The U2895B is a monolithic integrated circuit. It is
realized using TEMIC’s advanced silicon bipolar UHF5S
technology. The device integrates a mixer, an I/Q modulator, a phase-frequency detector (PFD) with two
synchronous programmable dividers, and a charge pump.
The U2895B is designed for cellular phones such as
GSM900, DCS1800, and PCS1900, applying a transmitter architecture at which the VCO operates at the TX
output frequency. No duplexer is needed since the out-of-
band noise is very low. The U2895B exhibits low power
consumption. Broadband operation gives high flexibility
for multi-band frequency mappings. The IC is available
in a shrinked small-outline 28-pin package (SSO28).
Electrostatic sensitive device.
Observe precautions for handling.
U2895B
Features
D
Supply voltage range 2.7 V to 5.5 V
D
Current consumption 50 mA
D
Power-down functions
D
High-speed PFD and charge pump (CP)
D
Small CP saturation voltages (0.5/0.6 V)
D
Programmable dividers and CP polarity
D
Low-current standby mode
Block Diagram
I NIMDLO Q NQ PUMIX PU MIXO MIXLO
ND
RD
MC
5
6
16
17
13
14
15
+
N1
divider
R1
divider
Mode
control
MDO
NMDO
NND
NRD
90°
2
I/Q modulator
MUX
Benefits
D
Novel TX architecture saves filter costs
D
Extended battery operating time without duplexer
D
Less board space (few external components)
D
VCO control without voltage doubler
D
Small SSO28 package
D
One device for all GSM bands
19122728321
2520
Voltage
reference
PFD
Mixer
Charge
pump
101124184
22
23
21
26
RF
NRF
8
VSP
9
CPO
7
VS1
VS2
VS3
GNDCPCGNDP
Figure 1. Block diagram
15048
Rev . A3, 30-Sep-981 (16)
U2895B
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
Á
Á
ББББББББББ
Á
Á
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
Ordering Information
Extended Type NumberPackageRemarks
U2895B-AFSG3SSO28T aped and reeled
Pin Description
NI
MDLO
GND
MDO
NMDO
VS1
VSP
CPO
GNDP
CPC
PUMIX
RD
NRD
PinSymbolFunction
1
I
2
3
4
5
6
28
27
26
25
24
23
Q
NQ
VS3
MIXO
GND
NRF
10
11
1
2
3
4
5
6
7
8
9
I
NI
MDLO
GND
MDO
NMDO
VS1
VSP
CPO
GNDP
CPC
In-phase baseband input
Complementary to I
I/Q-modulator LO input
1)
Negative supply
I/Q-modulator output
Complementary to MDO
Neg. supply charge pump
Charge-pump current control
(input)
7
8
9
10
11
12
13
14
12495
Figure 2. Pinning
22
21
20
19
18
17
16
15
RF
VS2
MIXLO
PU
GND
NND
ND
MC
12
13
14
15
16
17
18
19
Á
20
21
22
23
24
25
26
27
28
1)
PUMIX
RD
NRD
MC
ND
NND
GND
PU
ÁÁÁ
MIXLO
VS2
RF
NRF
GND
MIXO
VS3
NQ
Q
Power-up, mixer only
R-divider input
Complementary to RD
Mode control
N-divider input
Complementary to ND
1)
Negative supply
Power-up, whole chip except
ББББББББ
mixer
Mixer LO input
3)
Positive supply (MISC.)
Mixer RF-input
Complementary to RF
1)
Negative supply
Mixer output
3)
Positive supply (mixer)
Complementary to Q
Quad.-phase baseband input
All GND pins must be connected to GND
potential. No DC voltage between GND pins!
2)
3)
Max. voltage between GNDP and GND pins
v
200 mV
The maximum permissible voltage difference
between pins VS1, VS2 and VS3 is v200 mV.
Rev . A3, 30-Sep-982 (16)
Absolute Maximum Ratings
Á
Á
Á
Á
ÁÁÁ
ÁÁÁ
ÁÁÁ
ppy
ÁÁÁ
ÁÁÁ
ppy
ÁÁÁ
ÁÁÁ
ppy
ÁÁÁ
1)
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ParametersSymbolValueUnit
Supply voltage VS1, VS2, VS3
Supply voltage charge pump VSP
Voltage at any input
Current at any input / output pin
БББББББББББ
except CPC
CPC output currents
Ambient temperature
Storage temperature
Operating Range
ParametersSymbolValueUnit
Supply voltage
Ambient temperature
Thermal Resistance
ParametersSymbolValueUnit
Junction ambient SSO28
V
VS#
V
VSP
V
Vi#
| II# | | IO# |
ББББББ
| I
|
CPC
T
amb
T
stg
V
, V
VS#
VSP
T
amb
R
thJA
U2895B
v
V
VSP
5.5
–0.5 v V
БББББББ
+0.5 v 5.5
VS
2
5
–20 to +85
–40 to +125
2.7 to 5.5
–20 to +85
130
V
V
V
mA
ÁÁÁ
mA
°C
°C
V
°C
K/W
Electrical Characteristics
VS = 2.7 to 5.5 V, T
ParametersT est Conditions / PinSymbolMin.T yp.Max.Unit
DC supply
Supply voltages VS#
Supply voltage VSP
Supply current I
Supply current I
Supply current I
Supply current I
N & R divider inputs ND, NND & RD, NRD
N:1 divider frequency
R:1 divider frequency
Input impedance
Input sensitivity
= –20°C to +85°C, final test at 25°C
amb
V
VS1
= V
VS1
Active (VPU = VS)
VS2
= V
Standby (VPU = 0)
VS2
Active (VPU = VS)
Standby (VPU = 0)
VS3
VSP
Active (V
PUMIX
Standby (V
Active
(V
= VS, CPC open)
PU
PUMIX
Standby (VPU = 0)
50-W source
50-W source
Active & standby
50-W source
VS3
= VS)
= 0)
V
VS#
V
VSP
I
VS1A
I
VS1Y
I
VS2A
I
VS2Y
I
VS3A
I
VS3Y
I
VSPA
I
VSPY
f
ND
f
RD
ZRD, Z
VRD, V
ND
ND
2.7
V
VS#
– 0.3
100
100
1 kΩ
20
17
17
13
1.4
5.5
5.5
22
20
22
20
17
30
1.8
20
600
600
2 pF
200
V
V
mA
m
mA
m
mA
m
mA
m
MHz
MHz
mV
A
A
A
A
–
rms
1)Mean value, measured with FND = 151 MHz, FRD = 150 MHz, current vs. time, see page 6, figure 3.
Rev . A3, 30-Sep-983 (16)
U2895B
Á
Á
Á
Á
Á
Á
4)
Á
Á
Á
Á
Electrical Characteristics (continued)
VS = 2.7 to 5.5 V, T
= –20°C to +85°C, final test at 25°C
amb
ParametersT est Conditions / PinSymbolMin.Typ.Max.Unit
Phase-frequency detector (PFD)
PFD operation
fND = 450 MHz, N = 2
fRD = 450 MHz, R = 2
Frequency comparison
3)
ББББББ
only
fND = 600 MHz, N = 2
ББББББ
fRD = 450 MHz, R = 2
I/Q modulator baseband inputs I, NI & Q, NQ
DC voltage
MD_IQ
AC voltage
ББББББ
Referred to GND
Frequency range
Referred to GND
ББББББ
Differential (preferres)
I/Q modulator LO input MDLO
MDLO
Input impedance
Input level
Frequency range
Active & standby
50-W source
I/Q modulator outputs MDO, NMDO
DC current
Voltage compliance
MDO output level
V
, V
V
MDO
MDO
, V
NMDO
NMDO
500 W to VS
= VS
= VC
5)
(differential)
Carrier suppression
Sideband suppression
IF spurious
Noise
5)
5)
5)
5)
fLO ± 3 f
@ 400 kHz off carrier
mod
Frequency range
Mixer (900 MHz)
RF input level
LO-spurious at
RF/NRF port
MIXLO input level
MIXO (100-W load)
Output level
6)
Carrier suppression
900 MHz
@ P9
MIXLO
= –10 dBm
@ P9RF = –15 dBm
0.05 to 2 GHz
Frequency range
@ P9
@ P9
MIXLO
MIXLO
= –15 dBm
= –15 dBm
f
PFD
f
V
I,
AC
AC
AC
I
MDO
MDO
P9
CS9
FD
V
NI,
f
IO
AC
I,
Q, ACNQ
AC
DI,
f
MDLO
Z
MDLO
P
MDLO
, I
NMDO
, VC
P
MDO
CS
MDO
SS
MDO
SP
MDO
N
MDO
f
MDO
P9
RF
SP9
RF
MIXLO
f
MIXO
P9
MIXO
MIXO
V
Q,
NQ
NI,
DQ
NMDOVS
БББББ
V
БББББ
VC
50
225
300
ÁÁÁÁÁÁÁ
1.35
VS1/2
VS1/2
+ 0.1
DC
1
200
ÁÁÁÁ
ÁÁÁÁÁ
400
100
850
250
–20
–15
–10
2.4
– 0.7
120
–32
–35
–35
–40
–50
5.5
150
–45
–115
100
–23
450
–17
–40
–22
50
–12
450
70
–20
MHz
MHz
ÁÁ
V
MHz
mV
pp
mV
pp
MHz
W
dBm
mA
V
mV
rms
dBc
dBc
dBc
dBc/Hz
MHz
dBm
dBm
dBm
MHz
mV
rms
dBc
3)
4)
PFD can be used as a frequency comparator until 300 MHz for loop acquisition
Single-ended operation (complementary baseband input is AC-grounded) leads to reduced linearity
(degrading suppression of odd harmonics)
5)
6)
With typical drive levels at MDLO- & I/Q-inputs
–1 dB compression point (CP-1)
Rev . A3, 30-Sep-984 (16)
Electrical Characteristics (continued)
Á
Á
Á
Á
Á
pp
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
U2895B
VS = 2.7 to 5.5 V, T
= –20°C to +85°C, final test at 25°C
amb
ParametersT est Conditions / PinSymbolMin.T yp.Max.Unit
Mixer (1900 MHz)
RF input level
LO-spurious at
ББББББ
RF/NRF ports
MIXLO input level
0.5 to 2 GHz
@ P19
ББББББ
@ P19RF = –15 dBm
MIXLO
= –10 dBm
0.05 to 2 GHz
SP19
ÁÁÁÁ
P19
MIXO (100 W load)
Output level
Carrier suppression
Charge-pump output CPO (V
Pump-current pulse
TK pump current
Mismatch source / sink
current
ББББББ
Sensivity to VSP
ББББББ
V
CPO
6)
voltage range
@ P19
@ P19
VSP
MIXLO
MIXLO
= 5 V; V
= –17 dBm
= –17 dBm
CPO
CPC open for DC
CPOSO
sourc
sink
7)
7)
)/I
CPOSI
D
VSP
VSP
R
= 2.2 kΩ
CPC
P
= 680 Ω
CPC
(I
– I
CPOSI
I
= I
CPOSO
ББББББ
I
= I
CPOSI
D
I
CPO
|
||
I
CPO
= 2.5 V)
ÁÁÁÁ
|
ÁÁÁÁ
P19
CS19
| I
| I
Tk_| I
Charge-pump control input CPC
Compensation capacitor
Short circuit current
8)
CPC grounded
| I
Mode control
Sink current
VMC = VS
Power-up input PU (power-up for all functions, except mixer)
Settling time
ББББББ
High level
Low level
High-level current
Low-level current
Output power within 10%
ББББББ
of steady state values
Active
Standby
Active, V
Standby , V
PUH
PUL
= 2.2 V
= 0.4 V
ÁÁÁÁ
Power-up input PUMIX (power -up for mixer only)
Settling time
ББББББ
High level
Low level
High-level current
Low-level current
Output power within 10%
ББББББ
of steady state values
Active
Standby
Active, V
PUMIXH
= 2.2 V
Standby ,
V
PUMIXL
= 0.4 V
ÁÁÁÁ
V
V
I
I
P19
RF
RF
MIXLO
MIXO
MIXO
| I
|
CPO
CPO 2
CPO_4
CPC
M
ICPO
S
ICPO
V
CPO
C
CPC
CPCK
I
MC
S
PU
V
PUH
V
PUL
I
PUH
I
PUL
t
setl
PUMIXH
PUMIXL
PUMIXH
PUMIXL
–23
ÁÁÁÁÁÁÁÁ
–22
55
–20
0.7
|
|
|
1.4
3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
1
2
4
0.5
500
|
1.6
60
ÁÁÁÁÁ
5
2.0
0
50
–1
ÁÁÁÁÁ
5
2.0
0
50
–1
–17
–40
–12
V
VSP
ÁÁ
ÁÁ
V
1.3
2.6
5
15
0.1
0.1
10
0.4
75
20
10
0.4
75
20
–0.6
S2
dBm
dBm
ÁÁ
dBm
mVrms
dBc
mA
mA
mA
%/100°K
–
ÁÁ
–
ÁÁ
V
pF
mA
m
A
m
s
ÁÁ
V
V
m
A
m
A
m
s
ÁÁ
V
V
m
A
m
A
6)
7)
8)
Rev . A3, 30-Sep-985 (16)
– 1 dB compression point (CP – 1)
R
: external resistor to GND for charge-pump current control
CPC
See figure 7.
U2895B
Supply Current of the Charge Pump
I
vs. Time
VSP
Due to the pulsed operation of the charge pump, the current into the charge-pump supply pin VSP is not constant.
Depending on I (see figure 6) and the phase difference at
the phase detector inputs, the current I
ries. Basically , the total current is the sum of the quiescent
current, the charge-/discharge current, and – after each
phase comparison cycle – a current spike (see figure 3).
Up
Down
5I
I
VSP
3I
I
2I
I
CPO
–2I
over time va-
VSP
t
t
14552
Initial Charge-Pump Current after
Power-Up
Due to stability reasons, the reference current generator
for the charge pump needs an external capacitor (>500 pF
from CPC to GND). After power-up, only the on-chip
generated current I = I
external capacitor. Due to the char ge pump’s architecture,
the charge pump current will be 2 I = 2 I
the voltage on CPC has reached the reference voltage
(1.1 V). The following figures illustrate this behavior .
I
CPCK
V
CPC
V
Ref
t
1
2x I
I
CPC
is available for charging the
CPCK
x R
CPC
t
0
CPCK
t
2
CPCK
t
until
Figure 3. Supply current of the charge pump = f(t)
Internal current, I, |I
R
CPC
| and I
CPC
I|I
CPC
vs. R
CPCO
CPC
|I
CPC open0.5 mA1 mA0
2.2 k
680
W
W
1.0 mA2 mA–0.5 mA
2.0 mA4 mA–1.5 mA
(typical values)
CPC
I
t
1
Time t1 can be calculated as t1 [ (1.1 V C
e.g., C
Time t
e.g., C
The behavior of |I
= 1 nF, I
CPC
can be calculated as t2 [ (R
2
= 1 nF, R
CPC
= 2.7 mA ³ t1 [ 0.4 ms.
CPCK
= 2200 W³ t2 [ 1.1 ms
CPC
Figure 4.
| after power-up can be very
CPO
/2200 W) C
CPC
t
CPC
14561
)/I
CPCK
CPC
advantageous for a fast settling of the loop. By using
larger capacitors (>1 nF), an even longer period with
maximum charge pump current is possible.
Ramp-up time for the internal band gap reference is about
1 ms. This time has to be added to the times calculated for
the charge pump reference.
Rev . A3, 30-Sep-986 (16)
U2895B
Mode Selection
The device can be programmed to different modes via an external resistor RMODE (including short, open) from Pin MC
to VS2. The mode is distinguished from specific N-, R-divider ratios, and the polarity of the charge pump current.
Mode SelectionN-DividerR-DividerCPO Current Polarity
ModeResistance between
fN < fR
1)
fN > fR
Pin MC and Pin VS2
10 (<50 W)1:11:1SinkSource
22.7 kW (±5%)1:11:1SourceSink
310 kW (±5%)1:12:1SourceSink
447 kW (±5%)2:12:1SourceSinkPCN/PCS
5
1)
Frequencies referred to PFD input
2)
LO frequencies below VCO frequency
3)
LO frequencies above VCO frequency
4
)Sink current into Pin CPO. Source: current out from Pin CPO.
R
(>1 MW)2:12:1SinkSourceGSM
Equivalent Circuits at the IC’s Pins
V
Bias_MDLO
2230 Ω2230 Ω
L,Q
MDLO
NI, NQ
250 Ω
4)
1)
Application
2)
3)
VS1
MDO
NMDO
V
Ref_input
Baseband inputLO inputOutput
Figure 5. I/Q modulator
1 kΩ
RF
890 Ω890 Ω
NRF
LO input
V
Bias_RF
V
MIXLO
Ref_RF
Figure 6. Mixer
V
Ref_MDLO
30 pF
1 kΩ
1.6 kΩ1.6 kΩ
V
Ref_LO
Output
V
Bias_LO
40 pF
V
Ref_output
GND
15049
VS3
6.3 Ω
MIXO
GND
14554
Rev . A3, 30-Sep-987 (16)
U2895B
VS2
CPC
GND
ND/RD
NND/NRD
4
I
I
/4
CPCK
1.1 V
2230 Ω
= Transistor with an emitter area–factor of “n”
n
2 kΩ2 kΩ
Ref
Figure 7. Charge pump
VS2
4
up
Ref
2
PU, PUMIX
2
down
20 kΩ
2I
2I
VSP
4
CPO
GNDP
14555
VS2
MC
GND
Figure 8. Dividers
2x
60 µA
Figure 10. Mode control
V
Ref_div
Logic
GND
14556
N–divider
R–divider
MUX
14898
GND
14557
Figure 9. Power-up
≅
C (U)
2.5 pF @ 2 V
C (U) is a non-linear junction capacitance
14559
Figure 11. ESD-protection diodes
Rev . A3, 30-Sep-988 (16)
Application Hints
Interfacing
For some of the baseband ICs it may be necessary to
reduce the I/Q voltage swing so that it can be handled by
the U2895B. In those cases, the following circuitry can be
used.
R
II
Baseband IC
NI
Q
NQ
Figure 12. Interfacing the U2895B to I/Q baseband circuits
1
R
R
R
2
1
1
R
2
NI
Q
U2895B
NQ
R
1
14914
Mode Control
U2895B
VS2
R
Mode
R
Mode1RMode2
MC
a) any single modeb) any 2 modes
U2895B
VS2
R
Mode
MC
U2895B
U2895B
VS2
MC
U2895B
VS2
R
Mode
36 kΩor
10 kΩ
MC
Due to a possible current offset in the differential baseband inputs of the U2895B the best values for the carrier
suppression of the I/Q modulator can be achieved with
voltage driven I/NI-, and Q/NQ-inputs. A value of
R
= R2/2*RS v 1.5 kW should be realized. RS is the
source
sum of R1 (above drawing) and the output resistance of
the baseband IC.
Charg-Pump Current Programming
GNDCPC
= 2.2 kΩ
R
CPC1
= 1 kΩ (incl. rds_on of FET)
R
R
CPC2
CPC2
‘H’
‘L’
|I
CPO
|I
CPO
| = 4 mA
| = 2 mA
12497
1 nF
R
CPC1
Figure 13. Programming the charge-pump current
c) any mode
d) mode 5 & mode 3 or mode 4
& mode 5
Figure 14. Application examples for programming
different modes
15050
Rev . A3, 30-Sep-989 (16)
U2895B
Test Circuit
VDC
1.35 V – VS1/2 +0.1 V
Modulator
LO input
Modulator
outputs
V
S
VSP
VDO
Baseband input
VAC
50 Ω
<450 mV
50 Ω50Ω
Baseband input
pp
<450 mV
281
2
27
pp
VAC
VDC
1.35 V –VS1/2+0.1 V
3
4
5
6
26
25
24
23
V
S
Mixer
output
50 Ω
7
8
9
22
21
20
Mixer
input
V
S
Mixer
LO input
PFD
Pulse output
PFD
input
50 Ω
Bias voltage for
charge pump output:
0.5 V < VDO < VSP – 0.5 V
1 nF
V
10
11
12
13
19
18
17
16
PFD input
50 Ω
14
15
Mode control
Power–up
S
R
R
R
VS2
1
2
3
13315
Figure 15. Test circuit
Rev . A3, 30-Sep-9810 (16)
Application Circuit for DCS1800 (1710 – 1785 MHz)
U2895B
Attention!
Differential source impedance
seen by the I/NI, Q/NQ inputs
should not exceed 1000 Ohms
MDLO
2nd IF
816 MHz, –15 dBm
V
S
100 pF
100 nH
100 nH
Ω330 Ω
330
100 nH
100 pF100 pF
100 pF
mode control
12 nH
12 pF
10 nH
10 pF
220 Ω
100 pF
R
Baseband processor
MIXLO
1st IF
1288...1323 MHz
1302...1377 MHz
RF TX
850...915 MHz
1710...1785 MHz
VCO
100 pF
10 Ω
22 pF
V
15051
SO
+
I/Q modulator
50 Ω
100pF
90°
50 Ω
100pF
25 2019122728321
Voltage
2
MUX
reference
PFD
680W...2.2 k
Mixer
Charge
pump
101124184
W
470 pF
100 pF
22
23
100 pF
8
9
7
21
26
10 Ω
MQES50–902
MQE5A1–1747
100 pF
1.2 nF
100 pF
100 pF
100 pF
560 Ω
6.8 nF
100 Ω
V
SP
330 Ω
250 Ω
r_diff
10 pF
5
6
16
N1
17
divider
13
R1
14
divider
15
Mode
control
Figure 16. Application circuit (power-up and 680 W to 2.2 kW charge-pump control is not shown)
Measurements
Modulation-Loop Settling Time
As valid for all PLL loops the settling time depends on
several factors. The following figure is an extraction from
measurements performed in an arrangement like the application circuit. It shows that a loop settling time of a few
m
s can be achieved.
Vertical: VCO tuning voltage 1 V/Div
Horizontal: Time 1 ms/Div
Rev . A3, 30-Sep-9811 (16)
CPC: 1 kΩ to GND
CPC ‘open’
Figure 17.
U2895B
Modulation Spectrum & Phase Error
Application for GSM900
Figure 18. Modulation spectrum
Figure 19. Phase error
Rev . A3, 30-Sep-9812 (16)
Application for DCS1800
U2895B
Figure 20. Modulation spectrum
Figure 21. Phase error
Rev . A3, 30-Sep-9813 (16)
U2895B
Application for PCS1900
PCS 1900
USER TOL.
Figure 22. Modulation spectrum
Figure 23. Phase error
Complete transmitters (including PA) were measured.
The test equipment was the R & S CMD55 performing
standard approval tests. Typically, the spectrum @
400 kHz off the center carrier frequency is approximately
–65 dB attenuated (–60 dB according specificarion). The
PCS 1900
corresponding rms phase error is in the range of about 3°.
Dimensioning the loop-filters allows you to optimize
spectral-and phase error performance.
Rev . A3, 30-Sep-9814 (16)
Package Information
U2895B
Package SSO28
Dimensions in mm
0.25
0.65
2815
114
9.10
9.01
8.45
1.30
0.15
0.05
5.7
5.3
4.5
4.3
6.6
6.3
technical drawings
according to DIN
specifications
0.15
13018
Rev . A3, 30-Sep-9815 (16)
U2895B
Ozone Depleting Substances Policy Statement
It is the policy of TEMIC Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems
with respect to their impact on the health and safety of our employees and the public, as well as their impact on
the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances (ODSs).
The Montreal Protocol ( 1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban
on these substances.
TEMIC Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of
ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
TEMIC Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer
application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized
application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of,
directly or indirectly, any claim of personal damage, injury or death associated with such unintended or