• 1.8-V or 3.3-V LVCMOS I/Os (Except for USB and
DDR2 Interfaces)
• Two External Memory Interfaces:
– EMIFA
•NOR (8- or 16-Bit-Wide Data)
•NAND (8- or 16-Bit-Wide Data)
•16-Bit SDRAM with 128-MB Address Space
– DDR2/Mobile DDR Memory Controller with one
of the following:
•16-Bit DDR2 SDRAM with 256-MB Address
Space
•16-Bit mDDR SDRAM with 256-MB Address
Space
• Three Configurable 16550-Type UART Modules:
– With Modem Control Signals
– 16-Byte FIFO
– 16x or 13x Oversampling Option
• LCD Controller
• Two Serial Peripheral Interfaces (SPIs) Each with
Multiple Chip Selects
• Two Multimedia Card (MMC)/Secure Digital (SD)
Card Interfaces with Secure Data I/O (SDIO)
Interfaces
• Two Master and Slave Inter-Integrated Circuits
( I2C Bus™)
• One Host-Port Interface (HPI) with 16-Bit-Wide
Muxed Address and Data Bus For High Bandwidth
1
(PRUSS)
– Two Independent Programmable Real-Time Unit
(PRU) Cores
•32-Bit Load-Store RISC Architecture
•4KB of Instruction RAM per Core
•512 Bytes of Data RAM per Core
•PRUSS can be Disabled via Software to
Save Power
•Register 30 of Each PRU is Exported from
the Subsystem in Addition to the Normal R31
Output of the PRU Cores.
– Standard Power-Management Mechanism
•Clock Gating
•Entire Subsystem Under a Single PSC Clock
Gating Domain
– Dedicated Interrupt Controller
– Dedicated Switched Central Resource
• USB 1.1 OHCI (Host) with Integrated PHY (USB1)
• USB 2.0 OTG Port with Integrated PHY (USB0)
– USB 2.0 High- and Full-Speed Client
– USB 2.0 High-, Full-, and Low-Speed Host
– End Point 0 (Control)
– End Points 1,2,3,4 (Control, Bulk, Interrupt or
ISOC) RX and TX
• One Multichannel Audio Serial Port (McASP):
– Transmit and Receive Clocks
– Two Clock Zones and 16 Serial Data Pins
– Supports TDM, I2S, and Similar Formats
– DIT-Capable
– FIFO Buffers for Transmit and Receive
• Two Multichannel Buffered Serial Ports (McBSPs):
– Transmit and Receive Clocks
– Supports TDM, I2S, and Similar Formats
– AC97 Audio Codec Interface
– Telecom Interfaces (ST-Bus, H100)
– 128-Channel TDM
– FIFO Buffers for Transmit and Receive
• 10/100 Mbps Ethernet MAC (EMAC):
– IEEE 802.3 Compliant
– MII Media-Independent Interface
– RMII Reduced Media-Independent Interface
– Management Data I/O (MDIO) Module
AM1808
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
AM1808
SPRS653E –FEBRUARY 2010–REVISED MARCH 2014
www.ti.com
• Video Port Interface (VPIF):• Three 64-Bit General-Purpose Timers (Each
– Two 8-Bit SD (BT.656), Single 16-Bit or Single
Configurable as Two 32-Bit Timers)
Raw (8-, 10-, and 12-Bit) Video Capture• One 64-Bit General-Purpose or Watchdog Timer
Channels(Configurable as Two 32-Bit General-Purpose
– Two 8-Bit SD (BT.656), Single 16-Bit Video
Timers)
Display Channels• Two Enhanced High-Resolution Pulse Width
• Universal Parallel Port (uPP):
– High-Speed Parallel Interface to FPGAs and
Data Converters
– Data Width on Both Channels is 8- to 16-Bit
Inclusive
– Single-Data Rate or Dual-Data Rate Transfers
– Supports Multiple Interfaces with START,
Modulators (eHRPWMs):
– Dedicated 16-Bit Time-Base Counter with
Period and Frequency Control
– 6 Single-Edge Outputs, 6 Dual-Edge Symmetric
Outputs, or 3 Dual-Edge Asymmetric Outputs
– Dead-Band Generation
– PWM Chopping by High-Frequency Carrier
ENABLE, and WAIT Controls– Trip Zone Input
• Serial ATA (SATA) Controller:• Three 32-Bit Enhanced Capture (eCAP) Modules:
– Supports SATA I (1.5 Gbps) and SATA II– Configurable as 3 Capture Inputs or 3 Auxiliary
(3.0 Gbps)Pulse Width Modulator (APWM) Outputs
– Supports all SATA Power-Management– Single-Shot Capture of up to Four Event Time-
The AM1808 ARM Microprocessor is a low-power applications processor based on ARM926EJ-S.
The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs)
to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and
high processing performance life through the maximum flexibility of a fully integrated mixed processor
solution.
The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and
processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and
memory system can operate continuously.
The ARM core has a coprocessor 15 (CP15), protection module, and data and program memory
management units (MMUs) with table look-aside buffers. The ARM core processor has separate 16-KB
instruction and 16-KB data caches. Both are four-way associative with virtual index virtual tag (VIVT). The
ARM core also has 8KB of RAM (Vector Table) and 64KB of ROM.
The peripheral set includes: a 10/100 Mbps Ethernet media access controller (EMAC) with a management
data input/output (MDIO) module; one USB2.0 OTG interface; one USB1.1 OHCI interface; two interintegrated circuit (I2C Bus) interfaces; one multichannel audio serial port (McASP) with 16 serializers and
FIFO buffers; two multichannel buffered serial ports (McBSPs) with FIFO buffers; two serial peripheral
interfaces (SPIs) with multiple chip selects; four 64-bit general-purpose timers each configurable (one
configurable as watchdog); a configurable 16-bit host-port interface (HPI); up to 9 banks of generalpurpose input/output (GPIO) pins, with each bank containing 16 pins with programmable interrupt and
event generation modes, multiplexed with other peripherals; three UART interfaces (each with RTS and
CTS); two enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced
capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width
modulator (APWM) outputs; two external memory interfaces; an asynchronous and SDRAM external
memory interface (EMIFA) for slower memories or peripherals; and a higher speed DDR2/Mobile DDR
controller.
AM1808
SPRS653E –FEBRUARY 2010–REVISED MARCH 2014
The EMAC provides an efficient interface between the device and a network. The EMAC supports both
10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either half- or full-duplex mode. Additionally, an
MDIO interface is available for PHY configuration. The EMAC supports the MII and RMII interfaces.
The SATA controller provides a high-speed interface to mass data storage devices. The SATA controller
supports SATA I (1.5 Gbps) and SATA II (3.0 Gbps).
The universal parallel port (uPP) provides a high-speed interface to many types of data converters,
FPGAs or other parallel devices. The uPP supports programmable data widths between 8- to 16-bits on
both channels. Single-data rate and double-data rate transfers are supported as well as START, ENABLE,
and WAIT signals to provide control for a variety of data converters.
A video port interface (VPIF) is included providing a flexible video I/O port.
The rich peripheral set provides the ability to control external peripheral devices and communicate with
external processors. For details on each of the peripherals, see the related sections in this document and
the associated peripheral reference guides.
The device has a complete set of development tools for the ARM processor. These tools include C
compilers, and scheduling, and a Windows®debugger interface for visibility into source code execution.
Device Information
PART NUMBERPACKAGEBODY SIZE
AM1808ZCENFBGA (361)13,00 mm x 13,00 mm
AM1808ZWTNFBGA (361)16,00 mm x 16,00 mm
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
This data manual revision history highlights the changes made to the SPRS653D device-specific data
manual to make it an SPRS653E revision.
SEEADDITIONS/MODIFICATIONS/DELETIONS
•Turned on Navigation Icons on top of first page
GlobalSupport.
Section 1.3
Description
Section 3.7
Terminal Functions
Section 3.7.17
Universal Serial Bus Modules
(USB0, USB1)
Section 3.8
Unused Pin Configurations
Section 5
Specifications
Section 5.4
Notes on Recommended
Power-On Hours
Section 6.10.5•Added vertical lines to show difference between Setup, Strobe, and Hold
EMIFA Electrical/TimingFigure 6-13, Asynchronous Memory Write Timing for EMIFA:
Section 6.14.2.4
Routing Specifications
Section 7.1.2
Device and DevelopmentSupport Tool Nomenclature
Section 7.6
Glossary
•Moved Trademarks information from first page to within Section 7, Device and Documentation
•Moved ESDS Warning to within Section 7, Device and Documentation Support.
•Updated Features, Applications, and Description for consistency and translation.
Added NEW Device Information Table.
Table 3-3 thru Table 3-27:
•Updated/Changed footnote beginning with "IPD = Internal Pulldown resistor..."; added
sentence "For more detailed information on pullup/pulldown..."
Table 3-19, Universal Serial Bus (USB) Terminal Functions
•Updated/Changed the capacitor value in USB0_VDDA12 pin DESCRIPTION from "1 μF" to
"0.22-μF"
Table 3-30, Unused USB0 and USB1 Signal Configurations:
•Updated/Changed USB0_VDDA12 row by combining two columns and changing text from
"...to an external filter capacitor" to "...to an external 0.22-μF filter capacitor"
Updated/Changed title from "Device Operating Conditions" to "Specifications"
Section 5.2, Handling Ratings:
•Split handling, ratings, and certifications from the Abs Max table and placed in NEW Handling
Ratings table.
Table 5-1, Recommended Power-On Hours:
•Updated/Changed all applicable Silicon Revisions from "B" to "B/E"
Figure 6-12, Asynchronous Memory Read Timing for EMIFA:
•Added vertical lines to show difference between Setup, Strobe, and Hold
Table 6-45, SATA Routing Specifications:
•Added NEW footnote beginning with "The SATA_REFCLK(P/N)..."
Figure 7-1, Device Nomenclature:
•Added "E = Silicon Revision 2.3" under SILICON REVISION
Table 3-1 provides an overview of the device. The table shows significant features of the device, including
the capacity of on-chip RAM, peripherals, and the package type with pin count.
Table 3-1. Characteristics of the Device
HARDWARE FEATURESAM1808
DDR2/mDDR Controller
EMIFA
Flash Card InterfaceMMC and SD cards supported
EDMA3
Timers
UART3 (each with RTS and CTS flow control)
SPI2 (Each with one hardware chip select)
Peripherals
Not all peripherals pins
are available at the
same time (for more
detail, see the Device
Configurations section).
On-Chip Memory
JTAG BSDL_IDDEVIDR0 Register0x0B7D_102F
CPU FrequencyMHzARM926 375 MHz (1.2V) or 456 MHz (1.3V)
Voltage
Packages
Product Status
(1) PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
(1)
I2C2 (both Master/Slave)
Multichannel Audio Serial Port [McASP]1 (each with transmit/receive, FIFO buffer, 16 serializers)
Multichannel Buffered Serial Port [McBSP]2 (each with transmit/receive, FIFO buffer, 16)
10/100 Ethernet MAC with Management Data I/O1 (MII or RMII Interface)
USB 2.0 (USB0)High-Speed OTG Controller with on-chip OTG PHY
USB 1.1 (USB1)Full-Speed OHCI (as host) with on-chip PHY
General-Purpose Input/Output Port9 banks of 16-bit
LCD Controller1
SATA Controller1 (Supports both SATA I and SATAII)
Universal Parallel Port (uPP)1
Video Port Interface (VPIF)1 (video in and video out)
PRU Subsystem (PRUSS)2 Programmable PRU Cores
Size (Bytes)168KB RAM
Organization8KB RAM (Vector Table)
Core (V)
I/O (V)1.8V or 3.3 V
Product Preview (PP),
Advance Information (AI),
or Production Data (PD)
4 64-Bit General Purpose (each configurable as 2 separate
DDR2, 16-bit bus width, up to 156 MHz
Mobile DDR, 16-bit bus width, up to 150 MHz
Asynchronous (8/16-bit bus width) RAM, Flash,
16-bit SDRAM, NOR, NAND
64 independent channels, 16 QDMA channels,
2 channel controllers, 3 transfer controllers
32-bit timers, one configurable as Watch Dog)
4 Single Edge, 4 Dual Edge Symmetric, or
2 Dual Edge Asymmetric Outputs
ARM
16KB I-Cache
16KB D-Cache
64KB ROM
ADDITIONAL MEMORY
128KB RAM
1.2 V nominal for 375 MHz version
1.3 V nominal for 456 MHz version
13 mm x 13 mm, 361-Ball 0.65 mm pitch, PBGA (ZCE)
16 mm x 16 mm, 361-Ball 0.80 mm pitch, PBGA (ZWT)
The ARM926EJ-S RISC CPU is compatible with other ARM9 CPUs from ARM Holdings plc.
3.3ARM Subsystem
The ARM Subsystem includes the following features:
•ARM926EJ-S RISC processor
•ARMv5TEJ (32/16-bit) instruction set
•Little endian
•System Control Co-Processor 15 (CP15)
•MMU
•16KB Instruction cache
•16KB Data cache
•Write Buffer
•Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)
•ARM Interrupt controller
3.3.1ARM926EJ-S RISC CPU
The ARM Subsystem integrates the ARM926EJ-S processor. The ARM926EJ-S processor is a member of
ARM9 family of general-purpose microprocessors. This processor is targeted at multi-tasking applications
where full memory management, high performance, low die size, and low power are all important. The
ARM926EJ-S processor supports the 32-bit ARM and 16 bit THUMB instruction sets, enabling the user to
trade off between high performance and high code density. Specifically, the ARM926EJ-S processor
supports the ARMv5TEJ instruction set, which includes features for efficient execution of Java byte codes,
providing Java performance similar to Just in Time (JIT) Java interpreter, but without associated code
overhead.
www.ti.com
The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in both
hardware and software debug. The ARM926EJ-S processor has a Harvard architecture and provides a
complete high performance subsystem, including:
•ARM926EJ -S integer core
•CP15 system control coprocessor
•Memory Management Unit (MMU)
•Separate instruction and data caches
•Write buffer
•Separate instruction and data (internal RAM) interfaces
•Separate instruction and data AHB bus interfaces
•Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)
For more complete details on the ARM9, refer to the ARM926EJ-S Technical Reference Manual, available
at http://www.arm.com
3.3.2CP15
The ARM926EJ-S system control coprocessor (CP15) is used to configure and control instruction and
data caches, Memory Management Unit (MMU), and other ARM subsystem functions. The CP15 registers
are programmed using the MRC and MCR ARM instructions, when the ARM in a privileged mode such as
supervisor or system mode.
A single set of two level page tables stored in main memory is used to control the address translation,
permission checks and memory region attributes for both data and instruction accesses. The MMU uses a
single unified Translation Lookaside Buffer (TLB) to cache the information held in the page tables. The
MMU features are:
•Standard ARM architecture v4 and v5 MMU mapping sizes, domains and access protection scheme.
•Access permissions for large pages and small pages can be specified separately for each quarter of
the page (subpage permissions)
•Hardware page table walks
•Invalidate entire TLB, using CP15 register 8
•Invalidate TLB entry, selected by MVA, using CP15 register 8
•Lockdown of TLB entries, using CP15 register 10
3.3.4Caches and Write Buffer
AM1808
SPRS653E –FEBRUARY 2010–REVISED MARCH 2014
The size of the Instruction cache is 16KB, Data cache is 16KB. Additionally, the caches have the following
features:
•Virtual index, virtual tag, and addressed using the Modified Virtual Address (MVA)
•Four-way set associative, with a cache line length of eight words per line (32-bytes per line) and with
two dirty bits in the Dcache
•Dcache supports write-through and write-back (or copy back) cache operation, selected by memory
region using the C and B bits in the MMU translation tables
•Critical-word first cache refilling
•Cache lockdown registers enable control over which cache ways are used for allocation on a line fill,
providing a mechanism for both lockdown, and controlling cache corruption
•Dcache stores the Physical Address TAG (PA TAG) corresponding to each Dcache entry in the TAG
RAM for use during the cache line write-backs, in addition to the Virtual Address TAG stored in the
TAG RAM. This means that the MMU is not involved in Dcache write-back operations, removing the
possibility of TLB misses related to the write-back address.
•Cache maintenance operations provide efficient invalidation of, the entire Dcache or Icache, regions of
the Dcache or Icache, and regions of virtual memory.
The write buffer is used for all writes to a noncachable bufferable region, write-through region and write
misses to a write-back region. A separate buffer is incorporated in the Dcache for holding write-back for
cache line evictions or cleaning of dirty cache lines. The main write buffer has 16-word data buffer and a
four-address buffer. The Dcache write-back has eight data word entries and a single address entry.
3.3.5Advanced High-Performance Bus (AHB)
The ARM Subsystem uses the AHB port of the ARM926EJ-S to connect the ARM to the Config bus and
the external memories. Arbiters are employed to arbitrate access to the separate D-AHB and I-AHB by the
Config Bus and the external memories bus.
3.3.6Embedded Trace Macrocell (ETM) and Embedded Trace Buffer (ETB)
To support real-time trace, the ARM926EJ-S processor provides an interface to enable connection of an
Embedded Trace Macrocell (ETM). The ARM926ES-J Subsystem in the device also includes the
Embedded Trace Buffer (ETB). The ETM consists of two parts:
•Trace Port provides real-time trace capability for the ARM9.
•Triggering facilities provide trigger resources, which include address and data comparators, counter,
and sequencers.
The device trace port is not pinned out and is instead only connected to the Embedded Trace Buffer. The
ETB has a 4KB buffer memory. ETB enabled debug tools are required to read/interpret the captured trace
data.
3.3.7ARM Memory Mapping
By default the ARM has access to most on and off chip memory areas, including EMIFA, DDR2, and the
additional 128K byte on chip SRAM. Likewise almost all of the on chip peripherals are accessible to the
ARM by default.
To improve security and/or robustness, the device has extensive memory and peripheral protection units
which can be configured to limit access rights to the various on/off chip resources to specific hosts;
including the ARM as well as other master peripherals. This allows the system tasks to be partitioned
between the ARM and DSP as best suites the particular application; while enhancing the overall
robustness of the solution.
www.ti.com
See Table 3-2 for a detailed top level device memory map that includes the ARM memory space.
Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in
the smallest possible package. Pin multiplexing is controlled using a combination of hardware
configuration at device reset and software programmable register settings.
3.5.1Pin Map (Bottom View)
The following graphics show the bottom view of the ZCE and ZWT packages pin assignments in four
quadrants (A, B, C, and D). The pin assignments for both packages are identical.
Device level pin multiplexing is controlled by registers PINMUX0 - PINMUX19 in the SYSCFG module.
For the device family, pin multiplexing can be controlled on a pin-by-pin basis. Each pin that is multiplexed
with several different functions has a corresponding 4-bit field in one of the PINMUX registers.
Pin multiplexing selects which of several peripheral pin functions controls the pin's IO buffer output data
and output enable values only. The default pin multiplexing control for almost every pin is to select 'none'
of the peripheral functions in which case the pin's IO buffer is held tri-stated.
Note that the input from each pin is always routed to all of the peripherals that share the pin; the PINMUX
registers have no effect on input from a pin.
Table 3-3 to Table 3-29 identify the external signal names, the associated pin/ball numbers along with the
mechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internal
pullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pin
description.
TMSL16IIPUBJTAG test mode select
TDIM16IIPUBJTAG test data input
TDOJ18OIPUBJTAG test data output
TCKJ15IIPUBJTAG test clock
TRSTL17IIPDBJTAG test reset
EMU0J16I/OIPUBEmulation pin
EMU1K16I/OIPUBEmulation pin
RTCK/ GP8[0]
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral.
(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor. CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. For more detailed information on pullup/pulldown resistors and situations
where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and
internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
(4) Open drain mode for RESETOUT function.
(5) GP8[0] is initially configured as a reserved function after reset and will not be in a predictable state. This signal will only be stable after
the GPIO configuration for this pin has been completed. Users should carefully consider the system implications of this pin being in an
PLL0_VDDAL15PWR——PLL analog VDD(1.2-V filtered supply)
PLL0_VSSAM17GND——PLL analog VSS(for filter)
1.2-V PLL1
PLL1_VDDAN15PWR——PLL analog VDD(1.2-V filtered supply)
PLL1_VSSAM15GND——PLL analog VSS(for filter)
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. For more detailed information on pullup/pulldown resistors and situations
where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and
internal pulldown circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
3.7.4DEEPSLEEP Power Control
Table 3-6. DEEPSLEEP Power Control Terminal Functions
SIGNAL
NAMENO.
TYPE
(1)
PULL
RTC_ALARM / UART2_CTS / GP0[8] / DEEPSLEEPF4ICP[0]ADEEPSLEEP power control output
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for
that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. For more detailed information on pullup/pulldown resistors and situations
where external pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
TYPE
eCAP0
eCAP1
eCAP2
(1)
PULL
(2)
POWER
GROUP
(3)
enhanced capture 0 input or
auxiliary PWM 0 output
enhanced capture 1 input or
auxiliary PWM 1 output
enhanced capture 2 input or
auxiliary PWM 2 output
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
(1) Boot decoding is defined in the bootloader application report.
(2) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(3) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
(4) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module.The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
SPI1_SCS[6] / I2C0_SDA / TM64P3_OUT12 / GP1[4]G18I/OCP[11]AI2C0 serial data
SPI1_SCS[7] / I2C0_SCL / TM64P2_OUT12 / GP1[5]G16I/OCP[11]AI2C0 serial clock
I2C1
SPI1_SCS[4] / UART2_TXD / I2C1_SDA / GP1[2]F16I/OCP[12]AI2C1 serial data
SPI1_SCS[5] / UART2_RXD / I2C1_SCL / GP1[3]F17I/OCP[12]AI2C1 serial clock
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module.The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. or more detailed information on pullup/pulldown resistors and situations where external pullup/pulldown
resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown circuits, see the
Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (ie., input versus output), the table reflects the pin function direction for that particular peripheral.
(2) IPD = Internal Pulldown resistor; IPU = Internal Pullup resistor; CP[n] = configurable pull-up/pull-down (where n is the pin group) using
the PUPDENA and PUPDSEL registers in the System Module. The pull-up and pull-down control of these pins is not active until the
device is out of reset. During reset, all of the pins associated with these registers are pulled down. If the application requires a pull-up,
an external pull-up can be used. For more detailed information on pullup/pulldown resistors and situations where external
pullup/pulldown resistors are required, see the Device Configuration section. For electrical specifications on pullup and internal pulldown
circuits, see the Device Operating Conditions section.
(3) This signal is part of a dual-voltage IO group (A, B or C). These groups can be operated at 3.3V or 1.8V nominal. The three groups can
be operated at independent voltages but all pins withina group will operate at the same voltage. Group A operates at the voltage of
power supply DVDD3318_A. Group B operates at the voltage of power supply DVDD3318_B. Group C operates at the voltage of power
supply DVDD3318_C.
(1) GP8[0] is initially configured as a reserved function after reset and will not be in a predictable state. This signal will only be stable after
the GPIO configuration for this pin has been completed. Users should carefully consider the system implications of this pin being in an
unknown state after reset.
DDR_DVDD18P9, R9, P8,PWRDDR PHY 1.8V power supply pins
(1) PWR = Supply voltage, GND - Ground.
H10, H11,
J12, K6, K12,
L12, M8, M9,
N8
F14, G6, G10,
G11, G12,1.8V I/O supply voltage pins. DVDD18 must be powered even if all of
J13, K5, L6,the DVDD3318_x supplies are operated at 3.3V.
P13, R13
All signals multiplexed with multiple functions may be used as an alternate function if a given peripheral is
not used. Unused non-multiplexed signals and some other specific signals should be handled as specified
in the tables below.
If NMI is unused, it should be pulled-high externally through a 10k-ohm resistor to supply DVDD3318_B.
Table 3-30. Unused USB0 and USB1 Signal Configurations
www.ti.com
SIGNAL NAMEConfiguration (When only USB1 is not used)
USB0_DMNo ConnectUse as USB0 function
USB0_DPNo ConnectUse as USB0 function
USB0_IDNo ConnectUse as USB0 function
USB0_VBUSNo ConnectUse as USB0 function
USB0_DRVVBUSNo ConnectUse as USB0 function
USB0_VDDA33No Connect3.3V
USB0_VDDA18No Connect1.8V
USB0_VDDA12Internal USB PHY output connected to an external 0.22-μF filter capacitor
USB1_DMNo ConnectVSS or No Connect
USB1_DPNo ConnectVSS or No Connect
USB1_VDDA33No ConnectNo Connect
USB1_VDDA18No ConnectNo Connect
USB_REFCLKINNo Connect or other peripheral functionUse for USB0 or other peripheral function
This device supports a variety of boot modes through an internal ARM ROM bootloader. This device does
not support dedicated hardware boot modes. The input states of the BOOT pins are sampled and latched
into the BOOTCFG register, which is part of the system configuration (SYSCFG) module, when device
reset is deasserted. Boot mode selection is determined by the values of the BOOT pins.
See Using the OMAP-L1x8 Bootloader Application Report (SPRAB41) for more details on the ROM Boot
Loader.
The following boot modes are supported:
•NAND Flash boot
– 8-bit NAND
– 16-bit NAND (supported on ROM revisions after d800k002 -- see the bootloader documents
mentioned above to determine the ROM revision)
•NOR Flash boot
– NOR Direct boot (8-bit or 16-bit)
– NOR Legacy boot (8-bit or 16-bit)
– NOR AIS boot (8-bit or 16-bit)
•Special case settings for peripherals:
– Locking of PLL controller settings
– Default burst sizes for EDMA3 transfer controllers
– Selection of the source for the eCAP module input capture (including on chip sources)
– McASP AMUTEIN selection and clearing of AMUTE status for the McASP
– Control of the reference clock source and other side-band signals for both of the integrated USB
PHYs
– Clock source selection for EMIFA
– DDR2 Controller PHY settings
– SATA PHY power management controls
•Selects the source of emulation suspend signal (from ARM) of peripherals supporting this function.
Many registers are accessible only by a host (ARM) when it is operating in its privileged mode. (ex. from
the kernel, but not from user space code).
Table 4-1. System Configuration (SYSCFG) Module Register Access
Proper board design should ensure that input pins to the device always be at a valid logic level and not
floating. This may be achieved via pullup/pulldown resistors. The device features internal pullup (IPU) and
internal pulldown (IPD) resistors on most pins to eliminate the need, unless otherwise noted, for external
pullup/pulldown resistors.
An external pullup/pulldown resistor needs to be used in the following situations:
•Boot and Configuration Pins: If the pin is both routed out and 3-stated (not driven), an external
pullup/pulldown resistor is strongly recommended, even if the IPU/IPD matches the desired value/state.
•Other Input Pins: If the IPU/IPD does not match the desired value/state, use an external
pullup/pulldown resistor to pull the signal to the opposite rail.
For the boot and configuration pins, if they are both routed out and 3-stated (not driven), it is strongly
recommendedthatanexternalpullup/pulldownresistorbeimplemented.Although,internal
pullup/pulldown resistors exist on these pins and they may match the desired configuration value,
providing external connectivity can help ensure that valid logic levels are latched on these device boot and
configuration pins. In addition, applying external pullup/pulldown resistors on the boot and configuration
pins adds convenience to the user in debugging and flexibility in switching operating modes.
Tips for choosing an external pullup/pulldown resistor:
•Consider the total amount of current that may pass through the pullup or pulldown resistor. Make sure
to include the leakage currents of all the devices connected to the net, as well as any internal pullup or
pulldown resistors.
•Decide a target value for the net. For a pulldown resistor, this should be below the lowest VILlevel of
all inputs connected to the net. For a pullup resistor, this should be above the highest VIHlevel of all
inputs on the net. A reasonable choice would be to target the VOLor VOHlevels for the logic family of
the limiting device; which, by definition, have margin to the VILand VIHlevels.
•Select a pullup/pulldown resistor with the largest possible value; but, which can still ensure that the net
will reach the target pulled value when maximum current from all devices on the net is flowing through
the resistor. The current to be considered includes leakage current plus, any other internal and
external pullup/pulldown resistors on the net.
•For bidirectional nets, there is an additional consideration which sets a lower limit on the resistance
value of the external resistor. Verify that the resistance is small enough that the weakest output buffer
can drive the net to the opposite logic level (including margin).
•Remember to include tolerances when selecting the resistor value.
•For pullup resistors, also remember to include tolerances on the IO supply rail.
•For most systems, a 1-kΩ resistor can be used to oppose the IPU/IPD while meeting the above
criteria. Users should confirm this resistor value is correct for their specific application.
•For most systems, a 20-kΩ resistor can be used to compliment the IPU/IPD on the boot and
configuration pins while meeting the above criteria. Users should confirm this resistor value is correct
for their specific application.
•For more detailed information on input current (II), and the low-/high-level input voltages (VILand VIH)
for the device, see Section 5.3, Recommended Operating Conditions.
•For the internal pullup/pulldown resistors for all device pins, see the peripheral/system-specific terminal
functions table.
I/O, 1.8V-0.5 V to 2 V
(USB0_VDDA18, USB1_VDDA18, SATA_VDDR, DDR_DVDD18)
(2)
(2)
I/O, 3.3V-0.5 V to 3.8V
(DVDD3318_A, DVDD3318_B, DVDD3318_C, USB0_VDDA33,
USB1_VDDA33)
(2)
Oscillator inputs (OSCIN, RTC_XI), 1.2V-0.3 V to CVDD + 0.3V
Dual-voltage LVCMOS inputs, 3.3V or 1.8V (Steady State)-0.3V to DVDD + 0.3V
Dual-voltage LVCMOS inputs, operated as 3.3VDVDD + 20%
(Transient Overshoot/Undershoot)up to 20% of Signal
Period
Input voltage (VI) ranges
Dual-voltage LVCMOS inputs, operated as 1.8VDVDD + 30%
(Transient Overshoot/Undershoot)up to 30% of Signal
Period
USB 5V Tolerant IOs:5.25V
(USB0_DM, USB0_DP, USB0_ID, USB1_DM, USB1_DP)
USB0 VBUS Pin5.50V
Dual-voltage LVCMOS outputs, 3.3V or 1.8V-0.3 V to DVDD + 0.3V
(Steady State)
Dual-voltage LVCMOS outputs, operated as 3.3VDVDD + 20%
Output voltage (VO) ranges
(Transient Overshoot/Undershoot)up to 20% of Signal
Period
Dual-voltage LVCMOS outputs, operated as 1.8VDVDD + 30%
(Transient Overshoot/Undershoot)up to 30% of Signal
Period
Input or Output Voltages 0.3V above or below their respective power±20mA
Clamp Currentrails. Limit clamp current that flows through the I/O's internal diode
protection cells.
Operating Junction Temperature ranges, Commercial (default)0°C to 90°C
T
J
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to VSS, USB0_VSSA33, USB0_VSSA, PLL0_VSSA, OSCVSS, RTC_VSS
(3) Up to a maximum of 24 hours.
(3)
(3)
5.2Handling Ratings
Storage temperature range, T
ESD Stress Voltage, V
ESD
(1) Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device.
(2) Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001-2010. JEDEC document JEP 155 states that 500V HBM allows
safe manufacturing with a standard ESD control process, and manufacturing with less than 500V HBM is possible if necessary
precautions are taken. Pins listed as 1000V may actually have higher performance.
(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101E. JEDEC document JEP 157 states that 250V CDM allows safe
manufacturing with a standard ESD control process. Pins listed as 250V may actually have higher performance.
(1) The RTC provides an option for isolating the RTC_CVDD from the CVDD to reduce current leakage when the RTC is powered
independently. If these power supplies are not isolated (CTRL.SPLITPOWER=0), RTC_CVDD must be equal to or greater than CVDD.
If these power supplies are isolated (CTRL.SPLITPOWER=1), RTC_CVDD may be lower than CVDD.
(2) DVDD18 must be powered even if all of the DVDD3318_x supplies are operated at 3.3V
(3) When an external crystal is used oscillator (OSC_VSS, RTC_VSS) ground must be kept separate from other grounds and connected
directly to the crystal load capacitor ground. These pins are shorted to VSS on the device itself and should not be connected to VSS on
the circuit board. If a crystal is not used and the clock input is driven directly, then the oscillator VSS may be connected to board ground.
(4) These IO specifications apply to the dual-voltage IOs only and do not apply to the DDR2/mDDR or SATA interfaces. DDR2/mDDR IOs
are 1.8V IOs and adhere to the JESD79-2A standard.
The information in the section below is provided solely for your convenience and does not extend or
modify the warranty provided under TI’s standard terms and conditions for TI semiconductor products.
To avoid significant degradation, the device power-on hours (POH) must be limited to the following:
Table 5-1. Recommended Power-On Hours
SiliconOperating JunctionPower-On Hours [POH]
RevisionTemperature (Tj)(hours)
A300 MHz0 to 90 °C1.2V100,000
B/E300 MHz0 to 90 °C1.2V100,000
B/E375 MHz0 to 90 °C1.2V100,000
B/E375 MHz-40 to 105 °C1.2V75,000
B/E456 MHz0 to 90 °C1.3V100,000
B/E456 MHz-40 to 90 °C1.3V100,000
(1) 100,000 POH can be achieved at this temperature condition if the device operation is limited to 345 MHz
Speed GradeNominal CVDD Voltage (V)
(1)
Note: Logic functions and parameter values are not assured out of the range specified in the recommended
operating conditions.
The above notations cannot be deemed a warranty or deemed to extend or modify the warranty under
TI’s standard terms and conditions for TI semiconductor products.
(1) These IO specifications apply to the dual-voltage IOs only and do not apply to DDR2/mDDR or SATA interfaces. DDR2/mDDR IOs are
1.8V IOs and adhere to the JESD79-2A standard. USB0 I/Os adhere to the USB2.0 standard. USB1 I/Os adhere to the USB1.1
standard. SATA I/Os adhere to the SATA-I and SATA-II standards.
(2) IIapplies to input-only pins and bi-directional pins. For input-only pins, IIindicates the input leakage current. For bi-directional pins, I
indicates the input leakage current and off-state (Hi-Z) output leakage current.
I
(3) Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor. The pull-up and pull-down strengths shown represent the
minimum and maximum strength across process variation.
6Peripheral Information and Electrical Specifications
6.1Parameter Information
6.1.1Parameter Information Device-Specific Information
A.The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its
transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to
produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to
add or subtract the transmission line delay (2 ns or longer) from the data sheet timings.
Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the
device pin and the input signals are driven between 0V and the appropriate IO supply rail for the signal.
Figure 6-1. Test Load Circuit for AC Timing Measurements
AM1808
The load capacitance value stated is only for characterization and measurement of AC timing signals. This
load capacitance value does not indicate the maximum load the device is capable of driving.
6.1.1.1Signal Transition Levels
All input and output timing parameters are referenced to V
For 3.3 V I/O, V
For 1.8 V I/O, V
= 1.65 V.
ref
= 0.9 V.
ref
For 1.2 V I/O, Vref = 0.6 V.
Figure 6-2. Input and Output Voltage Reference Levels for AC Timing Measurements
All rise and fall transition timing parameters are referenced to VILMAX and VIHMIN for input clocks,
VOLMAX and VOHMIN for output clocks.
for both "0" and "1" logic levels.
ref
Figure 6-3. Rise and Fall Transition Time Voltage Reference Levels
6.2Recommended Clock and Control Signal Transition Behavior
All clocks and control signals must transition between VIHand VIL(or between VILand VIH) in a monotonic
manner.
6.3Power Supplies
6.3.1Power-On Sequence
The device should be powered-on in the following order:
1. RTC (RTC_CVDD) may be powered from an external device (such as a battery) prior to all other
supplies being applied or powered-up at the same time as CVDD. If the RTC is not used, RTC_CVDD
should be connected to CVDD. RTC_CVDD should not be left unpowered while CVDD is powered.
2. Core logic supplies:
(a) All variable 1.2V - 1.0V core logic supplies (CVDD)
(b) All static core logic supplies (RVDD, PLL0_VDDA, PLL1_VDDA, USB_CVDD, SATA_VDD). If
voltage scaling is not used on the device, groups 2a) and 2b) can be controlled from the same
power supply and powered up together.
3. All static 1.8V IO supplies (DVDD18, DDR_DVDD18, USB0_VDDA18 , USB1_VDDA18 and
SATA_VDDR) and any of the LVCMOS IO supply groups used at 1.8V nominal (DVDD3318_A,
DVDD3318_B, or DVDD3318_C).
4. All analog 3.3V PHY supplies (USB0_VDDA33 and USB1_VDDA33; these are not required if both
USB0 and USB1 are not used) and any of the LVCMOS IO supply groups used at 3.3V nominal
(DVDD3318_A, DVDD3318_B, or DVDD3318_C).
www.ti.com
There is no specific required voltage ramp rate for any of the supplies as long as the LVCMOS supplies
operated at 3.3V (DVDD3318_A, DVDD3318_B, or DVDD3318_C) never exceed the STATIC 1.8V
supplies by more than 2 volts.
RESET must be maintained active until all power supplies have reached their nominal values.
6.3.2Power-Off Sequence
The power supplies can be powered-off in any order as long as LVCMOS supplies operated at 3.3V
(DVDD3318_A, DVDD3318_B, or DVDD3318_C) never exceed static 1.8V supplies by more than 2 volts.
There is no specific required voltage ramp down rate for any of the supplies (except as required to meet
the above mentioned voltage condition).
A power-on reset (POR) is required to place the device in a known good state after power-up. Power-On
Reset is initiated by bringing RESET and TRST low at the same time. POR sets all of the device internal
logic to its default state. All pins are tri-stated with the exception of RESETOUT which remains active
through the reset sequence, and RTCK/GP8[0]. If an emulator is driving TCK into the device during reset,
then RTCK/GP8[0] will drive out RTCK. If TCK is not being driven into the device during reset, then
RTCK/GP8[0] will drive low. RESETOUT in an output for use by other controllers in the system that
indicates the device is currently in reset.
While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for
the device to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG
port interface and device's emulation logic in the reset state.
TRST only needs to be released when it is necessary to use a JTAG controller to debug the device or
exercise the device's boundary scan functionality. Note: TRST is synchronous and must be clocked by
TCK; otherwise, the boundary scan logic may not respond as expected after TRST is asserted.
RESET must be released only in order for boundary-scan JTAG to read the variant field of IDCODE
correctly. Other boundary-scan instructions work correctly independent of current state of RESET. For
maximum reliability, the device includes an internal pulldown on the TRST pin to ensure that TRST will
always be asserted upon power up and the device's internal emulation logic will always be properly
initialized.
AM1808
SPRS653E –FEBRUARY 2010–REVISED MARCH 2014
JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG
controllers may not drive TRST high but expect the use of a pullup resistor on TRST. When using this type
of JTAG controller, assert TRST to intialize the device after powerup and externally drive TRST high
before attempting any emulation or boundary scan operations.
RTCK/GP8[0] is maintained active through a POR.
A summary of the effects of Power-On Reset is given below:
•All internal logic (including emulation logic and the PLL logic) is reset to its default state
•Internal memory is not maintained through a POR
•RESETOUT goes active
•All device pins go to a high-impedance state
•The RTC peripheral is not reset during a POR. A software sequence is required to reset the RTC
CAUTION: A watchdog reset triggers a POR.
6.4.2Warm Reset
A warm reset provides a limited reset to the device. Warm Reset is initiated by bringing only RESET low
(TRST is maintained high through a warm reset). Warm reset sets certain portions of the device to their
default state while leaving others unaltered. All pins are tri-stated with the exception of RESETOUT which
remains active through the reset sequence, and RTCK/GP8[0]. If an emulator is driving TCK into the
device during reset, then RTCK/GP8[0] will drive out RTCK. If TCK is not being driven into the device
during reset, then RTCK/GP8[0] will drive low. RESETOUT is an output for use by other controllers in the
system that indicates the device is currently in reset.
During an emulation, the emulator will maintain TRST high and hence only warm reset (not POR) is
available during emulation debug and development.
RTCK/GP8[0] is maintained active through a warm reset.
A summary of the effects of Warm Reset is given below:
•All internal logic (except for the emulation logic and the PLL logic) is reset to its default state
Table 6-1 assumes testing over the recommended operating conditions.
AM1808
SPRS653E –FEBRUARY 2010–REVISED MARCH 2014
Table 6-1. Reset Timing Requirements (
NO.UNIT
1t
w(RSTL)
2t
su(BPV-RSTH)
3t
h(RSTH-BPV)
t
d(RSTH-
4
RESETOUTH)
t
d(RSTL-
5141620
RESETOUTL)
Pulse width, RESET/TRST low100100100ns
Setup time, boot pins valid before RESET/TRST high202020ns
Hold time, boot pins valid after RESET/TRST high202020ns
RESET high to RESETOUT high; Warm reset409640964096cycles
RESET high to RESETOUT high; Power-on Reset616961696169
Delay time, RESET/TRST low to RESETOUT lowns
(1),(2)
)
1.3V, 1.2V1.1V1.0V
MIN MAXMIN MAX MINMAX
(1) RESETOUT is multiplexed with other pin functions. See the Terminal Functions table, Table 3-3 for details.
(2) For power-on reset (POR), the reset timings in this table refer to RESET and TRST together. For warm reset, the reset timings in this
table refer to RESET only (TRST is held high).
(3) OSCIN cycles.
(3)
Figure 6-4. Power-On Reset (RESET and TRST active) Timing
The device includes two choices to provide an external clock input, which is fed to the on-chip PLLs to
generate high-frequency system clocks. These options are illustrated in Figure 6-6 and Figure 6-7. For
input clock frequencies between 12 and 20 MHz, a crystal with 80 ohm max ESR is recommended. For
input clock frequencies between 20 and 30 MHz, a crystal with 60 ohm max ESR is recommended.
Typical load capacitance values are 10-20 pF, where the load capacitance is the series combination of C1
and C2.
The CLKMODE bit in the PLLCTL register must be 0 to use the on-chip oscillator. If CLKMODE is set to 1,
the internal oscillator is disabled.
Figure 6-6 illustrates the option that uses on-chip 1.2V oscillator with external crystal circuit. Figure 6-7
illustrates the option that uses an external 1.2V clock input.
Table 6-3. OSCIN Timing Requirements for an Externally Driven Clock
MINMAXUNIT
f
OSCIN
t
c(OSCIN)
t
w(OSCINH)
t
w(OSCINL)
t
t(OSCIN)
t
j(OSCIN)
(1) Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve
noise immunity on input signals.
OSCIN frequency range1250MHz
Cycle time, external clock driven on OSCIN20ns
Pulse width high, external clock on OSCIN0.4 t
Pulse width low, external clock on OSCIN0.4 t
Transition time, OSCIN0.25P or 10
Period jitter, OSCIN0.02Pns
c(OSCIN)
c(OSCIN)
(1)
ns
ns
ns
6.6Clock PLLs
The device has two PLL controllers that provide clocks to different parts of the system. PLL0 provides
clocks (though various dividers) to most of the components of the device. PLL1 provides clocks to the
mDDR/DDR2 Controller and provides an alternate clock source for the ASYNC3 clock domain. This allows
the peripherals on the ASYNC3 clock domain to be immune to frequency scaling operation on PLL0.
The PLL controller provides the following:
•Glitch-Free Transitions (on changing clock settings)
•Domain Clocks Alignment
•Clock Gating
•PLL power down
The various clock outputs given by the controller are as follows:
•Domain Clocks: SYSCLK [1:n]
•Auxiliary Clock from reference clock source: AUXCLK
Various dividers that can be used are as follows:
•Post-PLL Divider: POSTDIV
•SYSCLK Divider: D1, ¼, Dn
Various other controls supported are as follows:
The PLL requires some external filtering components to reduce power supply noise as shown in Figure 6-
8.
Figure 6-8. PLL External Filtering Components
The external filtering components shown above provide noise immunity for the PLLs. PLL0_VDDA and
PLL1_VDDA should not be connected together to provide noise immunity between the two PLLs.
Likewise, PLL0_VSSA and PLL1_VSSA should not be connected together.
AM1808
SPRS653E –FEBRUARY 2010–REVISED MARCH 2014
The input to the PLL is either from the on-chip oscillator or from an external clock on the OSCIN pin. PLL0
outputs seven clocks that have programmable divider options. PLL1 outputs three clocks that have
programmable divider options. Figure 6-9 illustrates the high-level view of the PLL Topology.
The PLLs are disabled by default after a device reset. They must be configured by software according to
the allowable operating conditions listed in Table 6-4 before enabling the device to run from the PLL by
setting PLLEN = 1.
(1) The multiplier values must be chosen such that the PLL output frequency (at PLLOUT) is between 300 and 600 MHz, but the frequency
going into the SYSCLK dividers (after the post divider) cannot exceed the maximum clock frequency defined for the device at a given
voltage operating point.
PARAMETERMINMAXUNIT
OSCIN
cycles
30 (if internal oscillator is used)
50 (if external clock source is used)
(1)
x20x4x32
6.6.2Device Clock Generation
PLL0 is controlled by PLL Controller 0 and PLL1 is controlled by PLL Controller 1. PLLC0 and PLLC1
manage the clock ratios, alignment, and gating for the system clocks to the chip. The PLLCs are
responsible for controlling all modes of the PLL through software, in terms of pre-division of the clock
inputs (PLLC0 only), multiply factors within the PLLs, and post-division for each of the chip-level clocks
from the PLLs outputs. PLLC0 also controls reset propagation through the chip, clock alignment, and test
points.
PLLC0 provides clocks for the majority of the system but PLLC1 provides clocks to the mDDR/DDR2
Controller and the ASYNC3 clock domain to provide frequency scaling immunity to a defined set or
peripherals. The ASYNC3 clock domain can either derive its clock from PLL1_SYSCLK2 (for frequency
scaling immunity from PLL0) or from PLL0_SYSCLK2 (for synchronous timing with PLL0) depending on
the application requirements. In addition, some peripherals have specific clock options independent of the
ASYNC clock domain.
6.6.3Dynamic Voltage and Frequency Scaling (DVFS)
The processor supports multiple operating points by scaling voltage and frequency to minimize power
consumption for a given level of processor performance.
Frequency scaling is achieved by modifying the setting of the PLL controllers’ multipliers, post-dividers
(POSTDIV), and system clock dividers (SYSCLKn). Modification of the POSTDIV and SYSCLK values
does not require relocking the PLL and provides lower latency to switch between operating points, but at
the expense of the frequencies being limited by the integer divide values (only the divide values are
altered the PLL multiplier is left unmodified). Non integer divide frequency values can be achieved by
changing both the multiplier and the divide values, but when the PLL multiplier is changed the PLL must
relock, incurring additional latency to change between operating points. Detailed information on modifying
the PLL Controller settings can be found in SPRUGM9 - AM1808/AM1810 ARM Microprocessor SystemReference Guide.
Voltage scaling is enabled from outside the device by controlling an external voltage regulator. The
processor may communicate with the regulator using GPIOs, I2C or some other interface. When switching
between voltage-frequency operating points, the voltage must always support the desired frequency.
When moving from a high-performance operating point to a lower performance operating point, the
frequency should be lowered first followed by the voltage. When moving from a low-performance operating
point to a higher performance operating point, the voltage should be raised first followed by the frequency.
Voltage operating points refer to the CVdd voltage at that point. Other static supplies must be maintained
at their nominal voltages at all operating points.
The maximum voltage slew rate for CVdd supply changes is 1 mV/us.
For additional information on power management solutions from TI for this processor, follow the Power
Management link in the Product Folder on www.ti.com for this processor.
The processor supports multiple clock domains some of which have clock ratio requirements to each
other. PLL0_SYSCLK2:PLL0_SYSCLK4:PLL0_SYSCLK6 are synchronous to each other and the
SYSCLKn dividers must always be configured such that the ratio between these domains is 2:4:1. The
ASYNC and ASYNC3 clock domains are asynchronous to the other clock domains and have no specific
ratio requirement.
The table below summarizes the maximum internal clock frequencies at each of the voltage operating
points.
Table 6-5. Maximum Internal Clock Frequencies at Each Voltage Operating Point
CLOCK SOURCECLOCK DOMAIN1.3V NOM1.2V NOM1.1V NOM1.0V NOM
PLL0_SYSCLK1Not used on this processor---PLL0_SYSCLK2228 MHz187.5 MHz100 MHz50 MHz
PLL0_SYSCLK3Optional clock for ASYNC1 clock domain
PLL0_SYSCLK4SYSCLK4 domain peripherals114 MHz93.75 MHz50 MHz25 MHz
PLL0_SYSCLK5Not used on this processor---PLL0_SYSCLK6ARM subsystem456 MHz375 MHz200 MHz100 MHz
PLL0_SYSCLK7Optional 50 MHz clock source for EMAC RMII interface50 MHz50 MHz--
Some interfaces have specific limitations on supported modes/speeds at each operating point. See the
corresponding peripheral sections of this document for more information.
TI provides software components (called the Power Manager) to perform DVFS and abstract the task from
the user. The Power Manager controls changing operating points (both frequency and voltage) and
handles the related tasks involved such as informing/controlling peripherals to provide graceful transitions
between operating points.
The ARM9 CPU core supports 2 direct interrupts: FIQ and IRQ. The ARM Interrupt Controller (AINTC)
extends the number of interrupts to 100, and provides features like programmable masking, priority,
hardware nesting support, and interrupt vector generation.
6.7.1.1ARM Interrupt Controller (AINTC) Interrupt Signal Hierarchy
The ARM Interrupt controller organizes interrupts into the following hierarchy:
•Peripheral Interrupt Requests
– Individual Interrupt Sources from Peripherals
•101 System Interrupts
– One or more Peripheral Interrupt Requests are combined (fixed configuration) to generate a
System Interrupt.
– After prioritization, the AINTC will provide an interrupt vector based unique to each System Interrupt
•32 Interrupt Channels
– Each System Interrupt is mapped to one of the 32 Interrupt Channels
– Channel Number determines the first level of prioritization, Channel 0 is highest priority and 31
lowest.
– If more than one system interrupt is mapped to a channel, priority within the channel is determined
by system interrupt number (0 highest priority)
•Host Interrupts (FIQ and IRQ)
– Interrupt Channels 0 and 1 generate the ARM FIQ interrupt
– Interrupt Channels 2 through 31 Generate the ARM IRQ interrupt
•Debug Interrupts
– Two Debug Interrupts are supported and can be used to trigger events in the debug subsystem
– Sources can be selected from any of the System Interrupts or Host Interrupts
AM1808
SPRS653E –FEBRUARY 2010–REVISED MARCH 2014
6.7.1.2AINTC Hardware Vector Generation
The AINTC also generates an interrupt vector in hardware for both IRQ and FIQ host interrupts. This may
be used to accelerate interrupt dispatch. A unique vector is generated for each of the 100 system
interrupts. The vector is computed in hardware as:
VECTOR = BASE + (SYSTEM INTERRUPT NUMBER × SIZE)
Where BASE and SIZE are programmable. The computed vector is a 32-bit address which may
dispatched to using a single instruction of type LDR PC, [PC, #-<offset_12>] at the FIQ and IRQ vector
locations (0xFFFF0018 and 0xFFFF001C respectively).
6.7.1.3AINTC Hardware Interrupt Nesting Support
Interrupt nesting occurs when an interrupt service routine re-enables interrupts, to allow the CPU to
interrupt the ISR if a higher priority event occurs. The AINTC provides hardware support to facilitate
interrupt nesting. It supports both global and per host interrupt (FIQ and IRQ in this case) automatic
nesting. If enabled, the AINTC will automatically update an internal nesting register that temporarily masks
interrupts at and below the priority of the current interrupt channel. Then if the ISR re-enables interrupts;
only higher priority channels will be able to interrupt it. The nesting level is restored by the ISR by writing
to the nesting level register on completion. Support for nesting can be enabled/disabled by software, with
the option of automatic nesting on a global or per host interrupt basis; or manual nesting.
The Power and Sleep Controllers (PSC) are responsible for managing transitions of system power on/off,
clock on/off, resets (device level and module level). It is used primarily to provide granular power control
for on chip modules (peripherals and CPU). A PSC module consists of a Global PSC (GPSC) and a set of
Local PSCs (LPSCs). The GPSC contains memory mapped registers, PSC interrupts, a state machine for
each peripheral/module it controls. An LPSC is associated with every module that is controlled by the PSC
and provides clock and reset control.
The PSC includes the following features:
•Provides a software interface to:
– Control module clock enable/disable
– Control module reset
– Control CPU local reset
•Supports IcePick emulation features: power, clock and reset
PSC0 controls 16 local PSCs.
PSC1 controls 32 local PSCs.
Table 6-8. Power and Sleep Controller (PSC) Registers
AM1808
SPRS653E –FEBRUARY 2010–REVISED MARCH 2014
PSC0 BYTEPSC1 BYTE
ADDRESSADDRESS
0x01C1 00000x01E2 7000REVIDPeripheral Revision and Class Information Register
0x01C1 00180x01E2 7018INTEVALInterrupt Evaluation Register
0x01C1 00400x01E2 7040MERRPR0Module Error Pending Register 0 (module 0-15) (PSC0)
Table 6-8. Power and Sleep Controller (PSC) Registers (continued)
PSC0 BYTEPSC1 BYTE
ADDRESSADDRESS
-0x01E2 7A74MDCTL29Module 29 Control Register
-0x01E2 7A78MDCTL30Module 30 Control Register
-0x01E2 7A7CMDCTL31Module 31 Control Register
ACRONYMREGISTER DESCRIPTION
6.8.1Power Domain and Module Topology
The device includes two PSC modules.
Each PSC module controls clock states for several of the on chip modules, controllers and interconnect
components. Table 6-9 and Table 6-10 lists the set of peripherals/modules that are controlled by the PSC,
the power domain they are associated with, the LPSC assignment and the default (power-on reset)
module states. See the device-specific data manual for the peripherals available on a given device. The
module states and terminology are defined in Section 6.8.1.1.
Table 6-9. PSC0 Default Module Configuration
LPSCModule NamePower DomainDefault Module StateAuto Sleep/Wake Only
Number
The PSC defines several possible states for a module. This states are essentially a combination of the
module reset asserted or de-asserted and module clock on/enabled or off/disabled. The module states are
defined in Table 6-11.
AM1808
SPRS653E –FEBRUARY 2010–REVISED MARCH 2014
Table 6-11. Module States
Module StateModule ResetModuleModule State Definition
EnableDe-assertedOnA module in the enable state has its module reset de-asserted and it has its clock on.
DisableDe-assertedOffA module in the disabled state has its module reset de-asserted and it has its module
SyncResetAssertedOnA module state in the SyncReset state has its module reset asserted and it has its
SwRstDisableAssertedOffA module in the SwResetDisable state has its module reset asserted and it has its
Auto SleepDe-assertedOffA module in the Auto Sleep state also has its module reset de-asserted and its module
Auto WakeDe-assertedOffA module in the Auto Wake state also has its module reset de-asserted and its module
Clock
This is the normal operational state for a given module
clock off. This state is typically used for disabling a module clock to save power. The
device is designed in full static CMOS, so when you stop a module clock, it retains the
module’s state. When the clock is restarted, the module resumes operating from the
stopping point.
clock on. Generally, software is not expected to initiate this state
clock disabled. After initial power-on, several modules come up in the SwRstDisable
state. Generally, software is not expected to initiate this state
clock disabled, similar to the Disable state. However this is a special state, once a
module is configured in this state by software, it can “automatically” transition to
“Enable” state whenever there is an internal read/write request made to it, and after
servicing the request it will “automatically” transition into the sleep state (with module
reset re de-asserted and module clock disabled), without any software intervention.
The transition from sleep to enabled and back to sleep state has some cycle latency
associated with it. It is not envisioned to use this mode when peripherals are fully
operational and moving data.
clock disabled, similar to the Disable state. However this is a special state, once a
module is configured in this state by software, it will “automatically” transition to
“Enable” state whenever there is an internal read/write request made to it, and will
remain in the “Enabled” state from then on (with module reset re de-asserted and
module clock on), without any software intervention. The transition from sleep to
enabled state has some cycle latency associated with it. It is not envisioned to use this
mode when peripherals are fully operational and moving data.
The EDMA controller handles all data transfers between memories and the device slave peripherals on
the device. These data transfers include cache servicing, non-cacheable memory accesses, userprogrammed data transfers, and host accesses.
6.9.1EDMA3 Channel Synchronization Events
Each EDMA channel controller supports up to 32 channels which service peripherals and memory.
Table 6-12lists the source of the EDMA synchronization events associated with each of the programmable
EDMA channels.
Table 6-12. EDMA Synchronization Events
EDMA0 Channel Controller 0
EventEvent Name / SourceEventEvent Name / Source
0McASP0 Receive16MMCSD0 Receive
1McASP0 Transmit17MMCSD0 Transmit
2McBSP0 Receive18SPI1 Receive
3McBSP0 Transmit19SPI1 Transmit
4McBSP1 Receive20PRU_EVTOUT6
5McBSP1 Transmit21PRU_EVTOUT7
6GPIO Bank 0 Interrupt22GPIO Bank 2 Interrupt
7GPIO Bank 1 Interrupt23GPIO Bank 3 Interrupt
8UART0 Receive24I2C0 Receive
9UART0 Transmit25I2C0 Transmit
10Timer64P0 Event Out 1226I2C1 Receive
11Timer64P0 Event Out 3427I2C1 Transmit
12UART1 Receive28GPIO Bank 4 Interrupt
13UART1 Transmit29GPIO Bank 5 Interrupt
14SPI0 Receive30UART2 Receive
15SPI0 Transmit31UART2 Transmit
EDMA1 Channel Controller 1
EventEvent Name / SourceEventEvent Name / Source
0Timer64P2 Compare Event 016GPIO Bank 6 Interrupt
1Timer64P2 Compare Event 117GPIO Bank 7 Interrupt
2Timer64P2 Compare Event 218GPIO Bank 8 Interrupt
3Timer64P2 Compare Event 319Reserved
4Timer64P2 Compare Event 420Reserved
5Timer64P2 Compare Event 521Reserved
6Timer64P2 Compare Event 622Reserved
7Timer64P2 Compare Event 723Reserved
8Timer64P3 Compare Event 024Timer64P2 Event Out 12
0x01C0 03200x01E3 0320EEVALError Evaluate Register
0x01C0 03400x01E3 0340DRAE0DMA Region Access Enable Register for Region 0
0x01C0 03480x01E3 0348DRAE1DMA Region Access Enable Register for Region 1
0x01C0 03500x01E3 0350DRAE2DMA Region Access Enable Register for Region 2
0x01C0 03580x01E3 0358DRAE3DMA Region Access Enable Register for Region 3
0x01C0 03800x01E3 0380QRAE0QDMA Region Access Enable Register for Region 0
0x01C0 03840x01E3 0384QRAE1QDMA Region Access Enable Register for Region 1
0x01C0 03880x01E3 0388QRAE2QDMA Region Access Enable Register for Region 2
0x01C0 038C0x01E3 038CQRAE3QDMA Region Access Enable Register for Region 3
0x01C0 06000x01E3 0600QSTAT0Queue 0 Status Register
0x01C0 06040x01E3 0604QSTAT1Queue 1 Status Register
0x01C0 06200x01E3 0620QWMTHRAQueue Watermark Threshold A Register
0x01C0 06400x01E3 0640CCSTATEDMA3CC Status Register
(1)
AM1808
(1) On previous architectures, the EDMA3TC priority was controlled by the queue priority register (QUEPRI) in the EDMA3CC memory-
map. However for this device, the priority control for the transfer controllers is controlled by the chip-level registers in the System
Configuration Module. You should use the chip-level registers and not QUEPRI to configure the TC priority.
Table 6-15 shows an abbreviation of the set of registers which make up the parameter set for each of 128
EDMA events. Each of the parameter register sets consist of 8 32-bit word entries. Table 6-16 shows the
parameter set entry registers with relative memory address locations within each of the parameter sets.
0x0000OPTOption
0x0004SRCSource Address
0x0008A_B_CNTA Count, B Count
0x000CDSTDestination Address
0x0010SRC_DST_BIDXSource B Index, Destination B Index
0x0014LINK_BCNTRLDLink Address, B Count Reload
0x0018SRC_DST_CIDXSource C Index, Destination C Index
EMIFA is one of two external memory interfaces supported on the device. It is primarily intended to
support asynchronous memory types, such as NAND and NOR flash and Asynchronous SRAM. However
on this device, EMIFA also provides a secondary interface to SDRAM.
6.10.1 EMIFA Asynchronous Memory Support
EMIFA supports asynchronous:
•SRAM memories
•NAND Flash memories
•NOR Flash memories
The EMIFA data bus width is up to 16-bits.The device supports up to 23 address lines and two external
wait/interrupt inputs. Up to four asynchronous chip selects are supported by EMIFA (EMA_CS[5:2]).
Each chip select has the following individually programmable attributes:
•Data Bus Width
•Read cycle timings: setup, hold, strobe
•Write cycle timings: setup, hold, strobe
•Bus turn around time
•Extended Wait Option With Programmable Timeout
•Select Strobe Option
•NAND flash controller supports 1-bit and 4-bit ECC calculation on blocks of 512 bytes.
www.ti.com
6.10.2 EMIFA Synchronous DRAM Memory Support
The device supports 16-bit SDRAM in addition to the asynchronous memories listed in Section 6.10.1. It
has a single SDRAM chip select (EMA_CS[0]). SDRAM configurations that are supported are:
•One, Two, and Four Bank SDRAM devices
•Devices with Eight, Nine, Ten, and Eleven Column Address
•CAS Latency of two or three clock cycles
•Sixteen Bit Data Bus Width
Additionally, the SDRAM interface of EMIFA supports placing the SDRAM in Self Refresh and Powerdown
Modes. Self Refresh mode allows the SDRAM to be put into a low power state while still retaining memory
contents; since the SDRAM will continue to refresh itself even without clocks from the device. Powerdown
mode achieves even lower power, except the device must periodically wake the SDRAM up and issue
refreshes if data retention is required.
Finally, note that the EMIFA does not support Mobile SDRAM devices.
Table 6-17 shows the supported SDRAM configurations for EMIFA.
(1) The shaded cells indicate configurations that are possible on the EMIFA interface but as of this writing SDRAM memories capable of
supporting these densities are not available in the market.
EMIFA DataTotalTotalMemory
Bus SizeRowsColumnsBanksMemoryMemoryDensity
(bits)(Mbits)(Mbytes)(Mbits)
(1)
6.10.3 EMIFA SDRAM Loading Limitations
EMIFA supports SDRAM up to 100 MHz with up to two SDRAM or asynchronous memory loads.
Additional loads will limit the SDRAM operation to lower speeds and the maximum speed should be
confirmed by board simulation using IBIS models.