a microcontroller write to the Send-C interrupt register location.
clock and bit clock for the speech codec.
speech codec. CSCLK is also connected to the DSP for speech sample interrupts.
DINT register location. DINT can be active high or low according to the levels of the MTS0 and MTS1 signals.
I DSP 4-bit parallel address bus. DSP A0 through DSP A3 provides the address bus for
the DSP interface. DSPA3 is the MSB, and DSPA0 is the LSB.
addressed.
I/O/Z DSP 10-bit parallel data bus. DSPD0 through DSPD9 provide a 10-bit data bus for the
DSP. DSPD9 is the MSB, and DSPD0 is the LSB.
1–4
1.4 Terminal Functions (Continued)
I/O
DESCRIPTION
pgp
pgp
MSB
MCD0 is the LSB
TERMINAL
NAME NO.
DSPRW 69 I DSP read/write. A high on DSPRW enables a read operation and a low enables
DSPSTRBL 68 I DSP strobe low . The DSPSTRL (active low) is used in conjunction with DSPCSL
DV
DD
DV
SS
DWBDINT 78 O DSP wide-band data interrupt (active low). The DWBDINT output goes low to
FM 4 I Frequency modulation. FM terminal is connected to the output of the FM
FMRXEN 95 O FM receive path enable. A high output from FMRXEN can be used to enable the
IQRXEN 96 O In-phase and quadrature receive path enable. A high output on IQRXEN can be
LCDCONTR 33 O Liquid-crystal display (LCD) contrast. This LCDCONTR control DAC can be
MCLKOUT 67 O Master clock out. MCLKOUT is a buffered version of MCLKIN. MCA0 40 MCA1 41 MCA2 42 MCA3 43 MCA4 44 MCCLK 62 O Microcontroller clock. MCCLK provides an adjustable frequency with 1.215 MHz
MCCSH 39 I Microcontroller interface chip-select. A high at MCCSH in conjunction with a low
MCCSL 38 I Microcontroller interface chip-select. A low at MCCSL in conjunction with a high
MCD0 51 MCD1 52 MCD2 53 MCD3 54 MCD4 55 MCD5 56 MCD6 57 MCD7 58
Z = high impedance
35, 45, 63,
75, 90
34, 46, 65,
76, 91
a write operation to the DSP.
to enable read/write operations to the DSP.
Digital power supply. All supply terminals must be connected together.
Digital ground. All supply terminals must be connected together.
indicate that the wide-band data (WBD) demodulation circuits have traffic on them.
discriminator.
power for the receiver FM path.
used to enable the power for receiver I/Q path.
used to control the amount of drive to the liquid crystal display.
I Microcontroller 5-bit parallel address bus. MCA0 through MCA4 provide a 5-bit
bus to address the microcontroller. MCA4 is the MSB, and MCA0 is the LSB.
at powerup.
at MCCSL allows the microcontroller to read from or write to the TCM4300.
at the MCCSH allows the microcontroller to read from or write to the TCM4300.
I/O/Z Microcontroller 8-bit parallel data bus. MCD0 through MCD7 provides an 8-bit
parallel data bus to send/receive data to/from the microcontroller. MCD7 is the
, and
.
1–5
1.4 Terminal Functions (Continued)
I/O
DESCRIPTION
TERMINAL
NAME NO.
MCDS 48 I Microcontroller data strobe. MCDS is configured by the signals present on MTS0 and
MCLKIN 64 I Master clock input. The MCLKIN frequency input requirement is 38.88 MHz ±100 ppm.
MCRW 47 I Microcontroller read/write. Microcontroller read/write operations are selected in
MTS0 36 I
MTS1 37 I
MWBDFINT 50 O Microcontroller interrupt request. A wide-band data-ready interrupt is output when the
OUT1 26 O Output number 1. OUT1 provides a user-defined general purpose data or control signal. PAEN 25 O Power amplifier enable. P AEN can be used to enable the transmit power amplifier . This
PWRCONT 16 O Power amplifier (PA) power control. The PWRCONT DAC output can be used to control
RBIAS 99 I Input for bias current-setting resistor. To achieve correct bias voltage, a 100-k, 1%
REFCAP 100 I Reference decoupling capacitor. For proper decoupling, It is recommended that a
RSINL 59 I Reset input low. An active low applied to RSINL resets the TCM4300. RSSI 2 I Received signal strength indicator. RSSI samples received signal strength. RSOUTH 60 O Reset out high. An active high is output from RSOUTH for 10 ms after the TCM4300 is
RSOUTL 61 O Reset out low. An active low is output from RSOUTL for 10 ms after the TCM4300 is
RXIN 8 I Negative receive input. The in-phase differential negative baseband received signal is
RXIP 9 I Positive receive input. The in-phase differential positive baseband received signal is
RXQN 5 I Negative receive input. The quadrature negative baseband received signal is applied
RXQP 6 I Positive receive input. The quadrature differential positive baseband received signal is
MTS1.
A crystal can be connected between MCLKIN and XTAL to provide an oscillator circuit. As an alternative, XTAL can be left open and an external TTL/CMOS-level clock signal can be connected to MCLKIN.
accordance with the signals present on MTS0 and MTS1. Microcontroller type select configuration-control inputs. The interface is controlled by
MTS (1:0) as follows: 00 – Intel microcontroller interface characteristics 10 – Mitsubishi and Motorola microcontroller 16-bit bus interface characteristics 01 – Motorola microcontroller 8-bit bus characteristics 11 – Reserved
WBD demodulator is in analog mode or when a frame interrupt is sent by the DSP in digital mode. MWDBFINT can be active high or low according to the levels of the MTS0 and MTS1 signals.
signal is active high.
the amount of power output from the PA.
tolerance resistor connected between RBIAS and A VSS is recommended.
3.3 µF capacitor in parallel with a 470-pF capacitor be connected between REFCAP and ground.
powered up.
powered up.
applied to RXIN.
applied to RXIP.
to RXQN.
applied to RXQP.
Intel is a trademark of Intel Corporation. Mitsubishi is a trademark of Mitsubishi Inc. Motorola is a trademark of Motorola, Inc.
1–6
1.4 Terminal Functions (Continued)
I/O
DESCRIPTION
yg
TERMINAL
NAME NO.
SCEN 94 O Speech CODEC enable. A high out from SCEN can enable the speech CODEC. SINT 79 O Sample interrupt. SINT is active low. In the analog mode, SINT occurs at 40 kHz; in the
SYNCLK 32 O Synthesizer clock. SYNCLK clocks the serial data stream. SYNDTA 31 O Synthesizer serial-data. SYNDTA provides the serial bit stream output. SYNLE0 28 O SYNLE1 29 O SYNLE2 30 O SYNOL 27 I Synthesizer out-of-lock. An active high at SYNOL indicates a synthesizer is not locked. TXEN 23 O Transmit power enable. An active high output from TXEN can be used to enable various
TXIN 18 O In-phase differential negative baseband transmit. The negative component of the
TXIP 17 O In-phase differential positive baseband transmit. The positive component of the
TXONIND 24 I Transmit on indicator. A signal is applied to TXONIND to indicate that power is applied
TXQN 21 O Quadrature differential negative baseband transmit. The negative component of the
TXQP 20 O Quadrature differential positive baseband transmit. The positive component of the
VCM 15 I Voltage common mode. VCM establishes the dc operating point for transmit outputs and
VHR 14 O Voltage half-rail. The voltage level at VHR is approximately 0.5 × AVDD. VHR
V
SS
XTAL 66 I Crystal input. A crystal connected between XTAL and MCLIN forms an oscillator circuit.
13, 97 Substrate ground
digital mode, SINT occurs at 48.6 kHz.
Synthesizer 0, 1, and 2 latch enables. An active high on SYNLE0, SYNLE1, and SYNLE2 indicates that the latch is enabled.
system transmitter-circuit devices.
differential baseband transmit signal is output from TXIN.
differential baseband transmit signal is output from TXIP.
to the power amplifier.
quadrature differential transmit signal is output from TXQN.
quadrature differential transmit signal is output from TXQP.
can be tied to VHR.
establishes the dc operating point for receive inputs.
1–7
2 Electrical Specifications
This section lists the electrical specifications, the absolute maximum ratings, the recommended operating conditions and operating characteristics for the TCM4300 Advanced RF Cellular Telephone Interface Circuit.
2.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range (unless otherwise noted)
Supply voltage range:
DV
(see Notes 1 and 2) VSS –0.3 V to AVDD +0.3 V. . . . . . . . . . . . . . . . . . . . . .
DD
AV
(see Notes 2 and 3) VSS –0.3 V to DVDD +0.3 V. . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, V Output voltage range, V
Continuous total power dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . .
Operating free-air temperature range, T Storage temperature range, T
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C. . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. Voltage values are with respect DVSS.
DD
2. Maximum supplied voltage should not exceed 6 V .
3. Voltage values are with respect to AVSS.
: Digital signals VSS –0.3 V to DVDD +0.3 V. . . . . . . . . . . . . . . . .
I
Analog signals V
: Digital signals VSS to DV
O
Analog signals V
–65°C to 150° C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
stg
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
–40°C to 85°C. . . . . . . . . . . . . . . . . . . . . . . . . .
A
SS
–0.3 V to AVDD +0.3 V. . . . . . . . . . . . . . . .
to AV
SS
DD DD
2.2 Dissipation Rating Table
PACKAGE
PZ 1530 mW 15.25 mW/°C 615 mW
TA 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 85°C
POWER RATING
2–1
2.3 Recommended Operating Conditions
Anal
itti
W
Digital
W
Digital t
itti
W
Idle mode
mW
g, g g
W
Output
MIN NOM MAX UNIT
Supply voltage, DV High-level input voltage, V Low-level input voltage, V High-level output voltage, V Low-level output voltage, V High-level output current at 3 V , I Low-level output current at 3 V , I High-level output current at 5 V , I Low-level output current at 5 V , I Load capacitance, transmit I and Q channel outputs 50 pF VCM input voltage range, transmit I and Q channel outputs 1.3 AVDD–1.3 V
Load resistance, auxiliary DACs 10 k Load capacitance, auxiliary DACs 50 pF Operating free-air temperature, T
DD
IH
IL
OH
OL
OH
OL
OH
OL
A
Digital 0.7 DV Digital 0 0.3 DV Digital 0.7 DV Digital 0 0.5 V Digital 2 mA Digital 2 mA Digital 2 mA Digital 2 mA
3 5.5 V
DD
DD
–40 85 °C
DVDD+0.3 V
DD
DV
DD
V V
2.4 Electrical Characteristics Over Full Range Of Operating Conditions (Unless Otherwise Noted)
2.4.1 Power Consumption
PARAMETER TEST CONDITIONS MIN TYP†MAX UNIT
og transm
receiving
ransm
Digital mode, 1/3 transmitting +1/3 receiving + 1/3 standby
All typical values are at TA = 25°C.
ng and receiving
ng
MCLKOUT enabled DVDD = 3 V, AVDD = 3 V 33 40 MCLKOUT disabled DVDD = 3 V, AVDD = 3 V 14 17
MCLKOUT enabled DVDD = 5.5 V, AVDD = 5.5 V 150 160 MCLKOUT disabled DVDD = 5.5 V, AVDD = 5.5 V 80 90
DVDD = 3 V, AVDD = 3 V 65 75 DVDD = 5.5 V, AVDD = 5.5 V 250 275 DVDD = 3 V, AVDD = 3 V 55 60 DVDD = 5.5 V, AVDD = 5.5 V 225 250 DVDD = 3 V, AVDD = 3 V 55 70 DVDD = 5.5 V, AVDD = 5.5 V 210 250
DVDD = 3 V, AVDD = 3 V 50 60 DVDD = 5.5 V, AVDD = 5.5 V 205 220
m
m
m
m
2.4.2 Reference Characteristics
PARAMETER TEST CONDITIONS MIN TYP
V
OH(VHR)
r
O
All typical values are at DVDD = 5 V, AVDD = 5 V, and TA = 25°C
2–2
High-level output voltage 0.5 A VDD–0.2 0.5 AVDD+0.2 V
resistance
FMVOX or IQRXEN or TXEN = high
FMVOX or IQRXEN or TXEN = low
MAX UNIT
80 100
15 40 k
2.4.3 T erminal Impedance
MCLKOUT i
Input voltage for full
V
Nominal operating
FUNCTION MIN TYP†MAX UNIT
Receive channel input impedance (single ended), RXIP/N and RXQP/N 40 70 k Transmit channel output impedance (single ended), TXIP/N and TXQP/N 40 50 100 FM input impedance, WBD 25 200 k
mpedance
All typical values are at DVDD = 5 V, AVDD = 5 V, and TA = 25°C, unless otherwise specified.
MCLKOUT at 3.3 V 240 MCLKOUT at 5 V 180
2.4.4 RXIP, RXIN, RXQP, and RXQN Inputs (AVDD = 3 V, 4.5 V, 5 V)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Input voltage range 0.3 AVDD–0.3 V Input voltage for full-
scale digital output Nominal operating
level Input CMRR (RXI, RXQ) 45 dB
Sampling frequency , SINT (digital mode)
Sampling frequency , SINT (analog mode)
Receive error vector magnitude (EVM) 5% 6% I/Q sample timing skew Input signal 0 – 15 kHz 50 ns A/D resolution 10 bits Signal to noise-plus distortion Input at full scale – 1 dB 54 58 dB Integral nonlinearity 0 dB to –60 dB input 1 LSB Gain error (I or Q channel) ±7% Gain mismatch between I and Q ±0.3 dB Differential dc offset voltage ±30 mV FM input sensitivity, full scale
(14 kHz deviation) FM input dc offset (relative to VHR) ±80 mV FM input idle channel noise, below
full-scale input FM gain error ±6% Power supply rejection f = 0 kHz to 15 kHz 40 dB
Provides 12 dB headroom for AGC fading conditions.
Differential 0.5 Single ended Differential 0.125 Single ended 0.125
0.5
48.6 kHz
40 kHz
2.5 Vp-p
–50 dB
p-p
Vp-p
2–3
2.4.5 Transmit I and Q Channel Outputs
Peak
VCM
V
Nominal output level (constellation radius) centered
V
pg
PARAMETER MIN TYP MAX UNIT
output voltage full scale, centered at
Nominal output-level (constellation radius) centered at VCM
Low-level drift ±200 PPM/°C Transmit error vector magnitude (EVM) 3% 4% Resolution 8 bits S/(N+D) ratio at differential outputs 48 52 dB Gain error (I or Q channel) ±8% ±12% Gain mismatch between I and Q ±0.3 dB Gain sampling mismatch between I and Q 20 ns Zero code error differential ±80 mV Zero code error, each output, with respect to VCM ±80 mV Zero code error, I to Q, with respect to other channel (differential or
single ended) Load impedance, between P and N terminals 10 k Transmit offset DACs I and Q resolution 6 bits Transmit offset DACs I and Q average step size 2.9 3.4 3.9 mV Transmit offset DACs I and Q full-scale positive output 105.4 mV Transmit offset DACs I and Q full-scale negative output –108.8 mV Transmit offset DACs differential nonlinearity ±1.1 LSB Transmit offset DACs integral nonlinearity ±1.1 LSB
Differential 2.24 Single ended 1.12 Differential 1.5 Single ended 0.75
±10 mV
p
2.4.6 Auxiliary D/A Converters
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
AVDD > 3 V†, AUXFS [1:0] = 00 0.2 2.5
Output range
Resolution AGC, AFC, PWRCONT DACs
Resolution LCDCONTR DAC 4 bits Gain + offset error (full scale) AGC,
AFC, PWRCONT DAC Gain + offset error (full scale)
LCDCONTR DAC Differential nonlinearity ±0.75 ±1 LSB Integral nonlinearity ±0.75 ±1 LSB
Range settings depends only on AUXFS [1:0]. The supply voltage is not detected.
2–4
AVDD > 4.5 V†, AUXFS [1:0] = 10 0.2 4 AVDD > 5 V†, AUXFS [1:0] = 11 0.2 4.5
8 bits
±3%
±7%
V
2.4.7 Auxiliary D/A Converters Slope (AGC, AFC, PWRCONT)
AUXFS[1:0]
SETTING
00 2.5/256 0.0098 1.25 2.5 01 Do not use Do not use Do not use Do not use 10 4/256 0.0156 2 4 11 4.5/256 0.0176 2.25 4.5
The maximum input code is 255. The value shown for 256 is extrapolated.
SLOPE
NOMINAL LSB
VALUE
(V)
NOMINAL OUTPUT VOLTAGE
FOR DIGITAL CODE = 128
(MIDRANGE)
(V)
NOMINAL OUTPUT VOLTAGE
FOR DIGITAL CODE = 256
(MAX VALUE)
(V)
2.4.8 Auxiliary D/A Converters Slope (LCDCONTR)
AUXFS[1:0]
SETTING
00 2.5/16 0.1563 1.25 2.5 01 Do not use Do not use Do not use Do not use 10 4/16 0.2500 2 4 11 4.5/16 0.2813 2.25 4.5
The maximum input code is 15. The value shown for 16 is extrapolated.
SLOPE
NOMINAL LSB
VALUE
(V)
NOMINAL OUTPUT VOLT-
AGE FOR DIGITAL CODE = 8
(MIDRANGE)
(V)
NOMINAL OUTPUT VOLTAGE
FOR DIGITAL CODE = 16
(MAX VALUE)
(V)
2.4.9 RSSI/Battery A/D Converter
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Input range AVDD = 3 V, 4.5 V, 5 V 0.2 2 V Resolution 8 bits Conversion time AVDD = 3 V, 4.5 V, 5 V 20 µs Gain + offset error (full scale) ±3% ±4% Differential nonlinearity ±0.75 ±1 LSB Integral nonlinearity ±0.75 ±1 LSB Input resistance 1 2 M
§
2–5
2.5 Operating Characteristics Over Full Range of Operating Conditions
qy
dB
qyp
F
dB
(Unless Otherwise Noted)
2.5.1 Receive (RX) Channel Frequency Response (RXI, RXQ Input in Digital Mode)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
0.125 V peak-to-peak, 0 kHz to 8 kHz (see Note 4) ±0.5 ±0.75
0.125 V peak-to-peak, 8 kHz to 15 kHz (see Note 5) ±1
Frequency response
Peak-to-peak group delay distortion
Absolute channel delay, RXI, Q IN to digital OUT
NOTES: 4. Deviation from ideal 0.35 square-root raised-cosine (SQRC) response
5. Stopband
2.5.2 Receive (RX) Channel Frequency Response (FM Input in Analog Mode)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Frequency response
Peak-to-peak group delay distortion
Absolute channel delay 2.5 V peak-to-peak, 0 kHz to 6 kHz 400 µs
NOTES: 5. Stopband
6. Ripple magnitude
7. Stopband and multiples of stopband
2.5.3 Transmit (TX) Channel Frequency Response (Digital Mode)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
requency response
Peak-to-peak group delay distortion
Absolute channel delay 0 kHz to 15 kHz 320 µs
NOTES: 4. Deviation from ideal 0.35 square-root raised-cosine (SQRC) response
5. Stopband
0.125 V peak-to-peak, 16.2 kHz to 18 kHz (see Note 5) –26
0.125 V peak-to-peak, 18 kHz to 45 kHz (see Note 5) –30
0.125 V peak-to-peak, 45 kHz to 75 kHz (see Note 5) –46
0.125 V peak-to-peak, > 75 kHz –60
0.125 V peak-to-peak, 0 kHz to 15 kHz 2 µs
0.125 V peak-to-peak, 0 kHz to 15 kHz 325 µs
2.5 V peak-to-peak, 0 kHz to 6 kHz (see Note 6) ±0.5
2.5 V peak-to-peak, 20 kHz to 30 kHz (see Note 5) –18
2.5 V peak-to-peak, 34 kHz to 46 kHz (see Note 7) –48
2.5 V peak-to-peak, 0 kHz to 6 kHz 2 µs
0 kHz to 8 kHz (see Note 4) ±0.3 8 kHz to 15 kHz (see Note 4) ±0.5 20 kHz to 45 kHz (see Note 5) –29
45 kHz to 75 kHz (see Note 5) –55 > 75 kHz (see Note 5) –60 Any 30 kHz band centered at > 90 kHz (see Note 5) –60
0 kHz to 15 kHz 3 µs
dB
2–6
Loading...
+ 48 hidden pages