Texas Instruments Amplifier and Data Converter User Manual

Operational Amps
Instrumentation Amps
Comparators
Special Function Analog
Delta-Sigma (∆Σ) ADCs
MicroSystems ADCs
SAR ADCs
Pipeline ADCs
High-Performance DACs
Current Steering DACs
High-Speed Amps
Power Amps
Buffers
Ref
Amp
ADC
Processor
Ref
DAC
Amp
Amplifier and Data Converter
Selection Guide
3Q 2007
Amplifier and Data Converter Selection Guide Texas Instruments 3Q 2007
2
Amplifier and Data Converter Selection Guide
Signal Chain
Plug-In
Power
Power Supply
Control
Battery
Management
LDOs
DC/DC
Conversion
LVDS/
MLVDS
Serial Gigabit
Transceiver
USB
RS-485/
422
Low-Power
RF
CAN
Temp Sensors
Pages 83-85
Inputs
Amp
ADC
Pages 52-68 Pages 86-93
Processor
REF
Pages 81-82
DSP
C6000™, C5000™,
C2000™
Microcontrollers
MSP430 Series
MSC12xx Series Page 57
Power and
Control
SAR
Pages 58-63
Pipeline
Pages 64-68
Signal & High-Speed Op Amps pg. 6-19 Video Op Amps pg. 20-22 Comparators pg. 23-25 Voltage-Controlled Gain Amps pg. 34-36 Audio Input Amps pg. 37-41 Logarithmic Amps pg. 47 Integrating Amps pg. 48
Difference Amps pg. 26-27 Current Shunt Monitors pg. 28-29 Instrumentation Amps pg. 30-33 Digitally Programmable Gain Amps pg. 34-36
Sensor Conditioners and 4-20mA Transmitters pages 45-46
Amplifiers for Driving ADCs pages 50-51
Isolation Amplifiers page 49
Audio Products
Pages 98-100
Pages 52-57
Plug-In
Power
Power Supply
Control
Battery
Management
LDOs
DC/DC
Conversion
LVDS/
MLVDS
Serial Gigabit
Transceiver
USB
RS-485/
422
Low-Power
RF
CAN
Temp Sensors
Pages 83-85
Inputs
Amp
ADC
Pages 52-68 Pages 86-93
Processor
REF
Pages 81-82
DSP
C6000™, C5000™,
C2000™
Microcontrollers
MSP430 Series
MSC12xx Series Page 57
Power and
Control
SAR
Pages 58-63
Pipeline
Pages 64-68
Signal & High-Speed Op Amps pg. 6-19 Video Op Amps pg. 20-22 Comparators pg. 23-25 Voltage-Controlled Gain Amps pg. 34-36 Audio Input Amps pg. 37-41 Logarithmic Amps pg. 47 Integrating Amps pg. 48
Difference Amps pg. 26-27 Current Shunt Monitors pg. 28-29 Instrumentation Amps pg. 30-33 Digitally Programmable Gain Amps pg. 34-36
Sensor Conditioners and 4-20mA Transmitters pages 45-46
Amplifiers for Driving ADCs pages 50-51
Isolation Amplifiers page 49
Audio Products
Pages 98-100
Pages 52-57
Analog
Monitoring and
Control
Voltage
References
Temperature
Sensors
High-
Reliability
Products
Amplifiers
Analog-to-
Digital
Converters
Digital-to-
Analog
Converters
Technical
Support
Texas Instruments 3Q 2007 Amplifier and Data Converter Selection Guide
Amplifier and Data Converter Selection Guide
Signal Chain
3
Hot
Swap
Special
Functions
DSP and
FPGA Power
Digital Power
DAC
Pages 69-76 Pages 94-97
High
Performance
Pages 69-74
Amp
Power
PCI
1394
UARTs GTLP/ VME
INTERFACE
Current
Steering
Pages 75-76
Analog
Monitoring
and Control
Pages 77-80
PWM Driver
REF
Pages 81-82
Operational Amps pg. 6-14 High-Speed Amps pg. 15-19
Video Amps pg. 20-22
Power Amps and Buffers pg. 42-43
PWM Valve, Solenoid Drivers & Speaker Drivers pg. 44
Clocks &
Timers
POWER MANAGEMENT
Outputs
Page 69
Audio DACs
Pages 98-100
Hot
Swap
Special
Functions
DSP and
FPGA Power
Digital Power
DAC
Pages 69-76 Pages 94-97
High
Performance
Pages 69-74
Amp
Power
PCI
1394
UARTs GTLP/ VME
INTERFACE
Current
Steering
Pages 75-76
Analog
Monitoring
and Control
Pages 77-80
PWM Driver
REF
Pages 81-82
Operational Amps pg. 6-14 High-Speed Amps pg. 15-19
Video Amps pg. 20-22
Power Amps and Buffers pg. 42-43
PWM Valve, Solenoid Drivers & Speaker Drivers pg. 44
Clocks &
Timers
POWER MANAGEMENT
Outputs
Page 69
Audio DACs
Pages 98-100
Analog
Monitoring and
Control
Voltage
References
Temperature
Sensors
High-
Reliability
Products
Amplifiers
Analog-to-
Digital
Converters
Digital-to-
Analog
Converters
Technical
Support
Amplifier and Data Converter Selection Guide Texas Instruments 3Q 2007
Amplifier and Data Converter Selection Guide
Table of Contents
4
Precision Operational Amplifiers <50MHz
Overview/Technology Primer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Low Offset Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Low Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Low Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Low Input Bias Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Wide Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Wide Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Single Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
High-Speed Amplifiers >50MHz
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-19
Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20-22
Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23-25
Difference Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26-27
Current Shunt Monitors
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Analog Output Current Shunt Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28-29
Digital Output Current Shunt Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77-80
Instrumentation Amplifiers
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30-31
Single Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Dual Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Digitally Programmable Gain Amplifiers . . . . . . . . . . . . . . . . .34
Voltage-Controlled Gain Amplifiers . . . . . . . . . . . . . . . . . . . . .35-36
Audio Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37-41
Power Amplifiers and Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . .42-43
Pulse Width Modulation Power Drivers . . . . . . . . . . . . . . . . . .44
Sensor Conditioners/4-20mA Transmitter . . . . . . . . . . . . .45-46
Logarithmic Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Integrating Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Isolation Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Amplifiers for Driving ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50-51
Texas Instruments 3Q 2007 Amplifier and Data Converter Selection Guide
Amplifier and Data Converter Selection Guide
Table of Contents
5
Analog-to-Digital Converters (ADCs) by Architecture
Delta-Sigma (∆Σ) ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52-55
Wide Bandwidth ∆Σ ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Intelligent ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
SAR ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58-63
Pipeline ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64-68
Analog Monitoring and Control (ADC and DAC) . . . . . . . . . . . . . . . . . . . . . . . .77-80
Digital-to-Analog Converters (DACs) by Architecture
Industrial Bipolar Delta-Sigma (∆Σ) DACs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
High-Accuracy, Industrial Bipolar and General-Purpose DACs . . . . . . . . . . . . .70-74
Current Steering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75-76
Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Analog Monitoring and Control
AMC Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77-79
Digital Current Shunt Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Voltage References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81-82
Temperature Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83-85
Quick Reference Selection Tables for Data Converters
Quick Reference ADC Selection Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86-93
Quick Reference DAC Selection Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94-97
Quick Reference Touch Screen Controllers with/without Audio Selection Tables . . . .98
Quick Reference Audio Converters Selection Tables . . . . . . . . . . . . . . . . . . . .98-100
Design and Evaluation Tools
TINA-TI™/Spice Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
Amplifiers Design Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
FilterPro™, SARdriverPro™ and MDACBufferPro™ . . . . . . . . . . . . . . . . . . . . . . . .102
Digitally Calibrated Sensor Signal Condition and 4-20mA Evaluation Modules . . . .103
Signal Chain Prototyping System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104-105
Evaluation Boards and ADCPro™ Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
Data Converter Plug-In (DCP) for Code Composer StudioTMIDE . . . . . . . . . .107-110
Application Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111-114
Reference Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
Device Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115-118
Worldwide Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
Amplifier and Data Converter Selection Guide Texas Instruments 3Q 2007
6
Amplifiers
Texas Instruments (TI) offers a wide range of op amp types including high precision, microPower, low voltage, high voltage, high speed and rail-to-rail in several different process technologies. TI has developed the industry's largest selection of low-power and low-voltage op amps with features designed to satisfy a very wide range of applications. To help facilitate the selection process, an interactive online op amp parametric search engine is available at amplifier.ti.com/search with links to all op amp specifications.
Design Considerations
Choosing the best op amp for an application involves consideration of a variety of inter­related requirements. In doing so, designers must often consider conflicting size, cost and performance objectives. Even experienced engineers can find the task daunting, but it need not be so. Keeping in mind the following issues, the choices can quickly be narrowed to a manageable few.
Supply voltage (VS)—tables include low
voltage (< 2.7V min) and wide voltage range (> 5V min) sections. Other op amp selection criteria (e.g., precision) can be quickly exam­ined in the supply range column for an appropriate choice. Applications operating from a single power supply may require rail-to-rail performance and consideration of precision-related parameters.
Precision—primarily associated with input
offset voltage (VOS) and its change with respect to temperature drift, PSRR and CMRR. It is generally used to describe op amps with low input offset voltage and low input offset voltage temperature drift. Precision op amps are required when amplifying tiny signals from thermocouples and other low-level sensors. High-gain or multi-stage circuits may require low offset voltage.
Gain bandwidth product (GBW)—the gain
bandwidth of a voltage-feedback op amp determines its useful bandwidth in an application. The maximum available bandwidth is approximately equal to the gain bandwidth divided by the closed-loop gain of the applica­tion. For voltage feedback amplifiers, GBW is a constant. Many applications benefit from choosing a much wider bandwidth/slew rate
op amp to achieve low distortion, excellent linearity, good gain accuracy, gain flatness or other behavior that is influenced by feedback factors.
Power (IQrequirements)—a significant issue
in many applications. Because op amps can have a considerable impact on the overall system power budget, quiescent current, especially in battery-powered applications, is a key design consideration.
Rail-to-rail performance—rail-to-rail
output provides maximum output voltage swing for widest dynamic range. This may be particularly important with low operating voltage where signal swings are limited. Rail-to-rail input capability is often required to achieve maximum signal swing in buffer (G = 1) single-supply applications. It can be useful in other applications, depending on amplifier gain and biasing considerations.
Voltage noise (VN)—amplifier-generated
noise may limit the ultimate dynamic range, accuracy or resolution of a system. Low­noise op amps can improve accuracy, even in slow DC measurements.
Input bias current (IB)—can create offset
error by reacting with source or feedback impedance. Applications with high source impedance or high impedance feedback elements (such as transimpedance amplifiers or integrators) often require low input bias
current. FET-Input and CMOS op amps generally provide very low input bias current.
Slew rate—the maximum rate of change of
the amplifier output. It is important when driving large signals to high frequency. The available large signal bandwidth of an op amp is determined by the slew rate SR/.707(2π)V
P
.
Package size—TI offers a wide variety of
microPackages, including WCSP, SOT23, SC70 and small, high power-dissipating PowerPAD™ packages to meet space­sensitive and high-output drive requirements. Many TI single-channel op amps are available in SOT23, with some dual amplifiers in SOT23-8.
Shutdown mode—an enable/disable
function that places the amp in a high impedance state, reducing quiescent current in many cases to less than 1µA. Allows designers to use wide bandwidth op amps in lower power applications, enabling them only when they are needed.
Decompensated amplifiers—for
applications with gain greater than unity gain (G > 1), decompensated amps provide significantly higher bandwidth, improved slew rate and lower distortion over their unity-gain stable counterparts on the same quiescent current or noise.
What is the amplitude of the input signal?
To ensure signal errors are small relative to the input signal, small input signals require high precision (e.g., low offset voltage) amplifiers. Ensure that the amplified output signal stays within the amplifier output voltage.
Will the ambient temperature vary?
Op amps are sensitive to temperature variations, so it is important to consider offset voltage drift over temperature.
Does the common-mode voltage vary?
Make sure the op amp is operated within its common-mode range and has an adequate common-mode rejection ratio
(CMRR). Common-mode voltage will induce additional offset voltage.
Does the power supply voltage vary?
Power supply variations affect the offset voltage. This may be especially important in battery-powered applications.
Precision Application Examples
• High gain circuits (G > 100)
• Measuring small input signals (e.g., from a thermocouple)
• Wide operating temperature range circuits (i.e., in automotive or industrial applications)
• Single-supply 5V data-acquisition systems where input voltage span is limited
Common Op Amp Design Questions
Texas Instruments 3Q 2007 Amplifier and Data Converter Selection Guide
Amplifiers
7
Technology Primer
Understanding the relative advantages of basic semiconductor technologies will help in selecting the proper device for a specific application.
CMOS Amps—when low voltage and/or low
power consumption, excellent speed/power ratio, rail-to-rail performance, low cost and small packaging are primary design considerations, choose microPackaged CMOS amps boasting the highest precision in the industry.
High-Speed Bipolar Amps—when the highest
speed at the lowest power is required, bipolar technology delivers the best performance. Extremely good power gain gives very high output power and full power bandwidths on the lowest quiescent power. Higher voltage requirements are also only satisfied in bipolar technologies.
Precision Bipolar Amps—excel in limiting
errors relating to offset voltage. These amps include low offset voltage and temperature drift, high open-loop gain and common-mode rejection. Precision bipolar op amps are used extensively in applications where the source
impedance is low, such as a thermocouple amplifier, and where voltage errors, offset voltage and drift, are crucial to accuracy.
Low I
B
FET Amps—when input impedance is
very high, FET-input amps provide better over­all precision than bipolar-input amps because of very low input bias current. Using a bipolar amp in applications with high source imped­ance (e.g., 500MpH probe), the offset, drift and noise produced by bias currents flowing through the source would render the circuit virtually useless. When low current errors are required, FET amps provide extremely low input bias current, low offset current and high input impedance.
Dielectrically Isolated FET (Difet™) Amps
Difet processing enables the design of extremely low input leakage amplifiers by eliminating the substrate junction diode present in junction isolated processes. This technique yields very high-precision, low­noise op amps. Difet processes also minimize parasitic capacitance and output transistor saturation effects, resulting in improved bandwidth and wider output swing.
Op Amp Rapid Selector
The tables on the following pages have been subdivided into several categories to help quickly narrow the alternatives.
Precision Offset Voltage
(VOS< 500µV) Pg. 8
Low Power
(IQ< 500µA) Pg. 9
Low Noise
(VN≤ 10nV/ Hz Pg. 10
Low Input Bias Current
(IB≤ 10pA) Pg. 11
Wide Bandwidth, Precision
GBW > 5MHz Pg. 12
Wide Voltage Range
(±5 ≤ VS≤ ±20V) Pg. 13
Single Supply
(VS(min) 2.7V) Pg. 14
High Speed
BW 50MHz Pg. 17
Recommended Recommended
Supply Voltage Design Requirements Typical Applications Process TI Amp Family
VS ≤ 5V Rail-to-Rail, Low Power, Precision, Small Packages Battery Powered, Handheld CMOS OPA3xx, TLVxxxx VS≤ 16V Rail-to-Rail, Low Noise, Low Voltage Offset, Precision, Small Packages Industrial, Automotive CMOS OPA3x, TLCxxxx, OPA7xx VS≤ +3V Low Input Bias Current, Low Offset Current, Industrial, Test Equipment, Optical Networking FET, Difet™ OPA1xx, OPA627
High Input Impedance (ONET), High-End Audio VS≤ +44V Low Voltage Offset, Low Drift Industrial, Test Equipment, ONET, High-End Audio Bipolar OPA2xx, TLExxxx ±5V to ±15V High Speed on Dual Supplies XDSL, Video, Professional Imaging, Difet, High-Speed OPA6xx*, OPA8xx* Dual Supply Data Converter Signal Conditioning Bipolar, BiCOM THSxxxx*
2.7V VS≤ 5V High Speed on Single Supply Consumer Imaging, Data Converter Signal High-Speed CMOS OPA35x, OPA6xx*, Single Supply Conditioning, Safety-Critical Automotive THSxxxx*, OPA8xx*
*See High-Speed section, Page 15-19
Operational Amplifier Naming Conventions
Channels
Single = No Character Dual = 2 Triple = 3 Quad = 4
y
OPA
63
3
Base Model
100 = FET 200 = Bipolar 300 = CMOS (5.5V) 400 = High Voltage (>40V) 500 = High Power (>200mA) 600 = High-Speed (>50MHz) 700 = CMOS (12V) 800 = High-Speed (>50MHz)
Amp Class
TLV = Low Supply Voltage TLC = 5V CMOS TLE = Wide Supply Voltage
278
TLV
x
Channels and Shutdowon Options
0 = Single with Shutdown 1 = Single 2 = Dual 3 = Dual with Shutdown 4 = Quad 5 = Quad with Shutdown
Amp Class
THS = High Speed
y
x
THS
01
Amplifier Type
30 = Current Feedback 31 = Current Feedback 40 = Voltage Feedback 41 = Fully Differential 42 = Voltage Feedback 43 = Fast Voltage Feedback 45 = Fully Differential 46 = Transimpedance 60 = Line Receiver 61 = Line Driver 73 = Programmable Filters
Amplifier and Data Converter Selection Guide Texas Instruments 3Q 2007
Amplifiers
Precision Operational Amplifiers
8
1.8V, Zero-Offset, Zero-Drift, Ultra-Low-Power, RRIO, CMOS Amplifiers
OPA333, OPA2333
Get samples, datasheets, and app reports at: www.ti.com/OPA333 and www.ti.com/sc/device/OPA2333
Key Features
• Low offset voltage: 10µV (max)
• Zero drift: 0.05µV/°C (max)
• 0.01Hz to 10Hz noise: 1.1µV
PP
• Quiescent current: 17µA
• Single-supply operation: 1.8V to 5.5V
• Rail-to-rail input/output
• microSize packages: SC70 and SOT23
Applications
• Temperature measurement
• Electronic scales
• Medical instrumentation
• Battery-powered instruments
• Handheld test equipment
The OPA333 series of CMOS operational amplifiers are optimized for low-voltage, single-supply operation and combine TI’s proprietary zero-drift techniques to provide very low offset voltage (10µV max) and near-zero drift over time and temperature. These miniature, high-precision, low quiescent current amplifiers offer high-impedance inputs that have a commonmode range 100mV beyond the rails and rail-to-rail output that swings within 50mV of the rails.
Low Offset Voltage Operational Amplifiers (V
OS
<
500µV)
IQPer Slew VOSV
OS
VNat
VSV
S
Ch. GBW Rate (25°C) Drift IBCMRR 1kHz Rail-
(V) (V) (mA) (MHz) (V/µs) (mV) (µV/°C) (pA) (dB) (nV
//
Hz) Single to-
Device Description/Technology Ch. (min) (max) (max) (typ) (typ) (max) (typ) (max) (min) (typ) Supply Rail Package(s) Price
*
OPAy334/5 Zero-Drift, SHDN, CMOS 1, 2 2.7 5.5 0.35 2 1.6 0.005 0.02 200 110 Y Out SOT-23, MSOP, SOIC $1.00 OPAy734/5 12V, Auto-Zero, SHDN, CMOS 1, 2 2.7 12 0.75 1.6 1.5 0.005 0.01 200 115 110 Y Out SOT-23, SOIC $1.25
OPAy333 µPower, Zero Drift, CMOS 1, 2 1.8 5.5 0.025 0.35 0.16 0.01 0.02 200 106 Y I/O SC-70, SOT-23, SOIC $0.95
OPAy277 Precision, Bipolar 1, 2, 4 4 36 0.825 1 0.8 0.02 0.1 1000 130 8 N N SON, SOIC, PDIP $0.85 OPA378 Low Power, Wideband 1,2 1.8 5.5 0.100 1 0.5 0.025 0.1 1000 100 15 Y I/O SC70, SOT-23, SOIC $0.95 OPAy380 Auto-Zero, 85MHz, TIA, CMOS 1, 2 2.7 5.5 8.8 90 80 0.025 0.03 50 100 110 Y Out MSOP, SOIC, SSOP $1.95 OPAy381 Precision, 18MHz, TIA, CMOS 1, 2 2.7 5.5 1 18 12 0.025 0.03 50 100 110 Y Out MSOP, SON $1.45 TLC2652A Low Offset, Chopper Stabilized 1 3.8 16 2.4 1.9 3.1 0.001 0.003 100 120 23 N N SOIC $2.20
OPAy211 Low Offset Drift, Bipolar 1, 2 4.5 36 3.6 58 27 0.25 0.2 15,000 114 1.1 N Out SOIC, MSOP, SON $3.45
OPAy227/28 Low Noise, Bipolar 1, 2, 4 5 36 3.8 8 2.3 0.075 0.1 10000 120 3 N N SOIC, PDIP $1.10
OPA827 Precision, FET Input 1, 2 8 36 4.5 18 22 0.25 1 3 108 4.5 N N SOIC, MSOP $5.75
TLE2027/37 Wide Supply, Low Noise, Bipolar 1 8 38 5.3 13, 50 2.8, 7.5 0.1 0.4 90000 100 2.5 N N SOIC, PDIP $0.90 OPAy234 Low Power, Wide Supply, Bipolar 1, 2, 4 2.7 36 0.3 0.35 0.2 0.1 0.5 25000 96 25 N N MSOP, SOIC $1.05 OPA627/37 Ultra-Low THD+N, Difet 1 9 36 7.5 16 55 0.1 0.4 1 106 5.2 N N PDIP, SOIC $12.25 OPAy336 µPower, CMOS 1, 2, 4 2.3 5.5 0.032 0.1 0.03 0.125 1.5 10 80 40 Y Out SOT-23, SOIC $0.40
OPAy727/8 e-trim™, Precision CMOS 1, 2 4 12 4.3 20 30 0.15 0.3 100 86 23 N N MSOP, SON $0.95 OPA365 Wideband, Zero-Crossover 1,2 2.2 5.5 5 50 25 0.2 1 10 100 5 Y I/O SOT-23-5,8SOIC $0.95
OPAy241 µPower, Bipolar 1, 2, 4 2.7 36 0.03 0.035 0.01 0.25 0.4 20000 80 45 Y Out SOIC, DIP $1.15 OPAy251 µPower, ±15V Bipolar 1, 2, 4 2.7 36 0.038 0.035 0.01 0.25 0.5 20000 100 45 Y Out SOIC, DIP $1.15 OPA124 Wide Bandwidth, Bipolar 1 10 36 3.5 1.5 1.6 0.25 1 1 100 8 N N SOIC $3.95 TLC1078 Precision, CMOS 2 1.4 16 0.017 0.085 0.032 0.45 1.1 600 70 68 N N SOIC, DIP $2.30 TLV2211 Low Power, 10V, CMOS 1 2.7 10 0.025 0.065 0.025 0.45 0.5 150 70 22 Y Out SOT23 $0.42
Suggested resale price in U.S. dollars in quantities of 1,000. New products are listed in bold red. Preview products are listed in bold blue.
OPA333 low power bridge sensing unit.
V
EX
R
R
R
R
OPA333
+
R
+5V
R
1
V
OUT
V
1
REF
Texas Instruments 3Q 2007 Amplifier and Data Converter Selection Guide
Amplifiers
Precision Operational Amplifiers
9
Low-Power Operational Amplifiers (I
Q
<
500µA) Selection Guide
IQPer Slew VOSOffset VNat VSVSCh. GBW Rate (mV) Drift IBCMRR 1kHz Rail­(V) (V) (mA) (MHz) (V/µs) (25°C) (µV/°C) (pA) (dB) (nV/ Hz) to-
Device Description Ch. (min) (max) (max) (typ) (typ) (max) (typ) (max) (min) (typ) Rail Package(s) Price
*
TLV240x 2.5V, Sub-µPower, SS, CMOS 1, 2, 4 2.5 16 0.00095 0.0055 0.0025 1.2 3 300 63 I/O MSOP, PDIP, SOIC, SOT23, TSSOP $0.65 TLV224x Low Voltage, 1µA, SS, CMOS 1, 2, 4 2.5 12 0.0012 0.0055 0.002 3 3 500 55 I/O MSOP, PDIP, SOIC, SOT23, TSSOP $0.60
OPA369 Lowest Power, Zero Crossover 1,2 1.8 5.5 0.001 0.01 0.005 1 2 10 100 160 I/O SC70, SOT23 $0.95
OPAy349 1µA, SS, CMOS 1, 2 1.8 5.5 0.002 0.07 0.02 10 10 15 52 I/O SC70, SOIC, SOT23 $0.75
OPAy333 µPower, SS, RRIO, Zero-Drift, CMOS 1,2 1.8 5.5 0.025 0.35 0.16 0.01 0.05 200 106 60 I/O SC70, SOT23, SOIC $0.95 OPA379 1.8V, Ultra-Low Power, CMOS 1, 2, 4 1.8 5.5 0.005 0.1 0.03 1.5 2.7 50 90 80 I/O SC70, SOT23, SOIC $0.75
TLC1078 Low Voltage, Precision, Bipolar 2 1.4 16 0.017 0.085 0.032 0.45 1.1 600 70 68 Out SOIC, PDIP $2.30 OPAy241 Bipolar, µPower, High CMRR, 1, 2, 4 2.7 36 0.035 0.35 0.1 0.25 0.4 20000 80 45 Out PDIP, SOIC $1.15 OPA703/4 12V, RRIO, General Purpose 1, 2, 4 4 12 0.2 1 0.6 0.75 4 10 70 45 I/O MSOP, SOIC, TSSOP, PDIP $0.40 OPAy336 µPower, SS, CMOS 1, 2, 4 2.3 5.5 0.032 0.1 0.03 0.125 1.5 10 80 40 Out SOT23, SOIC $0.40 OPAy347 µPower, Low Cost, SS, CMOS 1, 2, 4 2.3 5.5 0.034 0.35 0.17 6 2 10 70 60 I/O SC70, SOT23, SOIC, PDIP $0.48 TLV245x µPower, SS, CMOS 1, 2, 4 2.7 6 0.035 0.22 0.12 1.5 0.3 5000 64 51 I/O SOT23, SOIC, PDIP $0.60 OPAy251 µPower, Precision, Bipolar 1, 2, 4 2.7 36 0.038 0.035 0.01 0.25 0.5 20000 100 45 Out SOIC, PDIP $1.15
OPA378 Wide Bandwidth, microPower, e-trim™ 1, 2 1.8 5.5 0.10 1 0.5 0.025 0.1 1000 100 15 I/O SC70, SOT23, SOIC $0.85
OPAy244 µPower, SS, Low Cost, Bipolar 1, 2, 4 2.7 36 0.05 0.24 0.1 1.5 4 25000 84 22 N MSOP, PDIP, SOIC, SOT23, TSSOP $0.55 OPAy348 High Open-Loop Gain, SS, CMOS 1, 2, 4 2.1 5.5 0.065 1 0.5 5 2 10 70 35 I/O SC70, SOIC, SOT23, CSP $0.45 OPA345 Wideband, Single-Supply 1,2,4 2.7 5.5 0.25 4 4 0.5 2.5 10 80 32 I/O SOT23, SOIC, MSOP $1.20 OPA137 Low Cost, FET-Input 1,2,4 4.5 36 0.27 1 3.5 3 15 100 76 45 N SOT23, SOIC, DIP $0.60 OPA234 Low Power, Precision 1, 2, 4 2.7 36 0.3 0.35 0.2 0.1 0.5 25000 96 24 N MSOP, SOIC $1.05 OPAy334/5 Zero-Drift, Precision, CMOS, SS, SHDN 1, 2 2.7 5.5 0.35 2 0.5 0.005 0.02 200 110 Out MSOP, SOIC, SOT23 $1.00
Suggested resale price in U.S. dollars in quantities of 1,000. New products are listed in bold red. Preview products are listed in bold blue.
Ultra-Low-Power, 1µA, RRIO, Zero-Crossover Operational Amplifier
OPA369
Get samples, datasheets, and app reports at: www.ti.com/sc/device/OPA369
Key Features
• Ultra-low supply current: 1µA (max)
• RRIO Zero-Crossover input topology
• Excellent CMRR: 100dB
• Low offset voltage: 1mV (max)
• Excellent GBW for low power: 10kHz
• microPackages: SC70-3, SOT23-3, MSOP
Applications
• Battery-powered instruments
• Portable devices
• High impedance applications
• Medical instruments
• Precision integrators
• Test equipment
The OPA369 family of operational amplifiers combines the TI’s rail-to-rail input/output Zero­Crossover input topology with ultra low power to offer excellent precision to single supply applications. Designed with battery powered instrumentation in mind, the OPA369 features 1mV offset voltage, 10kHz bandwidth, and linear input offset over the entire input range of the 1.8V to 5.5V supply range.
OPA369 as low-power gas-detection circuit. *Expected release date 3Q 2007.
V
CC
+
1/2
OPA2369
C
C
R
1
R
1
REF
S
W
1
R
B
C
2
R
R
F
V
L
CC
1/2
OPA2369
+
V
OUT
10
Amplifiers
Precision Operational Amplifiers
Low-Noise Operational Amplifiers (V
N
10nV/ Hz)
IQPer Slew V
OS
V
OS
VNat VSVSCh. GBW Rate (25°C) Drift IBCMRR 1kHz Rail­(V) (V) (mA) (MHz) (V/µs) (mV) (µV/°C) (pA) (dB) (nV
//
Hz) Single to-
Device Description/Technology Ch. (min) (max) (max) (typ) (typ) (max) (typ) (max) (min) (typ) Supply Rail Package(s) Price
*
OPAy211 Ultra-Low Noise, 1, 2 8 36 3.6 80 27 0.1 0.2 15000 114 1.1 N N MSOP, SOIC, SON $3.95
High Precision TLE2027 Wide Supply, Bipolar 1 8 38 5.3 13 2.8 0.1 0.4 90000 100 2.5 N N SOIC $0.90 OPA300 Very Wide Bandwidth 1 2.7 5.5 12 150 80 2.5 5 5 66 3 Y Out SOT23-6,SOIC-8 $1.25 OPA227 High Precision, Bipolar 1, 2, 4 5 36 3.8 8 2.3 0.075 0.1 10000 120 3 N N SOIC, PDIP $1.10 OPA228 High Speed, Precision, 1, 2, 4 5 36 3.8 33 10 0.075 0.1 10000 120 3 N N SOIC, PDIP $1.10
OPAy827 Ultra-Low THD+N, 1, 2 8 36 4.5 18 22 0.25 1 3 108 4.5 N N MSOP, SOIC $5.75
High-Precision OPAy350 Excellent ADC Driver, 1, 2, 4 2.7 5.5 7.5 38 22 0.5 4 10 76 5 Y I/O MSOP $0.85
OPA365 High Speed, Zero Crossover 1, 2 2.2 5.5 5 50 25 0.5 1 10 100 5 Y I/O SOT-23, SO-8 $0.95
OPA353 Good ADC Driver, 1, 2, 4 2.7 5.5 8 44 22 8 5 10 76 5 Y I/O SOT-23, SOIC $1.00
Low THD+N, CMOS
OPA376 Low Offset, 5MHz 1, 2, 4 2.2 5.5 0.95 5 4 0.05 2 10 80 7.5 Y I/O SC70, SOT23, MSOP, $0.95
General Purpose SO8, TSSOP OPA627/37
Precision, High Speed, 1 9 36 7.5 16, 80 55, 135 0.1 0.4 1 106 5.2 N N SOIC $12.25
Difet™ OPA376 Low Power RRIO 1, 2, 4 2.2 55 0.95 5 4 0.05 2 10 80 7.5 Y I/O SC70, SOT23 $0.95 OPA121 Precision, Difet S 10 36 4.5 2 2 3 2 5 86 8 N N SOIC-8 $5.10 OPAy277 High Precision 1, 2, 4 4 36 0.825 1 0.8 0.02 0.1 1000 130 8 N N SOIC, PDIP $0.85 OPA124 Low Noise, Precision, 1 10 36 7.5 1.5 1.6 0.25 2 1 100 8 N N PDIP $3.95
Bipolar
TLC220x Precision, Low Power, 1, 2 4.6 16 1.5 1.8 2.5 0.5 0.5 100 85 8 Y Out SOIC, PDIP $1.65
LinCMOS OPAy132 Wide Bandwidth, FET-Input 1, 2, 4 4.5 36 4.8 8 20 0.5 2 50 96 8 N N SOIC $1.45
*
Suggested resale price in U.S. dollars in quantities of 1,000. New products are listed in bold red. Preview products are listed in bold blue.
1.1nV/ Hz Noise, Low-Power, Precision Bipolar Operational Amplifier
OPA211, OPA2211
Get samples, datasheets, and app reports at: www.ti.com/OPA211 and www.ti.com/sc/device/OPA2211
OPA211 noise density vs. frequency. *Expected Release Date 4Q 2007.
Key Features
• Low noise voltage: 1.1nV/ Hz at 1kHz
• 100nVPPinput voltage noise: 0.1Hz to10Hz
• Low offset voltage: 100µV (max)
• Low offset voltage drift: 0.2µV/°C (typ)
• Unity gain bandwidth 58MHz
• Wide supply range: ±2.25V to ±18V, +4.5V to +36V
• Rail-to-rail output
• Output current: 30mA
• Shutdown: 20µA (max)
Applications
• Low-noise signal processing
• High-performance ADC drivers
• Active filters
• Ultrasound amplifiers
• Professional audio preamplifiers
• Hydrophone amplifiers
• MRI and CAT Scan
The OPA211 and OPA2211 use proprietary design techniques combined with a high voltage isolated silicon germanium process to deliver outstanding noise performance, (1.1nV/ Hz) precision (100µV) offset voltage and wide supply range from 4.5V to 36V single supply operation or ±2.25V to ±18V. Devices have a specified temperature range of –40°C to +125°C and operating temperature range of –55°C to +150°C. This performance is available in very small packaging 3mm x 3mm 8-pin DFN and the 8-pin MSOP.
Amplifier and Data Converter Selection Guide Texas Instruments 3Q 2007
10
Hz
Voltage Noise (nV/
1
10
+15V
3.6mA I
Q
+
100µV
OPA211
_
-15V
Frequency (Hz)
1.1nV/ Hz
100
200mV
1k
Amplifiers
Precision Operational Amplifiers
11
JFET Input, High Precision, Low-Noise Operational Amplifier
OPA827
Get samples, datasheets, and app reports at: www.ti.com/sc/device/OPA827
Key Features
• Ultra-low-input bias current: 3pA
• Low Offset: 250µV (max)
• Drift: 1µV/°C
• Low noise: 4.5nV/ Hz at 1kHz
• Bandwidth: 18MHz
• Packages:
Single: MSOP-8, SO-8
Dual: TSSOP-8, SO-8
Applications
• Precision ±10V input front-ends
• Transimpedance amplifiers
• Active filters
• ADC drivers
• DAC output buffer
• High-performance audio
The OPA827 and OPA2827 use proprietary design techniques combined with a high voltage isolated silicon germanium process and FET-input transistors to deliver high input impedance (1 x 1013Ω), outstanding noise performance, (4.5nV/ Hz) and high precision (250µV) offset voltage. Devices have specified temperature range of –40°C to +125°C. This performance is available in very small, 8-pin MSOP packaging.
OPA827 features extremely low noise for data acquisition.
*Expected Release Date 4Q 2007.
Low Input Bias Current Operational Amplifiers (I
B
10pA)
IQPer Slew V
OSVOS
VNat VSVSCh. GBW Rate (25°C) Drift IBCMRR 1kHz Rail­(V) (V) (mA) (MHz) (V/µs) (mV) (µV/°C) (pA) (dB) (nV
//
Hz) Single to-
Device Description/Technology Ch. (min) (max) (max) (typ) (typ) (max) (typ) (max) (min) (typ) Supply Rail Package(s) Price
*
OPA129 Ultra-Low Bias, Difet™ 1 10 36 1.8 1 2.5 2 3 0.1 80 17 N N SOIC $3.20 OPA124 Low Noise, High Precision 1 10 36 7.5 1.5 1.6 0.25 2 1 100 8 N N PDIP $3.95 OPA627/37 Ultra-Low THD+N, Difet 1 9 36 7.5 16, 80 55, 135 0.1 0.4 1 106 5.2 N N PDIP, SOIC $12.25
OPAy827 Low Noise, Precision, FET-Input 1, 2 8 36 4.5 18 22 0.25 1 3 108 4.5 N N MSOP, SOIC $5.75
OPA344 Low Power, RRIO, SS 1, 2, 4 2.7 5.5 0.25 1 1 0.5 2.5 10 80 32 Y I/O MSOP, DIP, SOIC $0.55 OPA363 1.8V, RRIO, High CMRR 1, 2 2.7 5.5 0.75 7 5 0.5 3 10 74 17 Y I/O MSOP, SOIC, SOT23 $0.60 OPAy336 SS, µPower, CMOS 1, 2, 4 2.3 5.5 0.032 0.1 0.03 0.125 1.5 10 80 40 Y Out SOT23, SOIC $0.40 OPAy340 CMOS, Wide Bandwidth 1, 2, 4 2.7 5.5 0.95 5.5 6 0.5 2.5 10 80 25 Y I/O MSOP, SOIC, SOT23, TSSOP $0.80 OPAy350 Excellent ADC Driver, Low Noise 1, 2, 4 2.7 5.5 7.5 38 22 0.5 4 10 76 5 Y I/O PDIP, MSOP, SOIC $0.85
OPAy365 High Speed, Zero-Crossover, 1, 2 2.2 5.5 5 50 25 0.5 1 10 100 5 Y IN SOT23, SO8 $0.95
CMOS
OPA376 Low Offset, 5MHz 1, 2, 4 2.2 5.5 0.95 5 4 0.05 2 10 80 7.5 Y I/O SC70, SOT23, MSOP, $0.95
SO8, TSSOP
*
Suggested resale price in U.S. dollars in quantities of 1,000. New products are listed in bold red. Preview products are listed in bold blue.
Texas Instruments 3Q 2007 Amplifier and Data Converter Selection Guide
400nV
PP
PP
200nV /Div
3.6mA I
250µV
+15V
Q
OPA827
0.1Hz to 10Hz Noise
+5V
ADS8505
±10V Input
1600nV
Closest Competition
PP
–15V
1s/Div Frequency (Hz)
Amplifiers
Precision Operational Amplifiers
12
2.2V, 50MHz, 5nV/ Hz, Zero-Crossover Operational Amplifier
OPA365
Get datasheets at: www.ti.com/OPA365
OPA365 designed for 16-bit, single supply acquisition.
Key Features
• Wide bandwidth: 50MHz
• High slew rate: 25V/µs
• Low noise: 5nV/ Hz
• Excellent THD+N: 0.0006%
• Low offset: 500µV (max)
• High CMRR: 100dB
• Rail-to-rail input/output without crossover
• Available in single, dual: OPA365, OPA2365
• microPackaging: SOT23-5, SO-8, DFN-8
Applications
• Precision signal conditioning
• Data acquisition
• Process control
• Test equipment
• Active filters
• Audio
The OPA365 is the newest member of the Zero-Crossover family of op amps featuring TI’s patented single-supply, zero-crossover input stage designed to offer excellent performance for very low-voltage, single-supply ADC applications. These amplifiers are optimized for driving 16-bit SAR ADCs and feature precision CMRR without the crossover associated with traditional complementary input stages. The input common-mode range includes both the negative and positive supplies and the output voltage swing is 10mV beyond supply rails. All versions are specified for operation from –40°C to +125°C. The OPA365 operates on single supplies from
2.2V (±1.1V) to 5.5V (±2.25V) and features 500µV offset on 5mA supply current.
Wide-Bandwidth, Precision Operational Amplifiers (GBW > 5MHz)
IQPer Slew V
OSVOS
VNat
VSVSCh. GBW Rate (25°C) Drift I
B
CMRR 1kHz Rail-
(V) (V) (mA) (MHz) (V/µs) (mV) (µV/°C) (pA) (dB) (nV
//
Hz) Single to-
Device Description/Technology Ch. (min) (max) (max) (typ) (typ) (max) (typ) (max) (min) (typ) Supply Rail Package(s) Price
*
TLV2460 Lowest Power, Wide 1, 2, 4 2.7 6 0.575 5.2 1.6 2 2 14000 66 11 Y I/O SOT23-6, PDIP-8, $0.65
Bandwidth SOIC-8, TSSOP-8 OPAy340 Low Power, CMOS 1, 2, 4 2.7 5.5 0.95 5.5 6 0.5 2.5 10 80 25 Y I/O SOT23, DIP, SOIC $0.80 OPA343 General Purpose 1,2,4 2.5 5.5 1.25 5.5 6 3 8 10 74 25 Y I/O SOT23-5, SOIC-8 $0.60 OPAy363/4 1.8V, Zero-Crossover, CMOS 1, 2, 4 1.8 5.5 0.75 7 5 0.5 3 10 74 17 Y I/O SOT, SOIC $0.60 OPA373 Best Performance/Price 1 2.7 5.5 0.75 6.5 5 3 5 10 80 Y I/O SOT23-6, SOIC-8 $0.36 OPA743 Precision, 12V 1,2,4 3.5 12 1.5 7 10 8 7 10 66 30 Y I/O SOT23-5, PDIP-8, $0.95
SOIC-8
OPAy227
Low Noise, Precision, Bipolar
1, 2, 4 5 36 3.8 8 2.3 0.075 0.1 10000 120 3 N N SOIC $1.10 OPAy132 High Speed, FET-Input 1, 2, 4 4.5 36 4.8 8 20 0.5 2 50 96 8 N N SOIC $1.45 OPAy227 Low Noise, Bipolar 1, 2, 4 5 36 3.8 8 2.3 0.075 0.1 10000 120 3 N N SOIC, PDIP $1.10 TLE2027A Low Noise, Bipolar 1 8 38 5.3 13 2.8 0.025 0.2 90000 11 2.5 N N SOIC, PDIP $1.25 OPA627 Precision, High Speed, Difet™ 1 9 36 7.5 16 55 0.1 0.4 1 106 5.2 N N SOIC, PDIP $12.25 OPA381 Precision TIA, CMOS 1 2.7 5.5 1 18 12 0.025 0.03 50 95 110 Y Out MSOP, SON $1.45
OPAy827 Ultra-Low THD+N, 1, 2 8 36 4.5 18 22 0.25 1 3 108 4.5 N N MSOP, SOIC $5.75
High Precision OPA727/8 Precision, e-trim™, CMOS 1 4 12 4.3 20 30 0.15 0.3 100 86 10 Y Out MSOP, SON $0.95 OPAy228 Precision, Low Noise, 1, 2, 4 5 36 3.8 33 10 0.075 0.1 10000 120 3 N N SOIC, PDIP $1.10 OPAy350 Single Supply, Rail-to-Rail, 1, 2, 4 2.7 5.5 7.5 38 22 0.5 4 10 76 5 Y I/O MSOP, SOIC, PDIP $0.85 THS4281 Very Low Power RRIO 1 2.7 15 1 80 35 3.5 4 10 12.5 Y I/O SOT23,MSOP, SOIC $0.95
OPA365 High Speed, Zero-Crossover 1, 2 2.2 5.5 5 50 25 0.5 1 10 100 5 Y In SOT23, SOIC-8 $0.95
OPAy211 Ultra-Low Noise, 1, 2 8 36 3.6 80 27 0.1 0.2 15000 114 1.1 N N MSOP, SOIC, SON $3.95
High Precision OPA637 Precision, Decomp, Difet 1 9 36 7.5 80 135 0.1 0.4 1 106 5.2 N N DIP, SOIC $12.25 OPAy380 Precision, Wideband TIA 1, 2 2.7 5.5 1 85 80 0.025 0.1 50 100 5 at 1MHz Y Out MSOP, SOIC, SSOP $1.95
*
Suggested resale price in U.S. dollars in quantities of 1,000. New products are listed in bold red. Preview products are listed in bold blue.
Amplifier and Data Converter Selection Guide Texas Instruments 3Q 2007
Texas Instruments 3Q 2007 Amplifier and Data Converter Selection Guide
Amplifiers
Precision Operational Amplifiers
13
Wide Voltage Range Operational Amplifiers (±5V < VS< ±20V) Selection Guide
IQPer Slew VOSV
OS
VNat
VSVSCh. GBW Rate (25°C) Drift IBCMRR 1kHz Rail-
(V) (V) (mA) (MHz) (V/µs) (mV) (µV/°C) (pA) (dB) (nV/ Hz) Single to-
Device Description Ch. (min) (max) (max) (typ) (typ) (max) (typ) (max) (min) (typ) Supply Rail Package(s) Price
*
TLE214x Widest Supply, Low Noise, High Speed 1, 2, 4 4 44 4.5 5.9 45 0.9 1.7 1500000 85 10.5 N N PDIP, SOIC $0.55 TLE202x Low Power, FET-Input 1, 2, 4 4 40 0.3 1.2 0.5 0.6 2 70000 85 17 N N SOIC, TSSOP, PDIP $0.45 TLE2027 Excalibur™, Low Noise, Bipolar 1 8 38 5.3 13/50 2.8 0.1 0.4 90000 100 2.5 N N SOIC, PDIP $0.90 TLE2037 Excalibur, Low Noise, G5, Bipolar 1 8 38 5.3 13/50 2.8 0.1 0.4 90000 100 2.5 N N SOIC, PDIP $0.90 OPAy241 µPower, Precision, Bipolar 1, 2, 4 2.7 36 0.03 0.035 0.01 0.25 0.4 20000 100 45 Y Out SOIC, PDIP $1.15 OPAy251 µPower, Precision, Bipolar 1, 2, 4 2.7 36 0.038 0.035 0.01 0.25 0.5 20000 100 45 Y Out PDIP, SOIC $1.15 OPAy244 µPower, Low Cost, Bipolar 1, 2, 4 2.6 36 0.05 0.43 0.1 1.5 4 25000 84 22 N N SOT-23, SOIC, PDIP $0.55 OPAy137 Low Cost, FET-Input 1, 2, 4 4.5 36 0.27 1 3.5 3 15 100 76 45 N N SOT23, SOIC $0.60 OPAy234 Low Power, Precision, Bipolar 1, 2, 4 2.7 36 0.35 0.35 0.2 0.1 0.5 25000 91 25 N N MSOP, SOIC $1.05 OPAy237 Low Cost, Low Power, Bipolar 1, 2 2.7 36 0.35 1.4 0.5 0.75 2 40000 78 28 N N SOT23, SOIC $0.55 OPAy130 Low Power, FET-Input 1, 2, 4 4.5 36 0.65 1 2 1 2 20 90 16 N N SOIC $1.40 OPAy277 High Precision, Low Power, Bipolar 1, 2, 4 4 36 0.825 1 0.8 0.02 0.1 1000 130 8 N N SON, SOIC $0.85 OPAy131 General Purpose, FET-Input 1, 2, 4 9 36 1.75 4 10 0.75 2 50 80 15 N N SOIC $0.75 OPAy227 Precision, Low Noise, Bipolar 1, 2, 4 5 36 3.8 8 2.3 0.075 0.1 10000 120 3 N N PDIP, SOIC $1.10 OPAy228 Precision, Low Noise, G 5, Bipolar 1, 2, 4 5 36 3.8 33 11 0.075 0.1 10000 120 3 N N PDIP, SOIC $1.10 OPAy132 Wide Bandwidth, FET-Input 1, 2, 4 4.5 36 4.8 8 20 0.5 2 50 96 8 N N SOIC $1.45 OPA124 Low Noise, Precision, Bipolar 1 10 36 7.5 1.5 1.6 0.25 2 1 100 8 N N PDIP $3.95 OPA627 Ultra-Low THD+N, Difet™ 1 9 36 7.5 16 55 0.1 0.4 1 106 5.2 N N PDIP, SOIC $12.25 OPA637 Ultra-Low THD+N,G5, Difet 1 9 36 7.5 80 135 0.1 0.4 1 106 5.2 N N PDIP, SOIC $12.25
OPAy211 Ultra-Low Noise, High-Precision 1, 2 8 36 3.6 80 27 0.1 0.2 15000 114 1.1 N N MSOP, SOIC, SON $3.95 OPAy827 Ultra-Low THD+N, High-Precision 1, 2 8 36 4.5 18 22 0.25 1 3 108 4.5 N N MSOP, SOIC $5.75
TLV240x 2.5V, 1µA, Bipolar 1, 2, 4 2.5 16 0.00095 0.0055 0.0025 1.2 3 300 63 800 Y I/O SOT23, SOIC, PDIP $0.65 TLV238x Low Power, RRIO, Bipolar 1, 2 2.7 16 0.01 0.16 0.06 6.5 1.1 60 72 90 Y I/O SOT, SOIC, PDIP $0.60 TLC220x Precision, Low Noise, Bipolar 1, 2 4.6 16 1.5 1.8 2.5 0.5 0.5 100 85 8 Y Out SOIC, PDIP $1.65 TLC08x Low Noise, Wide Bandwidth, Bipolar 1, 2, 4 4.5 16 2.5 10 16 1 1.2 50 100 8.5 N N MSOP, SOIC, PDIP $0.45 TLV237x 550µA, 3MHz, SHDN 1, 2, 4 2.7 15 0.66 3 2.4 4.5 2 60 57 39 Y I/O SOT23, MSOP $0.43 OPAy703/4 12V, Low Power, SHDN, CMOS 1, 2, 4 4 12 0.2 1 0.6 0.75 4 10 70 45 Y I/O MSOP, SOIC, DIP $1.30 OPAy734/5 12V, Auto-Zero Precision, SHDN 1, 2 2.7 12 0.75 1.6 1.5 0.005 0.05 200 115 150 Y Out SOT23, SOIC $1.25 OPAy743 12V, 7MHz, CMOS 1, 2, 4 3.5 12 1.5 7 10 7 8 10 66 30 Y I/O MSOP, SOIC $0.95 OPAy727/8 20MHz, e-trim™ Precision CMOS 1, 2, 4 4 12 4.3 90 30 0.25 0.3 100 86 23 N N MSOP, SON $0.95 OPAy725/6 Very Low Noise, SHDN 1, 2 4 12 5.5 20 30 3 4 200 88 23 Y Out SOT23, SOIC $0.90
*
Suggested resale price in U.S. dollars in quantities of 1,000. Preview products are listed in bold blue.
Amplifier and Data Converter Selection Guide Texas Instruments 3Q 2007
Amplifiers
Precision Operational Amplifiers
14
Single-Supply Operational Amplifiers VS(min)
2.7V
Slew V
OS
Offset VN at
V
S
VSIQPer GBW Rate (25°C) Drift IBCMRR 1kHz Rail-
(V) (V) Ch. (MHz) (V/µs) (mV) (µV/°C) (pA) (dB) (nV/ Hz) to-
Device Description/Technology Ch. (min) (max) (mA) (typ) (typ) (max) (typ) (max) (min) (typ) Rail Package Price*
TLV1078 Single 1.8V RRIO, 8MHz, w/SHDN, CMOS 1, 2, 4 1.4 1.6 0.017 0.085 0.032 0.45 111 800 50 68 Out SOT23, SOIC $2.30 OPA349 1µA, Rail-to-Rail, CMOS 1, 2 1.8 5.5 0.002 0.07 0.02 10 10 15 52 I/O SC70, SOT23, SOIC $0.75 OPAy363/4 High CMR,RRIO SHDN, CMOS 1, 2, 4 1.8 5.5 0.75 7 5 0.5 3 10 74 25 I/O SOT23, SOIC $0.60
OPA369 Lowest Power, Zero Crossover 1,2 1.8 5.5 0.001 0.01 0.005 1 2 10 100 160 I/O SC70, SOT23 $0.95
OPA379 1.8V, Ultra-Low Power, Low Offset, 1, 2, 4 1.8 5.5 0.0045 0.09 0.03 1.5 2.7 50 100 80 I/O SC70, SOT23, SOIC $0.75
OPA378 Wide Bandwidth microPower e-trim™ 1,2 1.8 5.5 0.05 1 1 0.1 2 10 90 35 I/O SOT23, MSOP $0.95
OPA333 µPower, Zero-Drift, CMOS 1,2 1.8 5.5 0.025 0.35 0.16 0.01 0.05 200 106 130 I/O SC70, SOT23, SOIC $0.95
OPA376 Low Offset, 5MHz 1, 2, 4 2.2 5.5 0.95 5 4 0.05 2 10 80 7.5 I/O SC70, SOT23, $0.95
MSOP, SO8, TSSOP
TLV224x microPower, Lowest supply 1, 2, 4 2.5 12 0.0012 0.0055 0.002 3.0 3.0 500 55 800 I/O
SOT23, MSOP, SOIC
$0.60
TLV237x Precision, Low Power 1, 2, 4 2.7 15 0.66 3 2.4 4.5 2.0 60 50 39 I/O
SOT23, MSOP, SOIC
$0.47
TLV240x Sub 1µA, Low Offset 1, 2, 4 2.5 16 .00095 0.0055 .0025 1.2 3.0 300 63 800 I/O
SOT23, MSOP,
$0.65
SOIC,
TSSOP
TLV245x Low Offset, General Purpose 1, 2, 4 2.7 6.0 0.035 0.22 0.12 1.5 0.3 5000 70 51 I/O SOT23, MSOP, $0.60
SOIC, TSSOP
TLV246x Wide Bandwidth, Low Noise, Low Power 1, 2, 4 2.7 6.0 0.575 5.2 1.6 1.6 2.0 14000 66 11 I/O SOT23, MSOP, $0.60
SOIC, TSSOP TLV247x Low Noise, General Purpose 1, 2, 4 2.7 6.0 0.75 2.8 1.4 2.2 0.4 50 61 15 I/O SOT23, SOIC $0.60 TLV248x Low Noise, Low Voltage 1, 2, 4 1.8 3.6 .82 8.0 4.3 3.0 8.0 15 50 18 I/O SOT23, SOIC $0.65 OPA348 1MHz, 45µA, RRIO, CMOS 1, 2, 4 2.1 5.5 0.065 1 0.5 5 2 10 70 35 I/O SC70, SOT23, SOIC $0.45
OPAy365 High-Speed, Zero-Crossover, CMOS 1, 2 2.2 5.5 5 50 25 0.5 1 10 100 5 In SOT23, SO8 $0.95
OPA336 µPower, CMOS 1, 2, 4 2.3 5.5 0.032 0.1 0.03 0.125 1.5 10 80 40 Out SOT23, SOIC $0.40 OPA347 Low Power, SC70, CMOS 1, 2, 4 2.3 5.5 0.034 0.35 0.17 6 2 10 70 60 I/O SC70, SOT23, DIP, $0.48
SOIC OPA343 General Purpose, CMOS 1, 2, 4 2.5 5.5 1.25 5.5 6 8 3 10 74 25 I/O SOT23, SOIC $0.60 TLV2770 Single 2.7V High Slew Rate, R/R 1, 2, 4 2.5 5.5 2 4.8 9 2.5 2 100 70 21 Out MSOP, SOIC, DIP $0.70
Output, SHDN, CMOS
OPA244 µPower, Single-Supply, 1, 2, 4 2.6 36 0.05 0.43 0.1 1.5 4 25000 84 22 In SOT23, SOIC, DIP $0.55
MicroAmplifier™ Series, Bipolar
OPA237 Single-Supply, MicroAmplifier 1, 2, 4 2.7 36 0.35 1.4 0.5 0.75 2 40000 78 28 In SOT23, SOIC $0.55
Series, Bipolar OPA241 Single-Supply, µPower, Bipolar 1, 2, 4 2.7 36 0.03 0.035 0.01 0.25 0.4 20000 80 45 Out SOIC, DIP $1.15 OPA300/1 High Speed, Low Noise, SS, CMOS 1 2.7 5.5 12 150 80 5 2.5 5 66 3 Out SOT23, SOIC $1.25 OPA334/5 Zero Offset 0.05µV/°C (max), SHDN, CMOS 1, 2 2.7 5.5 0.35 2 1.6 0.005 0.02 200 110 50 Out SOT23 $1.00 OPA337 120dB AOL, CMOS Input 1, 2 2.7 5.5 1 3 1.2 3 2 10 74 26 Out SOT23, MSOP, $0.43
SOIC, DIP
OPA338 Good Speed/Power, G 5, CMOS 1, 2 2.7 5.5 1 12.5 4.6 3 2 10 74 26 Out SOT23, SOIC $0.43 OPA340 5.5MHz, CMOS 1, 2, 4 2.7 5.5 0.95 5.5 6 0.5 2.5 10 80 25 I/O SOT23, SOIC, DIP $0.80 OPA341/2 Low Cost, Low Power, CMOS 1, 2, 4 2.7 5.5 1 5.5 6 6 2 10 74 32 I/O SOT23, SOIC $0.75 OPA344 Low Power, Low Offset, CMOS 1, 2, 4 2.7 5.5 0.25 1 1 0.5 2.5 10 80 32 I/O SOT23, SOIC, DIP $0.55 OPA345 Low Power, Single-Supply, R/R, 1, 2, 4 2.7 5.5 0.25 4 4 0.5 2.5 10 80 32 I/O SOT23, SOIC $0.55
MicroAmplifier Series, CMOS OPA350 High-Speed, Single-Supply, R/R , CMOS 1, 2, 4 2.7 5.5 7.5 38 22 0.5 4 10 76 5 I/O MSOP, SOIC, DIP $0.85 OPA353 Good ADC Driver, Low THD+N, CMOS 1, 2, 4 2.7 5.5 8 44 22 8 5 10 76 5 I/O SOT23, SOIC $1.00 OPA373/4 6.5MHz, 585µA, Shutdown, CMOS 1 2.7 5.5 0.75 6.5 5 5 3 10 80 30 I/O SOT23, SOIC $0.36 THS4281 High Speed, Low Power 1 2.7 15 1 40 35 3.5 7 10 92 12.5 I/O
SOT23, MSOP, SOIC
$0.95
*
Suggested resale price in U.S. dollars in quantities of 1,000. New products are listed in bold red. Preview products are listed in bold blue.
Texas Instruments 3Q 2007 Amplifier and Data Converter Selection Guide
Amplifiers
High-Speed Amplifiers
15
TI develops high-speed signal conditioning products using state-of-the-art processes that give leading-edge performance. Used in high-speed signal chains and analog-to-digital drive circuits, high-speed amps are broadly defined as any amplifier having at least 50MHz of bandwidth and at least 100V/µs slew rate. High-speed amps from TI come in several different types and supply voltage options.
Design Considerations
Voltage-feedback type—the most
commonly used amp and the basic building block of most analog signal chains such as gain blocks, filtering, level shifting, buffering, etc. Most voltage-feedback amps are unity­gain stable, though some are decompensated to provide wider bandwidth, faster slew rate and lower noise.
Current-feedback type—most commonly
seen in video or DSL line driver applications, or designs where extremely fast slew rate is needed.
Fully differential amplifier (FDA)—the fully
differential input and output topology has the primary benefit of reducing even order harmonics, thereby reducing total harmonic distortion. The FDA also rejects common-mode components in the signal and provides a larger output swing to the load relative to single­ended amplifiers. Fully differential amplifiers are well-suited to driving analog-to-digital converters. A V
COM
pin sets the output common-mode voltage required by newer, single-supply, ADCs.
FET-Input (or CMOS) amplifiers—have higher
input impedance than typical bipolar amps and are more useful to interfacing to high impedance sources, such as photodiodes in transimpedance circuits.
Video amplifiers—can be used in a
number of different ways, but generally are in the signal path for amplifying, buffering, filtering or driving video lines. The specifica­tions of most interest are differential gain and differential phase. Current-feedback amps are typically used in video applications, because of their combination of high slew rate and excellent output drive at low quiescent power.
Fixed and variable gain—these amps have
either a fixed gain, or a variable gain that can be set either digitally with a few control pins, or linearly with a control voltage. Fixed-gain amplifiers are fixed internally with gain setting resistors. Variable gain amplifiers can have different gain ranges, and can also be differential input and/or output.
Packaging—high-speed amplifiers typically
come in surface-mount packages, because parasitics of DIP packages can limit perform­ance. Industry standard surface-mount packages (SOIC, MSOP, TSSOP and QFN) handle the highest speed requirements. For band­widths approaching 1GHz and higher, the QFN package decreases inductance and capacitance.
Evaluation boards—high-speed amps have an
associated fully populated evaluation module (EVM) or an unpopulated printed circuit board (PCB). EVMs are a very important part of high-speed amplifier evaluation, since layout is critical to design success. To make layout simple, Gerber files for the EVMs are available. See page 101 for more information.
High-speed amplifiers selection tree.
High-Speed < 500MHz (GBW Product)
THS4001 THS4011/4012 THS4051/4052 THS4081/4082 THS4041/4042 OPA820/OPA4820 OPA2613 OPA2614 OPA842 OPA2652 OPA2822 THS4271 OPA690/2690/3690
OPA890/OPA2890 OPA2889
Fully Differential
THS4120/4121 THS4130/4131 THS4140/4141 THS4500/4501 THS4502/4503 THS4509 THS4508 THS4511 THS4513
THS4520
Very High-Speed > 500MHz (GBW Products)
OPA843 OPA847 OPA846/OPA2846 THS4271 THS4302
Voltage Feedback
FET or CMOS Input
OPA656 OPA657 (G > 7) OPA355/2355/3355 OPA356/2356 OPA354/2354/4354 OPA357/2357 OPA358/OPA360/OPA361 OPA300/OPA2300 OPA301/OPA2301 THS4631 OPA380/OPA2380
Low Voltage 3.3V
THS4120/21 OPA355/2355/3355 OPA356/2356 OPA354/2354/4354 OPA357/2357 OPA300/OPA2300 OPA301/OPA2301 OPA830/OPA2830/OPA4830 OPA832/OPA2832/OPA3832
Rail-to-Rail Input or Output
OPA355/2355/3355 OPA356/2356 THS4222/4226 OPA354/2354/4354 OPA357/2357 OPA358/OPA360/OPA361 OPA830/OPA2830/OPA4830 OPA832/OPA2832/OPA3832
Low Noise 3nV/ Hz
THS4031/4032 OPA2822 THS4130/4131 THS4271 OPA300/OPA301 OPA820/OPA4820 OPA842 OPA843 (G > 3) OPA846/OPA2846 (G > 7) OPA847 (G > 12) OPA358 OPA820/OPA4820
Variable and Fixed Gain
THS7530 VCA2612/2613/2614/2616/2618 VCA810 VCA8613/VCA8617 VCA2615/VCA2617 OPA860 OPA861 BUF602 BUF634 OPA615 OPA693/OPA3693
Voltage Limiting Output
OPA698 OPA699 (G 4)
Current Feedback
General Purpose
+5V to ±5V Operational
OPA683/2683 OPA684/2684/3684/4684 OPA691/2691/3691 OPA692/3692 (G = 2 or ±1) OPA2677 THS3201/02 OPA694/OPA2694 OPA2674
General Purpose
±5V to ±15V Operational
THS3112/15 THS3122/25 THS3110/11 THS3120/1 THS3091/95 THS3092/96 THS6184
Very High-Speed > 500MHz
OPA695 THS3201/THS3202 OPA694/OPA2694
Preview devices appear in BLUE.
New devices appear in RED.
Amplifier and Data Converter Selection Guide Texas Instruments 3Q 2007
Amplifiers
High-Speed Amplifiers
16
Low-Distortion, Fully Differential Amplifier with Rail-to-Rail Outputs
THS4520
Get samples, datasheets and EVMs at: www.ti.com/sc/device/THS4520
THS4520 as differential ADC driver.
Key Features
• Settling time: 7ns to 0.1% (2V step, G=2V/V, RL = 200Ω)
• Slew rate: 570V/µs
• Centered input common-mode range
• Output common-mode control
• Small-signal bandwidth: 450MHz (AV=+2)
• Output current: 105mA
• Input voltage noise: 2nV/ Hz (f>10kHz)
• HD2: –115dBc at 100kHz, (8VPP, G=2V/V, RL=1kΩ)
• HD3: –123dBc at 100kHz, (8VPP, G=2V/V, RL=1kΩ)
• Power-down quiescent current: 15µA
• Packaging: QFN-16
Applications
• 5V and 3.3V data acquisition systems
• High linearity ADC amplifier
• Wireless communication
• Test and measurement
• Voice processing systems
The THS4520 is a fully differential op amp with rail-to-rail output that operates from 3.3V or 5V supply. The independent output common-mode control makes it well-suited for dc-coupled, high-accuracy data acquisition systems. With its low distortion, the THS4520 is ideal to drive TI’s industry-leading, 16-bit SAR analog-to-digital converters.
Single and Triple 2:1 High-Speed Video Multiplexers
OPA875, OPA3875
Get samples, datasheets and EVMs at: www.ti.com/sc/device/OPA875 and www.ti.com/sc/device/OPA3875
OPA3875 functional block diagram.
Key Features
• Small-signal bandwidth: 700MHz (AV=+2)
• Bandwidth: 425MHz, 4V
PP
• Gain flatness: 0.1dB to 200MHz
• Channel switching time: 4ns
• Switching glitch: 40mV
PP
• Slew rate: 3100V/µs
• Gain accuracy: 2.0V/V ±0.4%
• 0.025%/0.025° differential gain/phase
• Packaging: SO-8 or MSOP-8 (OPA875) or SSOP-16 (OPA3875)
Applications
• RGB or Y/Pb/Pr video switching
• Analog routing switcher
• LCD projector input select
• High resolution monitors
• Broadcast video processing
• Triple high speed ADC input mux
The OPA875 and OPA3875 are high-speed, very wideband, single-channel and triple-channel, 2:1 multiplexers. Gain accuracy and switching glitch of 40mV
PP
are improved over earlier solutions using a new (patented) input stage switching approach. System power may be optimized using the enable feature for the OPA3875. Using this, the OPA3875 powers down to a mere 0.9mA total supply current. The fixed gain-of-2 output stage is ideal for driving double terminated video loads directly. Where a single channel of the OPA3875 is required, consider the OPA875.
500
500
V
V
i
500
CM
THS4520
500
16-bit SAR
ADC
+5V
75
RGB
Channel 0
RGB
Channel 1
75
75
75
75
OPA3875
(Patented)
75
75
75
RGB Out
75
–5V EN
Channel
Select
RGB Switching
Texas Instruments 3Q 2007 Amplifier and Data Converter Selection Guide
Amplifiers
High-Speed Amplifiers
17
High-Speed Amplifiers Selection Guide
Distortion
Settling THD 1Vpp, G = 2, I
Q
BW BW GBW Time 2Vpp 5MHz Differential Per
Supply at A
CL
G = +2 Product Slew 0.1% G = 1 HD
2
HD
3
V
N
V
OS
I
B
Ch. I
OUT
Voltage A
CL
(MHz) (MHz) (MHz) Rate (ns) 1MHz (dBc) (dBc) Gain Phase (nV/ Hz) (mV) (µA) (mA) (mA)
Device Ch. SHDN (V) (min) (typ) (typ) (typ) (V/µs) (typ) (dB) (typ) (typ) (typ) (%) (°) (typ) (max) (max) (typ) (typ) Package(s) Price
*
Voltage Feedback (Sorted by Ascending Gain Bandwidth Product)
THS4051/52 1, 2 N ±5, ±15 1 70 38 50 240 60 –82 –66 –79 0.01 0.01 14 10 6 8.5 100 SOIC, MSOP PowerPAD™ $0.95
THS4281 1 N
+2.7, ±5, +15
1 90 40 35 78 0.05 0.25 12.5 30 0.5 750 30 SOT23-5, MSOP, SOIC $0.95
OPA2889 2 Y 5, ±5 1 115 60 75 250 25 –74 –76 –79 0.06 0.04 8.4 5 0.75 0.46 40 MSOP, SOIC $1.20
THS4011/12 1, 2 N ±5, ±15 1 290 50 100 310 37 –80 –65 –80 0.006 0.01 7.5 6 6 7.8 110 SOIC, MSOP PowerPAD $1.45
THS4081/82 1, 2 N ±5, ±15 1 175 70 100 230 43 –64 –67 –52 0.01 0.05 10 7 6 3.4 85 SOIC, MSOP PowerPAD $1.20
OPAy354/57 1, 2, 4 Y 2.5 to 5.5 1 250 90 100 150 30 –75 –83 0.02 0.09 6.5 8 50pA 4.9 100 SOT23, SOIC PowerPAD $0.75
OPAy890 1, 2 Y 5, ±5 1 275 92 120 400 10 –88 –82 –90 0.05 0.03 8 6 1.6 2.25 40 MSOP, SOIC $0.80
OPAy830 1, 2 ,4 N +3, +5, ±5 1 310 120 110 600 42 –82 –71 –77 0.07 0.17 9.5 1.5 10 4.25 150 SOT23, SOIC $0.75
THS4221/22 1, 2 N 3, 5, ±5, 15 1 230 100 120 975 25 –100 –79 –92 0.007 0.007 13 10 3 14 100 SOIC, MSOP PowerPAD $1.90
OPA2613 2 N 5, ±6 1 230 110 125 70 40 –94 1.8 1 10 6 350 SOIC, SOIC PowerPAD $1.55
OPAy300/301 1 Y 2.7 to 5.5 1 400 80 150 80 30 –74 –78 0.01 0.1 3 5 0.5 12 40 SOT23, SOIC $1.25
OPA842 1 N ±5 1 350 150 200 400 15 –107 –100 –104 0.003 0.008 2.6 1.2 35 20.2 100 SOT23, SOIC $1.55
OPA2652 2 N ±5 1 700 200 200 335 –100 –76 –66 0.05 0.03 8 7 15 5.5 140 SOT23, SOIC $1.15
OPAy356 1, 2 N 2.5 to 5.5 1 450 100 200 300 30 –81 –93 0.02 0.05 5.8 9 50pA 8.3 60 SOT23, SOIC, MSOP $0.70
OPAy355 1, 2, 3 Y 2.5 to 5.5 1 450 100 200 300 30 –81 –93 0.02 0.05 5.8 9 50pA 8.3 60 SOT23, SOIC, MSOP, TSSOP $0.70
THS4031/32 1, 2 N ±5, ±15 1 275 100 220 100 60 –72 –77 –67 0.015 0.025 1.6 2 6 8.5 90 SOIC, MSOP PowerPAD $1.65
OPA2822 2 N 5, ±5 1 400 200 220 170 32 –96 –81 –91 0.02 0.03 2 1.2 12 4.8 150 SOIC, MSOP $1.35
OPA656 1 N ±5 1 400 185 240 290 8 –92 –80 –89 0.01 0.01 6 2 20pA 25 60 SOT23, SOIC $3.35
OPA698 1 N 5, ±5 1 450 215 250 1100 –93 –82 –88 0.012 0.008 5.6 5 10 15.5 120 SOIC $1.90
OPAy820 1, 4 N 5 to ±5 1 800 240 280 240 18 –84 –90 –110 0.01 0.03 7.5 0.75 17 5.6 110 SOIC, SOIC PowerPAD $0.90
OPA2614 2 N 5, ±6 2 180 180 290 145 35 –85 –72 –81 1.8 1 14.5 6.5 350 SOIC, SOIC PowerPAD $1.55
OPAy690 1, 2, 3 Y 5, ±5 1 500 220 300 1800 8 –91 –78 –78 0.06 0.03 5.5 4 8 5.5 190 SOT23, SOIC, SSOP $1.35
THS4271/75 1 Y 5, ±5, 15 1 1400 390 400 1000 25 –110 –100 –94 0.007 0.004 3 10 15 22 160 SOIC, MSOP PowerPAD $2.25
OPA843 1 N ±5 3 500 800 1000 7.5 –105 0.001 0.012 2 1.2 35 20.2 100 SOT23, SOIC $1.60
THS4304 1 N 3 to ±5 1 3000 1000 870 1000 5 –92 –92 –75 2.4 4 6 18 100 SOT23, SOIC, MSOP $1.75
OPA699 1 N 5, ±5 4 260 1000 1400 7 0.012 0.008 4.1 5 10 15.5 120 SOIC $1.95
OPA657 1 N ±5 7 350 1600 700 10 4.8 1.8 20pA 14 70 SOT23, SOIC $3.80
OPAy846 1, 2 N ±5 7 500 1750 625 10 0.02 0.02 1.2 0.6 19 12.6 80 SOT23, SOIC $1.70
OPA847 1 Y ±5 12 600 3800 950 10 0.85 0.5 39 18.1 75 SOT23, SOIC $2.00
Current Feedback (Sorted by Ascending Gain of +2 Bandwidth)
THS3110/11 1 Y ±5, ±15 1 100 90 1300 27 –78 –60 –61 0.01 0.03 3 6 20 4.8 260 SOIC, MSOP PowerPAD $1.30
THS3112/15 2 Y ±5, ±15 1 110 110 1550 63 –78 –77 –80 0.01 0.011 2.2 8 23 4.9 270 SOIC, SOIC PowerPAD $2.00
THS3120/1 1 Y ±5, ±15 1 130 120 1500 11 –53 –65 –53 0.007 0.018 2.5 6 3 7 475 SOIC, MSOP PowerPAD $1.85
THS3122/25 2 Y ±5, ±15 1 160 128 1550 64 –78 –70 –77 0.01 0.011 2.2 6 23 8.4 440 SOIC, SOIC PowerPAD $2.95
OPAy683 1, 2 Y 5, ±5 1 200 150 540 –84 –70 –85 0.06 0.03 4.4 3.5 4 0.94 110 SOT23, SOIC $1.20
OPAy684
1, 2, 3, 4
Y 5, ±5 1 210 160 820 –77 –73 –77 0.04 0.02 3.7 3.5 35 1.7 120 SOT23, SOIC, TSSOP $1.35
OPA2677 2 N 5, ±6 1 220 200 2000 –87 –75 –85 0.03 0.01 2 4.54 30 9 500 SOIC, SOIC PowerPAD, QFN $1.65
THS3091/5 1 Y ±5, ±15 1 235 210 5000 42 –72 –79 –88 0.013 0.02 2 3 15 9.5 280 SOIC, SOIC PowerPAD $2.45
*
Suggested resale price in U.S. dollars in quantities of 1,000. New products are listed in bold red. Preview products are listed in bold blue.
Amplifier and Data Converter Selection Guide Texas Instruments 3Q 2007
Amplifiers
High-Speed Amplifiers
18
High-Speed Amplifiers Selection Guide
Distortion
Settling THD 1Vpp, G = 2, I
Q
BW BW GBW Time 2Vpp 5MHz Differential Per
Supply at A
CL
G = +2 Product Slew 0.1% G = 1 HD
2
HD
3
V
N
V
OS
I
B
Ch. I
OUT
Voltage A
CL
(MHz) (MHz) (MHz) Rate (ns) 1MHz (dBc) (dBc) Gain Phase (nV/ Hz) (mV) (µA) (mA) (mA)
Device Ch. SHDN (V) (min) (typ) (typ) (typ) (V/µs) (typ) (dB) (typ) (typ) (typ) (%) (°) (typ) (max) (max) (typ) (typ) Package(s) Price
*
Current Feedback (Sorted by Ascending Gain of +2 Bandwidth) (Continued)
THS3092/6 2 Y ±5, ±15 1 235 210 5000 42 –72 –79 –88 0.013 0.02 2 4 15 9.5 280 SOIC, SOIC PowerPAD™ $3.90
OPA2674 2 Y 5, ±6 1 250 225 2000 –87 –73 –82 0.03 0.01 2 4.5 30 9 500 SOIC, SOIC PowerPAD $1.70
OPAy691 1, 2, 3 Y 5, ±5 1 280 225 2100 8 –93 –77 –79 0.07 0.02 1.7 2.5 35 5.1 190 SOT-23, SOIC, SSOP $1.45
OPAy694 1, 2 N ±5 1 1500 690 1700 13 –92 –93 0.03 0.015 2.1 4.1 18 5.8 80 SOT-23, SOIC $1.25
THS3201/02 1, 2 N ±5, ±7.5 1 1800 850 6200 20 –85 –85 –95 0.006 0.03 1.65 3 13 14 115 MSOP, SOT23, SOIC $1.60
OPA695 1 Y 5, ±5 1 1700 1400 4300 –86 –88 –95 0.04 0.007 1.8 3 30 12.9 120 SOT23, SOIC $1.35
Fully Differential Amplifiers (Sorted by Ascending Gain Bandwidth Product)
THS4130/31 1 Y 5, ±5, ±15 1 150 90 180 52 78 –97 –60 –75 1.3 2 6 12.3 85 SOIC, MSOP PowerPAD $2.80
THS4502/03 1 Y 5, ±5 1 370 175 280 2800 6.3 –100 –83 –97 6 7 4.6 23 120 SOIC, MSOP PowerPAD $4.00
THS4520 1 Y 3 to 5 1 600 400 1200 520 7 –100 2 25 11 13 105 QFN $2.45
THS4511 1 Y 3, 5 1 1600 1400 2000 4900 3.3 –97 2 5.2 15.5 39.2 61 QFN $3.45
THS4513 1 Y 3, 5 1 1600 1400 2000 5100 16 –97 2.2 5.2 13 37.7 96 QFN $3.25
THS4508 1 Y 3, 5 2 2000 2000 3000 6400 2 –98 2.3 5 15.5 39.2 61 QFN $3.95
THS4509 1 Y 3, 5 2 2000 2000 3000 6600 2 –98 1.9 5 13 37.7 96 QFN $3.75
Fixed and Variable Gain (Sorted by Ascending A
CL
Bandwidth)
VCA810 1 N ±5 0.01 30 30 350 30 –35 –71 –35 2.4 0.25 10 20 60 SOIC $5.75
OPAy832 1, 2 N 2.8 to ±5 1 90 80 350 45 –64 –66 –73 0.1 0.16 9.2 7 10 4.25 120 SOT23, SOIC $0.70
BUF634 1 N 5, ±5, ±15 1 180 2000 200 0.4 0.1 4 100 20 15 250 SOIC $3.05
OPAy692 1, 3 Y 5, ±5 1 280 225 2000 8 –93 –70 –74 0.07 0.02 1.7 2.5 35 5.1 190 SOT23, SOIC, SSOP $1.15
THS7530 1 Y 5 4 300 1750 –51 –54 –50 1.27 30 35 20 TSSOP PowerPAD $3.85
BUF602 1 N 3.3, 5, ±5 1 1200 8000 0.15 0.04 5.1 30 7 5.8 60 SOT23,SOIC $0.85
OPAy693 1 Y 5, ±5 1 1400 700 2500 12 –87 –74 –87 0.03 0.01 1.8 2 35 13 120 SOT23, SOIC $1.30
THS4303 1 Y 3, 5 10 1800 5500 2.5 4.25 10 34 180 MSOP PowerPAD $2.10
THS4302 1 Y 3, 5 5 2400 5500 2.8 4.25 10 37 180 MSOP PowerPAD $2.10
JFET-Input and CMOS Amplifiers (Sorted by Ascending Gain Bandwidth Product)
OPA358 1 Y 2.7 to 3.3 1 100 10 80 55 35 0.3 0.7 6.4 6 50pA 7.5 50 SC70 $0.45
OPAy380 1, 2 N 2.7 to 5.5 1 100 10 90 80 67 0.025 50pA 7.5 50 MSOP, SOIC $1.95
OPAy354 1, 2, 4 N 2.5 to 5.5 1 250 90 100 150 30 –75 –83 0.02 0.09 6.5 8 50pA 4.9 100 SOT23, SOIC PowerPAD $0.67
OPAy357 1, 2 Y 2.5 to 5.5 1 250 90 100 150 30 –75 –83 0.02 0.09 6.5 8 50pA 4.9 100 SOT23, SOIC PowerPAD $0.67
OPAy300/301 1,2 Y 2.7 to 5.5 1 80 150 80 30 –74 –78 0.01 0.1 3 5 5pA 12 40 SOT-23, SOIC $1.25
OPAy355 1, 2, 3 Y 2.5 to 5.5 1 450 100 200 300 30 –81 –93 0.02 0.05 5.8 9 50pA 8.3 60 MSOP $0.69
OPAy356 1, 2 N 2.5 to 5.5 1 450 100 200 300 30 –81 –93 0.02 0.05 5.8 9 50pA 8.3 60 SOT23, SOIC $0.69
OPA656 1 N ±5 1 400 185 240 290 8 –92 –80 –89 0.01 0.01 6 2 2pA 25 60 SOT23, SOIC $3.35
OPA657 1 N ±5 7 350 1600 700 10 –83 –73 –100 4.8 1.8 2pA 14 70 SOT23, SOIC $3.80
xDSL Drivers and Receivers (Sorted by Ascending Output Current)
THS4032 2 N ±5, ±15 1 275 100 220 100 60 –72 –77 –67 0.015 0.025 1.6 2 6 8.5 90 SOIC, MSOP PowerPAD™ $2.60
OPA4684 4 N +5, ±6 1 250 170 750 –79 –80 –80 0.04 0.02 3.7 3.5 35 1.7 120 TSSOP, SOIC $3.30
OPA2822 2 N 5, ±5 1 400 200 220 170 32 –96 –81 –91 0.02 0.03 2 1.2 12 4.8 150 SOIC, MSOP $1.35
*
Suggested resale price in U.S. dollars in quantities of 1,000. New products are listed in bold red.
Texas Instruments 3Q 2007 Amplifier and Data Converter Selection Guide
Amplifiers
High-Speed Amplifiers
19
High-Speed Amplifiers Selection Guide
Distortion
Settling THD 1Vpp, G = 2, I
Q
BW BW GBW Time 2Vpp 5MHz Differential Per
Supply at A
CL
G = +2 Product Slew 0.1% G = 1 HD
2
HD
3
V
N
V
OS
I
B
Ch. I
OUT
Voltage A
CL
(MHz) (MHz) (MHz) Rate (ns) 1MHz (dBc) (dBc) Gain Phase (nV/ Hz) (mV) (µA) (mA) (mA)
Device Ch. SHDN (V) (min) (typ) (typ) (typ) (V/µs) (typ) (dB) (typ) (typ) (typ) (%) (°) (typ) (max) (max) (typ) (typ) Package(s) Price
*
xDSL Drivers and Receivers (Sorted by Ascending Output Current) (Continued)
THS6022 2 N ±5, ±15 1 210 200 1900 70 –75 –55 –58 0.04 0.06 1.7 5 9 7.2 250 TSSOP $2.75
OPA2613 2 N 5, ±6 1 230 110 125 70 40 –94 0.01 0.01 1.8 1 10 6 350 SOIC, SOIC PowerPAD™ $1.55
OPA2614 2 N 5, ±6 2 180 180 290 145 35 –75 92 110 1.8 1 14.5 6.5 350 QFN, SOIC, SOIC PowerPAD $1.55
THS6184 4 Y ±5, ±16 1 50 400 –83 –83 –61 2.9 15 15 4.2 400 QFN, TSSOP $3.75
OPA2674 2 Y 5, ±6 1 260 2000 –82 –93 0.03 0.01 2 2 10 9 500 SOIC $1.70
OPA2677 2 N 5, ±6 1 220 200 2000 –87 –75 –85 0.03 0.011 2 4.5 30 9 500 SOIC, SOIC PowerPAD $1.65
THS6132 2 Y ±5, ±15 1 80 70 300 –83 –78 –70 3.5 1 1 6.4 500 QFN TQFP PowerPAD $3.95
THS6182 2 Y ±5, ±16 1 100 80 450 –88 –72 –70 3.2 20 15 11.5 600 QFN, SOIC PowerPAD $2.95
Transimpedance Amplifiers (Sorted by Ascending Gain Bandwidth Product)
OPAy380 1, 2 N 2.7, 5.0 1 90 45 90 80 2000 5.8 0.025 50pA 6.5 50 MSOP, SOIC $1.95
OPA656 1 N ±5 1 400 185 240 290 8 –92 –80 –89 0.01 0.01 6 2 20pA 25 60 SOT23, SOIC $3.35
OPA657 1 N ±5 7 350 1600 700 10 –83 –73 –100 4.8 1.8 20pA 14 70 SOT23, SOIC $3.80
OPAy846 1, 2 N ±5 7 500 1750 625 10 –105 0.02 0.02 1.2 0.6 19 12.6 80 SOT23, SOIC $1.70
OPA847 1 Y ±5 12 600 3800 950 10 –110 0.85 0.5 39 18.1 75 SOT23, SOIC $2.00
Multi-Channel, Fixed-Gain Preamps
MPA4609 4 N 5 190 90 150 0.65 0.2 12.5 TQFP $3.95
OPAy875 1, 3 Y ±3 to ±6 2 700 700 3100 3 –69 –90 0.025 0.025 6.7 7 ±18 11 ±70 MSOP, SOIC $1.45
OPA4872 1 Y ±3.5 to ±6 1 1100 500 2300 14 –75 –62 –86 0.035 0.005 4.5 5 18 10.6 ±75 SOIC $2.15
Voltage-Limiting Amplifiers
OPA698 1 N 5, ±5 1 450 215 250 1100 –93 –82 –88 0.012 0.008 5.6 5 10 15.5 120 SOIC $1.90
OPA699 1 N 5, ±5 4 260 1000 1400 0.012 0.008 4.1 5 10 15.5 120 SOIC $1.95
RF/IF Amplifiers
THS9000/1 1 N 3, 5 5.8 500 0.6 Var MicroMLP, SOT23 $1.05
DC Restoration (Sample/Hold Amplifier)
OPA615 1 N ±5 1 710 2500 –62 –47 4.6 4 1 13 5 SOIC, MSOP $4.25
Filtered Amplifiers
THS7303 3 Y 2.7 to 5.5
9/16/35/
40/75/ –59/–62/ 0.13 0.55 35 6 70 TSSOP $1.65
190
155/320 –58/–60
THS7313 3 Y 2.7 to 5.5 8 35 –62 0.07 0.12 35 6 70 TSSOP $1.20
THS7314 3 N 2.85 to 5.5 8.5 36 –66 0.1 0.1 390 5.3 80 SOIC $0.40
THS7316 3 N 2.85 to 5.5 36 80 –56 0.1 0.1 390 5.8 80 SOIC $0.55
THS7318 3 Y 2.85 to 5 20 80 –73 0.05 0.03 3.5 NanoFree™ Wafer Scale $3.75
THS7327 3 Y 2.7 to 5.5 500 1300 0.3 0.45 65 33 80 TQFP $3.35
THS7353 3 Y 2.7 to 5.5
9/16/35/
40/70/ –64/–73/ 0.15 0.3 20 5.9 70 TSSOP $1.65
150
150/300 –70/–71
THS7315 3 Y 2.85 to 5.5 8.5 37 –62 0.2 0.3 420 5.2 90 SOIC $0.50
THS7347 3 Y 2.7 to 5.5 500 1300 –58 0.05 0.1 15 26.8 80 TQFP $2.75
Transconductance Amplifiers
OPA860 1 N ±5 1 470 470 3500 –77 –79 2.4 5 11.2 15 SOIC $2.25
OPA861 1 N ±5 1 80 400 900 –68 –57 2.4 1 5.4 15 SOT23, SOIC $0.95
*
Suggested resale price in U.S. dollars in quantities of 1,000. New products are listed in bold red.
Amplifier and Data Converter Selection Guide Texas Instruments 3Q 2007
20
Amplifiers
Video Amplifiers
New devices appear in RED.
rail-to-rail output that swings within 100mV of the rails to allow for either AC or DC-coupling. The THS7347 incorporates a 500MHz band­width, 1200V/µs unity-gain buffer making it ideal for driving ADCs and video decoders, where the THS7327 offers an integrated 5th order Butterworth anti-aliasing filter on each channel. These filters improve image quality by eliminating DAC images.
Portable Video— Successfully designing a
high-performance video system into low voltage portable applications requires careful attention to many details. Portable applications impose very challenging technical requirements beyond those required in typical video applications and demand particular trade-offs in performance, power consumption, printed circuit board space and cost. A DC­coupled solution with integrated gain, low-pass filter, level-shifter, and shutdown solves these challenges while maintaining good video performance and eliminates the need for large, expensive discrete components. The standard definition (SDTV) THS7314 and high definition (HDTV) THS7316 easily meet these trade-offs by maintaining outstanding low-cost performance while the EDTV/SDTV line driver THS7318, with it’s small profile wafer scale package, is ideal for extremely board space sensitive applications.
The new low power THS7315 is a fully­integrated SDTV video amplifier which features a rail-to-rail output stage allowing for both AC and DC line driving. The low 15.6mA quiescent current at 3.3V makes it an excellent choice for USB powered or other power sensitive video applications.
Video amplifiers—can be used in a number
of different ways, but generally are in the signal path for amplifying, buffering, filtering or driving video lines. The specifications of most interest for composite video signals, or CVBS, are differential gain and differential phase. For other video signals, such as Y’P’bP’r or RGB, bandwidth – both small signal and large signal, and slew rate are of most importance. Noise and DC accuracy is also considered important in some high-end applications.
The traditional Voltage-Feedback (VFB) ampli­fiers are widely used because of their ability to be configured for almost any situation. Many VFB amplifiers have the ability to accept input signals going to the negative rail (or ground), allowing use in many single-supply systems. Additionally, many VFB amplifiers offer rail-to­rail outputs offering the widest dynamic range possible on small supplies. Traditional VFB amplifiers (non-RRO) designed for video offer the ability to have very high slew rates, wide bandwidths, low noise, and very good DC characteristics. Current-feedback amps are commonly found in high-end video applications, because of their combination of high slew rate and excellent output drive at low quiescent power.
High-Speed Video Multiplexers
Numerous video applications, such as RGB or YPbPr video switching, video routers, high resolution monitors, etc. are creating an increased need for high-speed switching with multiplexers (muxes). With the increased need to reduce board space are also the demands that these muxes provide low power consumption as well as increased functionality, such as the ability to drive 75-Ohms or 150-Ohms while maintaining good video
performance specifications. These specifications include low crosstalk, fast settling, gain flatness, low switching glitch along with low differential gain and differential phase. The new OPA875 and OPA3875 single­and triple 2:1 multiplexers along with the new OPA4872, 4:1 multiplexer easily meets these requirements. Using a new patented input stage switching approach, the switching glitch is much improved over earlier solutions. This technique uses current steering as the input switch while maintaining an overall closed­loop design.
TI brought new technology to the market with the introduction of the THS7303, THS7313 and THS7353. These three-channel devices were the first to offer full I2C programmability of all functions independently for each channel, which provides the designer the flexibility to configure a video system as required or on-the­fly, without the need for hardware upgrades or modifications. The devices are designed with integrated Butterworth filters to provide all the analog signal conditioning required in video applications such as set-top boxes, digital televisions, personal video recorders/DVD readers and portable USB devices. These highly integrated devices provide space savings as a result of the high levels of integration and advanced package technology.
The strong combination of integrated features and optimized design make TI’s THS7327 and new THS7347, well suited for use in projectors and professional video systems. Both 3-channel RGBHV video buffers offer a monitor pass-thru amplifier, unity gain buffer, 2:1 input mux, I2C control of all functions on each channel, HV synch paths with Adjustable Schmitt Trigger, selectable bias modes and
Video Amplifiers
Voltage Feedback
OPAy354 (2.5V to 5.5V) OPAy355 (2.5V to 5.5V) OPAy356 (2.5V to 5.5V) OPAy357 (2.5V to 5.5V) THS4281 (2.7, ±7.5V) OPAy358 (2.7V to 3.3V) OPA360 (2.7V to 3.3V) OPA361 (2.7V to 3.3V) OPAy830 (2.8V, ±5.0) OPAy832 (2.8V, ±5) OPAy690 (5V, ±5V) OPA842 (5V, ±5V) OPAy820 (5V, ±5V)
Current Feedback Filtered Amplifiers
OPAy694 (±5V) OPAy691 (5V, ±5V) OPAy684 (5V, ±5V) OPAy683 (5V, ±5V) OPAy692 (5V, ±5V) OPAy693 (5V, ±5V) OPAy695 (5V, ±5V)
OPA360 (2.7V to 3.3V) OPA361 (2.5V to 3.3V) THS7303 (2.7V to 5.5V) THS7313 (2.7V to 5.5V) THS7353 (2.7V to 5.5V) THS7327 (2.7V to 5.5V)
THS7314 (2.85V to 5.5V) THS7315 (2.85V to 5.5V) THS7316 (2.85V to 5.5V) THS7318 (2.85V to 5V) THS7347 (2.7V to 5.5V)
Special Functions
OPA615 (±5V) BUF602 (±5V, +5V, +3.3V) OPA861 (±5V)
OPAy875 (±5V) OPA4872 (±5V)
Texas Instruments 3Q 2007 Amplifier and Data Converter Selection Guide
Amplifiers
Video Amplifiers
21
3-Channel RGBHV Video Buffer with I2C Control
THS7327
Get samples, datasheets and evaluation modules at: www.ti.com/sc/device/THS7327
3.3V single-supply AC-input/AC-video output system w/SAG correction (1 of 3 channels shown).
Key Features
• Three video amplifiers for CVBS, S-Video, EDTV, HDTV and RGB
• HV sync paths with adjustable Schmitt Trigger
• 2:1 input MUX
•I2C control of all functions/all channels
• Integrated low-pass filters on ADC buffer path
• Selectable input bias modes
• Monitor pass-through function
Applications
Projectors
• Digital TVs
• Professional video systems
• Set-top boxes
•DLP® projectors/televisions
The THS7327 integrates three analog video channels and two digital channels for HV sync, simplifying system design and reducing component count. The three analog channels incorporate unity gain buffering and monitor feed-through paths to handle all standard video formats, including RGB, YPbPr and CVBS. The amplifier’s I
2
C control provides easy system configuration and flexibility with programmable functions that include: integrated 2:1 input multiplexers which enable switching of multiple video sources; fifth-order anti-aliasing filters enable use with multiple video standards; and input bias modes.
3-Channel SDTV Buffer with 5th-Order, Low-Pass Filter Compatible with DaVinci™ Processors
THS7315
Get samples, datasheets, evaluation modules and app reports at: www.ti.com/sc/device/THS7315
3.3V single-supply DaVinci™ interface with DC output coupled video line driver.
Key Features
• 5-pole Butterworth low-pass filter at 8.5MHz
• Flexible input configuration
• Gain of 5.2V/V (14.3dB) compatible with DaVinci™, DM2xx, DM3xx, DM4xx and OMAP™ processors
• Low total quiescent current:
15.6mA at 3.3V
• Rail-to-rail output swings within 100mV from the rails
Applications
• Set-top-box DAC output buffering
• DVDR/PVR DAC output buffering
• Portable/USB powered systems
THS7315 is a low-power, single-supply (3V to 5V), 3-channel integrated video buffer. It incorporates a fifth-order Butterworth filter which can be used as a DAC reconstruction filter or an ADC anti-aliasing filter. The 8.5MHz filter is a perfect choice for SDTV video which includes Composite (CVBS), S-Video, Y’U’V’, G’B’R’(R’G’B’), and Y’
P
’BP’R480i/576i. Its rail-to-rail output
stage allows for both AC and DC line driving.
THS7327
THS7315
0.1µF
75
0.1µF
75ΩΩ
In A
In B
2:1
DC
+ Offset
DC
SDA
Input 1
Input 2
AC-
Bias
SCL
X1
AC
Sync
TIP
Clamp
Bypass
LPF
9/16/35/
75MHz
Disable
= Open
1k
3.3V
0.1µF
47µF
Out
33µF
675
SAG
3.3V
878
150
75
Monitor
Output
ADC
75
+1.8V
CVBS
S-Video
75
OUT
Y’
C’
OUT
OUT
DAC/
Encoder
(DaVinci)
SDTV
CVBS S-Video Y’ S-Video C’
4801/5761
Y’P’ P’
B
G’B’R’
CVBS
500
Y’
500
C’
R
500
+3.3V
1
2
3
3
O CH.1
CH.2
CH.3
V
IN
THS7315
CH.1
IN
CH.2
IN
CH.3
IN
GAIN =
5.2V/V
OUT
OUT
OUT
GRN
75
8
75
7
6
5
75
75
75
Amplifier and Data Converter Selection Guide Texas Instruments 3Q 2007
Amplifiers
Video Amplifiers
22
Video Amplifiers (Sorted by Ascending G = +2 Bandwidth)
–3dB at 0.1dBI
Q
Supply G = +2 Gain
Diff
Diff Offset Per Ch. Input
Voltage Bandwidth Flatness Gain Phase Slew Rate Voltage (mA) Range
Device Description
1
Ch. SHDN (V) (MHz) (MHz) (%) (°) (V/µs) (mV) (max) (typ) (V) RRO Package(s) Price
*
THS7313 I2C, SD 5th-Order LPF 3 Y 2.7 to 5.5 8 4 0.07 0.12 35 35 6 0 to 2.4 Y TSSOP-20 $1.20
THS7314 SDTV, 5th-Order Butterworth 3 Y 2.85 to 5.5 8.5 4.2 0.1 0.1 36 390 5.3 0 to 2.4 Y SOIC $0.40 THS7315 SDTV, 5th Order Butterworth, 3 N 2.85 to 5.5 8.5 0.2 0.3 37 420 5.2 0 to 0.56 Y SOIC $0.50
G = 5.2
OPA360 G = 2, DC-Coupled, LPF, 1 Y 2.7 to 3.3 9MHz 5 0.5 1 55 80 6 GND to Y SC-70 $0.49
Use with DM270/275/320 2-Pole Filter (V+)–1.5
OPA361 G = 5.2, DC-Coupled, LPF, TV 1 Y 2.5 to 3.3 9MHz 5 0.5 1 55 55 5.3 GND to 0.55 Y SC-70 $0.49
Detect 2-Pole Filter
THS7318 EDTV/SDTV 3 Y 2.85 to 5 20 11 0.05 0.03 80 200 3.5 0 to 2.4 Y Wafer Scale $3.75 THS7316 HDTV, 5th Order 3 N 2.85 to 5.5 36 0.1 0.1 390 5.8 0 to 2.3 Y SOIC $0.55 THS4281 Low Power, High Speed, RRIO 1 N
+2.7, ±5, +15
40 20 0.05 0.08 35 12.5 750 30 Y SOT, MSOP $0.95
OPA358 Small Package, 1 Y 2.7 to 3.3 40 12 0.3 0.7 55 6 5.2 GND –0.1 to Y SC-70 $0.45
Low Cost (V+)–1 OPAy832 VFB, Fixed Gain 1, 2, 3 N +2.8, ±5 80 0.1 0.16 350 7 4.25 –0.5 to 1.5 Y SOT-23, SOIC $0.70 OPAy354 VFB, Low Cost 1, 2, 4 N 2.5 to 5.5 100 40 0.02 0.09 150 8 4.9 –0.1 to 5.4 Y SOT-23, SOIC, $0.67
MSOP, TSSOP
OPAy357 VFB, Low Cost, SHDN 1, 2 Y 2.5 to 5.5 100 40 0.02 0.09 150 8 4.9 –0.1 to 5.4 Y SOT-23, SOIC, $0.67
MSOP
OPAy830 VFB 1, 2,
4 N +2.8, ±5.5 110 0.07 0.17 600 7 4.25 –0.45 to 1.2 Y SO-8, SOT-23 $0.75
OPA842 VFB 1 N ±5 150 56 0.003 0.008 400 1.2 20.2 ±3.2 N SOT-23, SOIC $1.55 OPAy683 CFB 1, 2 Y ±5, +5 150 37 0.06 0.03 540 1.5 0.9 ±3.75 N SOT-23, SOIC, $1.20
MSOP
THS7353 I2C, Selectable 3 Y 2.7 to 5.5 9/16/35/ 5/9/20/25 0.15 0.3 40/70/ 20 5.9 0 to 3.4 Y TSSOP-20 $1.65
SD/ED/HD/Bypass 150 150/300 5th-Order LPF, 0dB Gain
OPAy684 CFB 1, 2, Y ±5, +5 160 19 0.04 0.02 820 3.5 1.7 ±3.75 N SOT-23, SOIC $1.35
3, 4
THS7303 I2C, Selectable 3 Y 2.7 to 5.5 9/16/35/190 5/9.5/ 0.13 0.55 40/75/155/ 35 6 0 to 2.4 Y TSSOP-20 $1.65
SD/ED/HD/Bypass 22/125 320 5th-Order LPF, 6dB
OPAy355 VFB, Low Cost, SHDN
1, 2,
Y 2.5 to 5.5 200 75 0.02 0.05 300 9 8.3 –0.1 to 3 Y SOT-23, SOIC, $0.69
3
MSOP, TSSOP
OPAy356 VFB, Low Cost 1, 2 N 2.5 to 5.5 200 75 0.02 0.05 300 9 8.3 –0.1 to 3 Y SOT-23, SOIC, $0.69
MSOP OPA656 VFB, JFET-Input 1 N ±5 200 30 0.02 0.05 290 1.8 14 –4/+2.5 N SOT-23, SOIC $3.35 OPAy690 VFB 1, 2, 3 Y ±5, +5 220 30 0.06 0.03 1800 4 5.5 ±3.5 N SOT-23, SOIC $1.35 OPAy691 CFB 1, 2, 3 Y ±5, +5 225 90 0.07 0.02 2100 2.5 5.1 ±3.5 N SOT-23, SOIC $1.45 OPAy820 VFB 1, 4 N ±.5, ±5 230 0.01 0.03 240 0.75 5.6 0.9 to 4.5 N SOT-23, SOIC $0.90 OPAy692 CFB1, Fixed Gain 1, 3 Y ±5, +5 240 120 0.07 0.02 2000 2.5 5.1 ±3.5 N SOT-23, SOIC $1.15 THS7327 RGBHV Buffer, I2C, 2:1MUX 3 Y 2.7 to 5.5 9/16/35/ 4/7/15/ 0.3 0.45 1300 65 33 0 to 2.4 Y TQFP-48 $3.35
75/500 38/56
THS7347 RGBHV Buffer, I2C, 2:1MUX 3 Y 2.7 to 5.5 500 350 0.05 0.1 1300 15 26.8 0 to 2.4 Y TQFP-48 $2.75
OPAy694 CFB 2 N ±5 690 0.03 0.015 1700 4.1 5 ±2.5 N SOT-23, SOIC $1.25
OPAy693 CFB, Fixed Gain 1, 3 Y ±5, +5 700 200 0.03 0.01 2500 2 13 ±3.4 N SOT-23, SOIC $1.30 OPA695 CFB 1 Y ±5, +5 1400 320 0.04 0.007 4300 3 12.9 ±3.3 N SOT-23, SOIC $1.35 BUF602 Closed-Loop Buffer 1 N ±5, N/A 240 0.15 0.04 8000 30 5.8 ±4.0 N SOT-23, SOIC $0.85
AV = ±1, 1.4GHz 3.3 OPA615 DC Restoration 1 N ±5 N/A N/A N/A N/A 2500 N/A 13 ± 3.5 N SO-14, MSOP $4.25 OPA861 Transconductance 1 N ±5 N/A N/A 900 12 5.4 ±4.2 N SOT-23, SOIC $0.95
Video Multiplexers
OPA4872 4:1 MUX 1 Y ±3.5, ±6 500 120 0.035 0.005 2300 5 10.6 ±2.8 N SOIC $2.15 OPAy875 2:1 MUX 1, 3 Y ±3, ±6 700 200 0.025 0.025 3100 7 11 ±2.8 N MSOP,SOIC $1.20
SSOP, QSOP
1
VFB (Voltage Feedback), CFB (Current Feedback) *Suggested resale price in U.S. dollars in quantities of 1,000 New products are listed in bold red.
Texas Instruments 3Q 2007 Amplifier and Data Converter Selection Guide
Amplifiers
Comparators
23
Comparator ICs are specialized op amps designed to compare two input voltages and provide a logic state output. They can be considered one-bit analog-to-digital converters.
The TI comparator portfolio consists of a variety of products with various performance characteristics, including: fast ns response time, wide input voltage ranges, extremely low quiescent current consumption and op amp and comparator combination ICs.
Comparator vs. Op Amp
Comparator Op Amp
Speed (Response time) Yes No Logic Output Yes No Wide Diff. Input Range Yes Yes Low Offset Drift No Yes
In general, if a fast response time is required, use a comparator.
Design Considerations
Output topology
• Open collector—connects to the logic supply through a pull-up resistor and allows comparators to interface to a variety of logic families.
• Push-pull—does not require a pull-up resistor. Because the output swings rail-to­rail, the logic level is dependent on the voltage supplies of the comparator.
Response time (propagation delay)
applications requiring “near real-time” signal response should consider comparators with nanosecond (ns) propagation delay. Note that as propagation delay decreases, supply current increases. Evaluate what mix of performance and power can be afforded. The TLV349x family offers a unique combination of speed/power with 5µs propagation delay on only 1µA of quiescent current.
Combination comparator and op amp—for
input signals requiring DC level shifting and/or
gain prior to the comparator, consider the TLV230x (open drain) or TLV270x (push-pull) op amp and comparator combinations. These dual function devices save space and cost.
Comparator and voltage reference
comparators typically require a reference voltage to compare against. The TLV3011 is an integrated comparator and voltage reference combination in a space-saving SC70 package.
TLV3501 performance characteristics.
High-Speed Comparator in SOT23
TLV3501
Get samples and datasheets at: www.ti.com/sc/device/TLV3501
Key Features
• High speed: 4.5ns response at 20mV overdrive
• Beyond-the-rail common-mode input range
• Rail-to-rail, push-pull output
• Single-supply operation: 2.7V to 5.5V
• Packaging: SOT23
Applications
• Test and measurement
• Power supply monitoring
• Base stations
The TLV3501 is a high-speed comparator in a small SOT23 package. Designed for a variety of applications, TLV3501 offers very fast response relative to power consumption. It is specified over the extended temperature range of –40°C to +125°C.
0.006
0.0078
0.025
Faster
0.115
0.2
0.3
1.1
Increasing Speed
Response Time Low-to-High (µs)
36
Slower
80
1
7
Push-Pull Output
Open-Drain Output
1.81.4
TLC352, TLC354
LMV331, LMV393, LMV339
TLV3491, TLV3492
TLV3701, TLV3702, TLV3704
TLV3401, TLV3402, TLV3404
3.3 5 16 30
TL714
TL3016
TL712
LM393, LM339
S, 12mA/ch
S, 12mA/ch
S, 12.5mA/ch
S, 20mA/ch
LM211
D, Q, 150µA/ch
D, Q, 150µA/ch
S, D, Q, 100µA/ch
D, Q, 20µA/ch
D, Q, 20µA/ch
S, D, Q, 1.2µA/ch
S, D, Q, 0.8µA/ch
S, D, Q, 0.55µA/ch
TLV3501
TLC372, TLC374
TLC393, TLC339
TLC3702, TLC3704
Supply Voltage (V)
S, 6mA/ch
D, Q, 500µA/ch
PROPAGATION DELAY vs. OVERDRIVE VOLTAGE
9
8
Rise
7
6
Fall
5
Propagation Delay (ns)
4
3
0 20 40 60 80 100
Overdrive Voltage (mV)
V
= 1V
CM
V
= 5V
S
C
= 17pF
LOAD
Amplifier and Data Converter Selection Guide Texas Instruments 3Q 2007
Amplifiers
Comparators
24
TLV3011 or TLV3012 configured to power-up reset for MSP430.
Low-Power Comparators with Integrated Voltage Reference
TLV3011, TLV3012
Get samples and datasheets at: www.ti.com/sc/device/TLV3011 and www.ti.com/sc/device/TLV3012
Key Features
• Comparator and voltage reference:
TLV3011: open-drain output
TLV3012: push-pull output
• Integrated voltage reference: 1.2V
1% initial accuracy, 40ppm/
°
C drift
• Low quiescent current: 5µA max
• Wide input common-mode range: 200mV beyond rails
• Propagation delay: 6µs
• Very low-voltage operation: 1.8V to 5.5V
• Packaging: SC-70 and SOT23
Applications
• Battery voltage monitoring
• Power good function
• Low signal/voltage detection
• Relaxation oscillator
The TLV3011 is a low-power, open-drain output comparator; the TLV3012 is a push-pull output comparator. The integrated 1.242V series voltage reference offers low 100ppm/°C (max) drift, is stable with up to 10nF capacitive load and can provide up to 0.5mA (typ) of output current.
Comparators Selection Guide
IQPer Output t
RESP
V
OS
Ch. Current Low-to- V
S
V
S
(25°C)
(mA) (mA) High (V) (V) (mV)
Device Description Ch. (max) (min) (µs) (min) (max) (max) Output Type Package(s) Price*
High Speed, t
RESP
0.1µs
TLV3501 Ultra-High Speed, Low Power 1, 2 5 20 0.004 2.7 5.5 5 Push-Pull SOT23 $1.50
TL714 High Speed, 10mV (typ) Hysteresis 1 12 16 0.006 4.75 5.25 10 Push-Pull PDIP, SOIC $2.16 TL3016 High Speed, Low Offset 1 12.5 0.0078 5 10 3 Open-Drain/Collector SOIC, TSSOP $0.95 TL3116 Ultra Fast, Low Power, Precision 1 14.7 0.0099 5 10 3 Open-Drain/Collector SOIC, TSSOP $0.95 TL712 Single, High Speed 1 20 16 0.025 4.75 5.25 5 Push-Pull PDIP, SOIC, SOP $0.83 LM306 Single, Strobed, General Purpose 1 6.8 100 0.028 –6 12 5 Push-Pull PDIP, SOIC $0.42 LM211 Single, High Speed, Strobed 1 6 0.115 3.5 30 3 Open-Drain/Collector PDIP, SOIC $0.20 LM311 Single, High Speed, Strobed, Differential 1 7.5 0.115 3.5 30 7.5 Open-Drain/Collector
PDIP, SOIC, SOP, TSSOP
$0.18
LM111 Single, Strobed, Differential 1 6 0.165 3.5 30 3 Open-Drain/Collector CDIP, LCCC $1.37
Low Power, IQ< 0.5mA
TLV3401 Nanopower, Open-Drain, RRIO 1, 2, 4 0.00055 80 2.5 16 3.6 Open-Drain/Collector MSOP, PDIP, SOIC, $0.60
SOT23, TSSOP
TLV3701 Nanopower, Push-Pull, RRIO 1, 2, 4 0.0008 36 2.5 16 5 Push-Pull MSOP, PDIP, SOIC, $0.60
SOT23, TSSOP TLV3491 Low Voltage, Excellent Speed/Power 1, 2 0.0012 < 0.1 1.8 5.5 15 Push-Pull SOT23, SOIC, TSSOP $0.42 TLV2302 Sub-µPower, Op Amp and 1, 2 0.0017 55 2.5 16 5 Open-Drain/Collector MSOP, PDIP, SOIC, $0.90
Comparator, RRIO TSSOP
TLV2702 Sub-µPower, Op Amp and 1, 2 0.0019 36 2.5 16 5 Push-Pull MSOP, PDIP, SOIC, $0.90
Comparator, RRIO TSSOP TLC3702 Dual and Quad, µPower 2, 4 0.02 4 1.1 3 16 5 Push-Pull PDIP, SOIC, TSSOP $0.34 TLC393 Low Power, LM393 Replacement 2 0.02 6 1.1 3 16 5 Open-Drain/Collector
PDIP, SOIC, SOP, TSSOP
$0.37
*Suggested resale price in U.S. dollars in quantities of 1,000. New products are listed in bold red.
TLV3011
R
1
1M
C
1
10nF
V+
1.242V
TLV301x
PULL-UP
D
I
NOTE: (1) Use R
R
PULL-UP
10k
REF
with the TLV3011 only.
(1)
MSP430
RESET
Texas Instruments 3Q 2007 Amplifier and Data Converter Selection Guide
Amplifiers
Comparators Selection Guide (Continued)
25
IQPer Output t
RESP
V
OS
Ch. Current Low-to- V
S
VS(25°C)
(mA) (mA) High (V) (V) (mV)
Device Description Ch. (max) (min) (µs) (min) (max) (max) Output Type Package(s) Price*
Low Power, IQ< 0.5mA (Continued)
TLC339 Quad, Low Power 4 0.02 6 1 3 16 5 Open-Drain/Collector PDIP, SOIC, TSSOP $0.44 LP2901 Quad, Low Power, General Purpose 4 0.025 1.3 5 30 5 Open-Drain/Collector PDIP, SOIC $0.56 LP339 Quad, Low Power, General Purpose 4 0.025 1.3 5 30 5 Open-Drain/Collector PDIP, SOIC $0.49 LMV393 Dual, Low Voltage 2 0.1 10 0.2 2.7 5.5 7 Open-Drain/Collector SOIC, TSSOP $0.34 LMV339 Quad, Low Voltage 4 0.1 0.2 2.7 5.5 7 Open-Drain/Collector SOIC, TSSOP $0.36 LMV331 Single, Low Voltage 1 0.12 10 0.2 2.7 5.5 7 Open-Drain/Collector SC70, SOT23 $0.34 TLC372 Fast, Low Power 2, 4 0.15 6 0.2 2 18 5 Open-Drain/Collector PDIP, SOIC, TSSOP $0.33 TLM3302 Quad, General Purpose 4 0.2 6 0.3 2 28 20 Open-Drain/Collector PDIP, SOIC $0.46 LP211 Single, Strobed, Low Power 1 0.3 1.2 3.5 30 7.5 Open-Drain/Collector SOIC $0.50 LP311 Single, Strobed, Low Power 1 0.3 1.6 1.2 3.5 30 7.5 Open-Drain/Collector PDIP, SOIC, SOP $0.46
Low Voltage, VS ≤ 2.7V (min)
TLC352 1.4V 2, 4 0.15 6 0.2 1.4 18 5 Open-Drain/Collector PDIP, SOIC, TSSOP $0.40 TLV3491 Low Voltage, Excellent Speed/Power 1, 2, 4 0.0012 < 0.1 1.8 5.5 15 Push-Pull SOT23, SOIC, TSSOP $0.42 TLV2352 Low Voltage 2, 4 0.125 6 0.2 2 8 5 Open-Drain/Collector PDIP, SOIC, TSSOP $0.90 TLC372 Fast, Low Power 2 0.15 6 0.2 2 18 5 Open-Drain/Collector PDIP, SOIC, TSSOP $0.33 LM3302 Quad, General Purpose 4 0.2 6 0.3 2 28 20 Open-Drain/Collector PDIP, SOIC $0.46 LM2903 Dual, General Purpose 2 0.5 6 0.3 2 30 7 Open-Drain/Collector PDIP, SOIC, SOP, TSSOP $0.22 LM293 Dual, General Purpose 2 0.5 6 0.3 2 30 5 Open-Drain/Collector PDIP, SOIC $0.28 LM293A Dual, General Purpose 2 0.5 6 0.3 2 30 3 Open-Drain/Collector SOIC $0.36 LM393 Dual, General Purpose 2 0.5 6 0.3 2 30 5 Open-Drain/Collector PDIP, SOIC, SOP, TSSOP $0.18 LM393A Dual, General Purpose 2 0.5 6 0.3 2 30 3 Open-Drain/Collector PDIP, SOIC, SOP, TSSOP $0.27 LM239 Quad, General Purpose 4 0.5 6 0.3 2 30 5 Open-Drain/Collector PDIP, SOIC $0.28 LM239A Quad, General Purpose 4 0.5 6 0.3 2 30 2 Open-Drain/Collector SOIC $0.91 LM2901 Quad, General Purpose 4 0.625 6 0.3 2 30 3 Open-Drain/Collector PDIP, SOIC, SOP, TSSOP $0.22 LM339 Quad, General Purpose 4 0.5 6 0.3 2 30 5 Open-Drain/Collector PDIP, SOIC, SOP, $0.18
SSOP, TSSOP LM339A Quad, General Purpose 4 0.5 6 0.3 2 30 3 Open-Drain/Collector PDIP, SOIC, SOP $0.27 TL331 Single, Differential 1 0.7 6 0.3 2 36 5 Open-Drain/Collector SOT23 $0.28 LM139 Quad 4 0.5 6 0.3 2 36 5 Open-Drain/Collector SOIC $0.54 LM139A Quad 4 0.5 6 0.3 2 36 2 Open-Drain/Collector SOIC $0.94 LM193 Dual 4 0.5 6 0.3 2 36 5 Open-Drain/Collector SOIC $0.30 TLV3401 Nanopower, RRIO 1, 2, 4 0.00055 80 2.5 16 3.6 Open-Drain/Collector MSOP, PDIP, SOIC, $0.60
SOT23, TSSOP
TLV3701 Nanopower, RRIO 1, 2, 4 0.0008 36 2.5 16 5 Push-Pull MSOP, PDIP, SOIC, $0.60
SOT23, TSSOP LMV331 Single, Low Voltage 1 0.12 10 0.2 2.7 5.5 7 Open-Drain/Collector SC70, SOT23 $0.34 LMV393 Dual, Low Voltage 2 0.1 10 0.2 2.7 5.5 7 Open-Drain/Collector SOIC, TSSOP $0.34 LMV339 Quad Low-Voltage 4 0.1 0.2 2.7 5.5 7 Open-Drain/Collector SOIC, TSSOP $0.36
Combination Comparator and Op Amp
TLV2302 Sub-µPower, Op Amp and 2 0.0017 55 2.5 16 5 Open-Drain/Collector MSOP, PDIP, SOIC, $0.90
Comparator, RRIO TSSOP
TLV2702 Sub-µPower, Op Amp and 2, 4 0.0019 36 2.5 16 5 Push-Pull MSOP, PDIP, SOIC, $0.90
Comparator, RRIO TSSOP
Comparator and Voltage Reference
TLV3011 µPower, Comparator 1 0.003 5 6 1.8 5.5 15 Open-Drain/Collector SC-70, SOT23 $0.75
with 1.242V Reference
TLV3012 µPower, Comparator 1 0.003 5 6 1.8 5.5 15 Push-Pull SC-70, SOT23 $0.75
with 1.242V Reference
*
Suggested resale price in U.S. dollars in quantities of 1,000.
Amplifier and Data Converter Selection Guide Texas Instruments 3Q 2007
26
Amplifiers
Difference Amplifiers
Common-mode input voltage range
selection of the most suitable difference amp begins with an understanding of the input voltage range. Some offer resistor networks that divide down the input voltages, allowing operation with input signals that exceed the power supplies. A five-resistor version of the simple difference amplifier results in a device that can operate with very high levels of common-mode voltage—far beyond the supply rails.
Gain—signal amplification needed for the
desired circuit function must be considered. With the uncommitted on-chip op amp, the INA145 and the INA146 can be configured for gains of 0.1 to 1000.
Sensor impedance—should be <0.001 of
difference amp input impedance to retain CMR and gain accuracy. In other words, the amp input impedance should be 1,000 times higher than the source impedance.
Offset voltage drift (µV/°C)—input offset
voltage changes over temperature. This is more critical in applications with changing ambient temperature.
Quiescent current—often of high importance
in battery-powered applications, where amplifier power consumption can greatly influence battery life.
Slew rate—if the signal is reporting a
temperature, force or pressure, slew rate is not generally of great concern. If the signal is for an electronic event, (e.g., current, power output) a fast transition may be needed.
Common-mode rejection—a measure of
unwanted signal rejection and the amp's ability to extract a signal from surrounding DC, power line or other electrical noise.
The difference amplifier is a moderate input impedance, closed-loop, fixed-gain block that allows the acquisition of signals in the presence of ground loops and noise. These devices can be used in a variety of precision, general-purpose, audio, low-power, high­speed and high-common-mode voltage applications.
Difference Amplifier
The basic difference amplifier employs an op amp and four on-chip, precision, laser trimmed resistors. The INA132, for example, operates on 2.7V to 36V supplies and consumes only 160µA. It has a differential gain of 1 and high common-mode rejection. The output signal can be offset by applying a voltage to the Ref pin. The output sense pin can be connected directly at the load to reduce gain error. Because the resistor network divides down the input voltages, difference amplifiers can operate with input signals that exceed the power supplies.
High Common-Mode Voltage Difference Amplifier Topology
A five-resistor version of the simple difference amplifier results in a device that can operate with very high levels of common-mode voltage—far beyond its power supply rails. For example, the INA117 can sense differential signals in the presence of common-mode voltages as high as ±200V while being powered from ±15V. This device is very useful in measuring current from a high-voltage power supply through a high­side shunt resistor.
Design Considerations
Power supply—common-mode voltage is
always a function of the supply voltage. The INA103 instrumentation amplifier is designed to operate on voltage supplies up to ±25V, while the INA122 difference amp can be operated from a 2.2V supply.
Output voltage swing—lower supply
voltage often drives the need to maximize dynamic range by swinging close to the rails.
Should I Use a Difference Amplifier or Instrumentation Amplifier?
Difference amplifiers excel when measuring signals with common-mode voltages greater
than the power supply rails, when there is a low power requirement, when a small package is needed, when the source impedance is low or when a low-cost differential amp is required. The difference amp is a building block of the instrumentation amp.
Instrumentation amplifiers are designed to amplify low-level differential signals where the maximum common-mode voltage is within the supply rails. Generally, using an adjustable gain block, they are well-suited to single-supply applications. The three-op-amp topology works well down to Gain = 1, with a performance advantage in AC CMR. The two-op-amp topology is appropriate for tasks requiring a small package footprint and a gain of 5 or greater. It is the best choice for low-voltage, single-supply applications.
Texas Instruments 3Q 2007 Amplifier and Data Converter Selection Guide
Amplifiers
Difference Amplifiers
27
High-Speed, Precision, Level Translation Difference Amplifier
INA159
Get samples and datasheets at: www.ti.com/sc/device/INA159
Key Features
• Gain of 0.2 interface between ±10V
signals and low-voltage, single-supply ADCs
• Wide bandwidth: 1.5MHz
• High slew rate: 15V/µs
• Low offset voltage: ±100µV
• Low offset drift: ±1.5µV/°C
• Linearity: 0.01% FSR
• Single supply: +1.8V to +5.5V
Applications
• Industrial process control
• Instrumentation
• Differential-to-single-ended
conversion
• Audio line receiver
The INA159 is a level translation difference amplifier. It acts as a translator between ±10V levels and the input of single-supply ADCs typically operating at 5V. The INA159 accomplishes this with a gain of 0.2 along with a convenient voltage-divider reference input simplifying the biasing of the INA159’s quiescent output to the optimum point for the ADC. The INA159 has a robust output stage, excellent frequency response and high slew rate.
INA159 simplifies level translation of ±10V input to single supply ADC.
Difference Amplifiers Selection Guide
Offset IQPer
Offset Drift CMRR BW Power Ch.
(µV) (µV/°C) (dB) (MHz) Output Voltage Supply (mA)
Device Description Ch. Gain (max) (max) (min) (typ) Swing (V) (min) (V) (max) Package(s) Price*
INA105 Precision, Unity-Gain 1 1 250 10 86 1 (V+) –5 to (V–) +5 ±5 to ±18 2 SOIC-8 $2.80 INA106 Precision, Fixed G=10 1 10 200 0.2 86 5 (V+) –5 to (V–) +5 ±5 to ±18 2 SOIC-8 $5.00 INA132 µPower, Single Supply, High Precision 1 1 250 5 76 0.3 (V+) –1 to (V–) +0.5 +2.7 to +36 0.185 DIP, SO $1.05 INA2132 Dual INA132 2 1 250 5 80 0.3 (V+) –1 to (V–) +0.5 +2.7 to +36 0.185 DIP, SO $1.80 INA133 High Speed, Precision 1 1 450 5 80 1.5 (V+) –1.5 to (V–) +1 ±2.25 to ±18 1.2 SOIC-8 $1.05 INA2133 Dual INA133 2 1 450 5 80 1.5 (V+) –1.5 to (V–) +1 ±2.25 to ±18 1.2 SOIC-14 $1.80 INA143 High Speed, Precision, G = 10 or 1/10 1 10, 0.1 250 3 86 0.15 (V+) –1.5 to (V–) +1 ±2.25 to ±18 1.2 SOIC-8 $1.05 INA2143 Dual INA143 2 10, 0.1 250 3 86 0.15 (V+) –1.5 to (V–) +1 ±2.25 to ±18 1.2 SOIC-14 $1.70 INA145 Resistor Programmable Gain 1 1 to 1000 1000 10 70 0.5 (V+) –1 to (V–) +0.25 ±2.25 to ±18 0.7 SOIC-8 $1.50 INA152 µPower, High Precision 1 1 1500 15 80 0.8 (V+) –0.35 to (V–) +0.3 +2.7 to +20 0.65 MSOP-8 $1.20 INA154 High Speed, Precision 1 1 750 20 80 3.1 (V+) –2 to (V–) +2 ±4 to ±18 2.9 SOIC-8 $1.05 INA157 High Speed, Precision, G = 2 or 1/2 1 2, 0.5 500 20 86 4 (V+) –2 to (V–) +2 ±4 to ±18 2.9 SOIC-8 $1.05
INA159 High Speed, Precision, Level Shift, G = 0.2 1 0.2 500 1.5 80 1.5 (V+)–0.1 to (V–)+0.048 +1.8 to +5.5 1.5 MSOP-8 $1.60
Audio
INA134 Low Distortion, Audio Line Receiver, 0dB 1 1 1000 2 74 3.1 (V+) –2 to (V–) +2 ±4 to ±18 2.9 SOIC-8 $1.05 INA2134 Dual INA134 2 1 1000 2 74 3.1 (V+) –2 to (V–) +2 ±4 to ±18 2.9 SOIC-14 $1.70 INA137 Low Distortion, Audio Line Receiver, 6dB 1 2, 0.5 1000 2 74 4 (V+) –2 to (V–) +2 ±4 to ±18 2.9 SOIC-8 $1.05 INA2137 Dual INA137 2 2, 0.5 1000 2 74 4 (V+) –2 to (V–) +2 ±4 to ±18 2.9 SOIC-14 $1.70 DRV134 Audio Balanced Line Driver 1 2 250000 150 46 1.5 (V+) –3 to (V–) +2 ±4.5 to ±18 5.5 SOIC-16 $1.95 DRV135 Audio Balanced Line Driver 1 2 250000 150 46 1.5 (V+) –3 to (V–) +2 ±4.5 to ±18 5.5 SOIC-8 $1.95
High Common-Mode Voltage
INA117 ±200V CM Range 1 1 1000 40 86 0.2 (V+) –5 to (V–) +5 ±5 to ±18 2 SOIC-8 $2.70 INA146 ±100V CM Range, Prog. Gain 1 0.1 to 100 10000 600 70 0.55 (V+) –1 to (V–) +0.15 ±2.25 to ±18 0.75 SOIC-8 $1.70 INA148 ±200V CM Range, 1MInput 1 1 5000 10 70 0.1 (V+) –1 to (V–) +0.25 ±1.35 to ±18 0.3 SOIC-8 $2.10
*S
uggested resale price in U.S. dollars in quantities of 1,000.
New products are listed in bold red
.
5V
100k 20k 100kΩ
100k
±10V
INA159
Analog Signal Conditioning Analog-to-Digital Conversion
+
40k
40k
5V
REF3220
5V
0.5-4.5V
+IN
–IN
ADS8361
REF
REF
IN
OUT
1nF
2.5V
2.048V
Amplifier and Data Converter Selection Guide Texas Instruments 3Q 2007
28
Amplifiers
Analog Current Shunt Monitors
Current shunt monitors are a unique class of high common-mode voltage difference amplifiers that have the ability to operate on single, low-voltage supplies.
Current shunt monitors have a common-mode voltage range that is independent of power supply (as opposed to classical difference amplifiers where the common-mode voltage range is proportional to power supply voltage). Unlike most high common­mode voltage difference amplifiers, current sense shunt monitors have gains for sensing low differential voltages (50mV to 100mV).
Current sensing can be done on either the low-side (ground) or high-side (power supply). Low-side sensing is simple and requires no special components, but it often cannot be used because it either disturbs ground or requires additional wiring. Current shunt monitors are intended to make it easy to implement high-side current sensing. Discrete solutions to high-side sensing are difficult and costly to implement.
Common-Mode Voltage
The common-mode voltage range is typically the first parameter to be considered and this breaks down into two basic categories of current shunt monitors: families that handle only positive common-mode voltages above +2.7V (with a choice of upper limits up to +60V); and a family that handles –16V to +80V. The ability to sense common-mode voltages at ground and below is required when the power supply that the current is being sensed from could get shorted out, or if the shunt resistor is in an inductive load that could be exposed to inductive kickback. In addition, a common­mode range to –16V allows the current shunt monitor to be used to sense current in –12V to –15V power supplies. Lastly, it easily withstands battery reversals in 12V automotive applications.
Current Output vs. Voltage Output
Another broad category is the type of output. The current output families enable the gain to be set by selecting the value of an external load resistor. The fastest current shunt monitor is the INA139 or INA169. Current output INA170, and current output devices have a minimum common-mode voltage of +2.7V, with a maximum up to +60V.
Voltage output current shunt monitors have the advantage of a buffered voltage output which eliminates the need for an additional op amp in many applications. These devices are available in fixed gains of 14, 20, 50 and
100. The voltage output current shunt monitors all have a common-mode range of –16V to +80V.
High-Side Current Shunt Monitors Current, Voltage and Power Over I2C Bus
INA209
Get samples, datasheets, and evaluation modules at: www.ti.com/INA209
INA209 functional block diagram.
Key Features
• Monitors current and voltage and calculates power over I2C bus
• Bi-directional
• Full scale current sense (input) voltage range, 0mV to ±320mV
• 1% error (max over temp)
• CMR: 0V to 26V with +3.0V to +5.5V supply
• Triple watchdog limits
Underlimit warning – with delay
Overlimit warning – no delay
Separate fast analog critical path
for shutdown
Applications
• Servers
• Power management
• Power supplies
• Battery chargers
• Welding equipment
• Test equipment
• Telecom equipment
• Automotive
The INA209 is a high-side current shunt monitor with an I
2
C interface. It features the ability to measure both the shunt drop and bus voltage and calculate the power. It also has two levels of watchdog alarms and a fast analog overlimit comparator for critical shutdown. Other unique features are the sensing of bidirectional currents and has excellent low shunt drop accuracy.
The INA209 current shunt monitor features a common-mode range of 0V to +26V while operating from a single +3V to +5.5V supply and drawing a maximum of 2mA of supply current. The INA209 is specified over the extended operating temperature range of –40°C to +125°C.
See Page 80 for a complete selection
of digital output current shunt monitors.
INA209
V
V
S
V
Ground
(Supply Voltage)
H
Critical
Convert
Critical
DAC+
DAC–
V
–H
Filter
CMP
Overlimit Register Warming Register
Power Register
Current Register
Voltage Register
2
C
I
Interface
GPIO
Critical
Overlimit
Warning
Alert
Data
CLK
Texas Instruments 3Q 2007 Amplifier and Data Converter Selection Guide
Amplifiers
Analog Current Shunt Monitors
29
–16V to +80V, High-Side Current Shunt Monitors with Integrated Dual Comparators
INA203, INA204, INA205, INA206, INA207, INA208
Get samples, datasheets, and evaluation modules at:
www.ti.com/sc/device/PARTnumber (Replace PARTnumber with INA203, INA204, INA205, INA206, INA207 or INA208)
INA206/INA207/INA208 functional block diagram.
Key Features
• Extended common mode input range: –16V to +80V
• Integrated dual open-drain comparators
• 1.2V reference
• Low offset: 2mV
• Rail-to-rail output voltage
• Single supply: 2.7V to 18V
• Packaging: MSOP, SO-14, TSSOP
Applications
• Notebook computers
• Cell phones
• Telecom equipment
• Power management
• Battery chargers
The INA203/04/05/06/07/08 feature dual comparators and 1.2V reference. These devices are ideal for multilevel watchdog systems, window comparators, or battery detection. Convenient default trip points are provided at each comparator of 0.6V. The 14-pin version allows external overide of trip points + programmable delay on 2nd comparator. Comparator #1 has a latching capability.
The current shunt amplifiers of the INA203/04/05/06/07/08 feature a common-mode range of –16V to +80V independent of supply voltage, and are powered by single-supply voltages from +2.7V to +18V. The INA20x provides a fully buffered voltage output available in three gains: INA203/INA206 = 20V/V; INA204/INA207 = 50V/V; INA205/INA208 = 100V/V.
Current Shunt Monitors Selection Guide
Offset IQPer
Offset Drift CMRR BW Power Ch.
(µV) (µV/ºC) (dB) (MHz) Output Voltage Supply (mA)
Device Description Ch. Gain (max) (max) (typ) (typ) Swing (V) (min) (V) (max) Package(s) Price
*
Voltage-Output, High-Side Current Shunt Monitors
INA19x –16V to +80V CMV 1 20, 50, 100V/V 2000 2.5 120 0.5, 0.3, 0.2 V(+) –0.2 +2.7 to 18 0.9 SOT23-5 $0.80
INA20x Single/Dual Comparator, V
REF
1 20, 50, 100V/V 2500 5 100 0.5, 0.3, 0.2 V(+) –0.25 +2.7 to 18 2.2 SO-14/TSSOP-14, MSOP-10, $1.25
MSOP/SO/DFN-8
INA27x –16V to +18V CMV, Filtering Provision 1 14, 20V/V 2000 2.5 120 0.13 V(+) –0.2 +2.7 to 18 0.9 SO8 $1.25
Current-Output, High-Side Current Shunt Monitors
INA138 36V (max) 1 1 to 100 1000 1 120 0.8 0 to (V+) –0.8 +2.7 to 36 0.045 SOT23-5 $0.95 INA168 60V (max) 1 1 to 100 1000 1 120 0.8 0 to (V+) –0.8 +2.7 to 60 0.045 SOT23-5 $1.25 INA139 High Speed, 40V (max) 1 1 to 100 1000 1 115 0.44 0 to (V+) –1.2 +2.7 to 40 0.125 SOT23-5 $0.99 INA169 High Speed, 60V (max) 1 1 to 100 1000 1 120 0.44 0 to (V+) –1.2 +2.7 to 60 0.125 SOT23-5 $1.25
Bidirectional Current Shunt Monitors
INA170 60V (max) 1 1 to 100 1000 1 120 0.4 0 to V(+) –1.2 +2.7 to 40 0.125 MSOP-8 $1.25 INA209 Voltage Current, Power Over I2C 1 100 10 120 34 3.5V to 5.5V 2 TSSOP-16 $3.50
*
Suggested resale price in U.S. dollars in quantities of 1,000. New products are listed in bold red.
INA206
V+
x20
C1
IN
V
OUT
C1 RESET
OUT
1.2V Reference
C2
IN
INA206
V
REF OUT
C2
OUT
DELAY
Amplifier and Data Converter Selection Guide Texas Instruments 3Q 2007
30
Amplifiers
Instrumentation Amplifiers
The instrumentation amplifier (IA) is a high input impedance, closed-loop, fixed- or adjustable-gain block that allows for the amplification of low-level signals in the presence of common-mode errors and noise. TI offers many types of instrumentation amplifiers including single-supply, low-power, high-speed and low-noise devices. These instrumentation amplifiers are available in either the traditional three-op-amp or in the cost-effective two-op-amp topology.
Three-Op-Amp Version
The three-op-amp topology is the benchmark for instrumentation amplifier performance. These devices provide a wide gain range (down to G = 1) and generally offer the highest performance. Symmetrical inverting and non-inverting gain paths provide better common-mode rejection at high frequencies. Some types use current-feedback-type input op amps which maintain excellent bandwidth in high gain.
Two-Op-Amp Version
The two-op-amp topology can provide wider common-mode voltage range, especially in low-voltage, single-supply applications. Their simpler internal circuitry allows lower cost, lower quiescent current and smaller package sizes. This topology, however, does not lend itself to gains less than four (INA125) or five (all others).
Design Considerations
Supply voltage—TI has developed a series of
low-voltage, single-supply, rail-to-rail instrumentation amps suitable for a wide variety of applications requiring maximum dynamic signal range.
Gain requirement—for high-gain applications
consider a low total noise device, because drift, input bias current and voltage offset all contribute to error.
Common-mode voltage range—the voltage
input range over which the amplifier can operate and the differential pair behaves as a linear amplifier for differential signals.
Input bias current—can be an important
factor in many applications, especially those sensing a low current or where the sensor impedance is very high. The INA116 requires only 3fA typical of input bias current.
Offset voltage and drift—IAs are
generally used in high-gain applications, where any amp errors are amplified by the circuit gain. These errors can become signifi­cant unless VOSand drift performance are considered in the device selection. Bipolar input stage INAs generally have smaller error contribution from offset and drift in low source impedance applications.
Current-feedback vs. voltage-feedback input stage—appropriate for designers needing
higher bandwidth or a more consistent 3dB rolloff frequency over various gain settings. The INA128 and INA129 provide a significantly higher 3dB rolloff frequency than
voltage-feedback input stage instrumentation amps and have a 3dB rolloff at essentially the same frequency in both G = 1 and G = 10 configurations.
Technical Information
IAs output the difference accurately between the input signals providing Common-Mode Rejection (CMR). It is the key parameter and main purpose for using this type of device. CMR measures the device’s ability to reject signals that are common to both inputs.
IAs are often used to amplify the differential output of a bridge sensor, amplifying the tiny bridge output signals while rejecting the large common-mode voltage. They provide excellent accuracy and performance, yet require minimal quiescent current. Gain is usually set with a single external resistor.
In some applications unwanted common-mode signals may be less conspicuous. Real-world ground interconnections are not perfect. What may, at first, seem to be a viable single-ended amplifier application can become an accumulation of errors. Error voltages caused by currents flowing in ground loops sum with the desired input signal and are amplified by a single-ended input amp. Even very low impedance grounds can have induced voltages from stray magnetic fields. As accuracy requirements increase, it becomes more difficult to design accurate circuits with a single-ended input amplifier. The differential input instrumentation amplifier is the answer.
The three-op-amp topology is the benchmark for instrumentation amplifier performance.
Two-op-amp topology provides wider common-mode range in low-voltage, single-supply applications.
R
G
25k
25k100k
Ref
A
1
V
IN
V
IN
= (V
V
– VIN) • G + V
O
IN
REF
Single Supply
100k
A
2
V+
Dual
Supply
V–
V
IN
R
G
V
IN
Over-Voltage
Protection
Over-Voltage
Protection
A
A
1
25k
2
60k 60k
A
3
60k
60k
G = 1 +
V
O
Ref
50k
R
G
V
O
Loading...
+ 91 hidden pages