Datasheet U2895B Datasheet (TEMIC)

查询U2895B供应商
Modulation PLL for GSM, DCS and PCS Systems
Description
The U2895B is a monolithic integrated circuit. It is realized using TEMIC’s advanced silicon bipolar UHF5S technology. The device integrates a mixer, an I/Q modu­lator, a phase-frequency detector (PFD) with two synchronous programmable dividers, and a charge pump. The U2895B is designed for cellular phones such as GSM900, DCS1800, and PCS1900, applying a trans­mitter architecture at which the VCO operates at the TX output frequency. No duplexer is needed since the out-of-
band noise is very low. The U2895B exhibits low power consumption. Broadband operation gives high flexibility for multi-band frequency mappings. The IC is available in a shrinked small-outline 28-pin package (SSO28).
Electrostatic sensitive device. Observe precautions for handling.
U2895B
Features
D
Supply voltage range 2.7 V to 5.5 V
D
Current consumption 50 mA
D
Power-down functions
D
High-speed PFD and charge pump (CP)
D
Small CP saturation voltages (0.5/0.6 V)
D
Programmable dividers and CP polarity
D
Low-current standby mode
Block Diagram
I NI MDLO Q NQ PUMIX PU MIXO MIXLO
ND
RD
MC
5 6
16 17
13 14
15
+
N1
divider
R1
divider
Mode
control
MDO
NMDO
NND
NRD
90°
2
I/Q modulator
MUX
Benefits
D
Novel TX architecture saves filter costs
D
Extended battery operating time without duplexer
D
Less board space (few external components)
D
VCO control without voltage doubler
D
Small SSO28 package
D
One device for all GSM bands
19122728321
25 20
Voltage
reference
PFD
Mixer
Charge
pump
101124184
22
23
21 26
RF NRF
8
VSP
9
CPO
7
VS1 VS2 VS3
GND CPC GNDP
Figure 1. Block diagram
15048
Rev . A3, 30-Sep-98 1 (16)
U2895B
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
Á
Á
ББББББББББ
Á
Á
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
ББББББББББ
Ordering Information
Extended Type Number Package Remarks
U2895B-AFSG3 SSO28 T aped and reeled
Pin Description
NI
MDLO
GND
MDO
NMDO
VS1
VSP
CPO
GNDP
CPC
PUMIX
RD
NRD
Pin Symbol Function
1
I
2
3
4
5
6
28
27
26
25
24
23
Q
NQ
VS3
MIXO
GND
NRF
10 11
1 2 3 4 5 6 7 8 9
I
NI
MDLO
GND
MDO
NMDO
VS1
VSP CPO
GNDP
CPC
In-phase baseband input Complementary to I I/Q-modulator LO input
1)
Negative supply I/Q-modulator output Complementary to MDO
3)
Positive supply (I/Q MOD) Pos. supply charge-pump Charge-pump output
2)
Neg. supply charge pump Charge-pump current control
(input)
7
8
9
10
11
12
13
14
12495
Figure 2. Pinning
22
21
20
19
18
17
16
15
RF
VS2
MIXLO
PU
GND
NND
ND
MC
12 13 14 15 16 17 18 19
Á
20 21 22 23 24 25 26 27 28
1)
PUMIX
RD
NRD
MC ND
NND
GND
PU
ÁÁÁ
MIXLO
VS2
RF
NRF
GND
MIXO VS3
NQ
Q
Power-up, mixer only R-divider input Complementary to RD Mode control N-divider input Complementary to ND
1)
Negative supply Power-up, whole chip except
ББББББББ
mixer Mixer LO input
3)
Positive supply (MISC.) Mixer RF-input Complementary to RF
1)
Negative supply Mixer output
3)
Positive supply (mixer) Complementary to Q Quad.-phase baseband input
All GND pins must be connected to GND potential. No DC voltage between GND pins!
2)
3)
Max. voltage between GNDP and GND pins
v
200 mV
The maximum permissible voltage difference between pins VS1, VS2 and VS3 is v200 mV.
Rev . A3, 30-Sep-982 (16)
Absolute Maximum Ratings
Á
Á
Á
Á
ÁÁÁ
ÁÁÁ
ÁÁÁ
pp y
ÁÁÁ
ÁÁÁ
pp y
ÁÁÁ
ÁÁÁ
pp y
ÁÁÁ
1)
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Parameters Symbol Value Unit Supply voltage VS1, VS2, VS3 Supply voltage charge pump VSP Voltage at any input Current at any input / output pin
БББББББББББ
except CPC CPC output currents Ambient temperature Storage temperature
Operating Range
Parameters Symbol Value Unit Supply voltage Ambient temperature
Thermal Resistance
Parameters Symbol Value Unit Junction ambient SSO28
V
VS#
V
VSP
V
Vi#
| II# | | IO# |
ББББББ
| I
|
CPC
T
amb
T
stg
V
, V
VS#
VSP
T
amb
R
thJA
U2895B
v
V
VSP
5.5
–0.5 v V
БББББББ
+0.5 v 5.5
VS
2
5
–20 to +85
–40 to +125
2.7 to 5.5
–20 to +85
130
V V V
mA
ÁÁÁ
mA
°C °C
V
°C
K/W
Electrical Characteristics
VS = 2.7 to 5.5 V, T
Parameters T est Conditions / Pin Symbol Min. T yp. Max. Unit
DC supply
Supply voltages VS# Supply voltage VSP
Supply current I
Supply current I
Supply current I
Supply current I
N & R divider inputs ND, NND & RD, NRD
N:1 divider frequency R:1 divider frequency Input impedance Input sensitivity
= –20°C to +85°C, final test at 25°C
amb
V
VS1
= V
VS1
Active (VPU = VS)
VS2
= V
Standby (VPU = 0)
VS2
Active (VPU = VS) Standby (VPU = 0)
VS3
VSP
Active (V
PUMIX
Standby (V Active
(V
= VS, CPC open)
PU
PUMIX
Standby (VPU = 0)
50-W source 50-W source Active & standby 50-W source
VS3
= VS)
= 0)
V
VS#
V
VSP
I
VS1A
I
VS1Y
I
VS2A
I
VS2Y
I
VS3A
I
VS3Y
I
VSPA
I
VSPY
f
ND
f
RD
ZRD, Z
VRD, V
ND
ND
2.7
V
VS#
– 0.3
100 100
1 k
20
17
17
13
1.4
5.5
5.5
22 20 22 20 17 30
1.8
20
600 600
2 pF
200
V V
mA
m
mA
m
mA
m
mA
m
MHz MHz
mV
A
A
A
A
rms
1) Mean value, measured with FND = 151 MHz, FRD = 150 MHz, current vs. time, see page 6, figure 3.
Rev . A3, 30-Sep-98 3 (16)
U2895B
Á
Á
Á
Á
Á
Á
4)
Á
Á
Á
Á
Electrical Characteristics (continued)
VS = 2.7 to 5.5 V, T
= –20°C to +85°C, final test at 25°C
amb
Parameters T est Conditions / Pin Symbol Min. Typ. Max. Unit
Phase-frequency detector (PFD)
PFD operation
fND = 450 MHz, N = 2 fRD = 450 MHz, R = 2
Frequency comparison
3)
ББББББ
only
fND = 600 MHz, N = 2
ББББББ
fRD = 450 MHz, R = 2
I/Q modulator baseband inputs I, NI & Q, NQ
DC voltage
MD_IQ AC voltage
ББББББ
Referred to GND
Frequency range Referred to GND
ББББББ
Differential (preferres)
I/Q modulator LO input MDLO
MDLO Input impedance Input level
Frequency range Active & standby 50-W source
I/Q modulator outputs MDO, NMDO
DC current Voltage compliance MDO output level
V
, V
V
MDO MDO
, V
NMDO NMDO
500 W to VS
= VS = VC
5)
(differential) Carrier suppression Sideband suppression IF spurious
Noise
5)
5)
5)
5)
fLO ± 3 f @ 400 kHz off carrier
mod
Frequency range
Mixer (900 MHz)
RF input level LO-spurious at
RF/NRF port MIXLO input level MIXO (100-W load) Output level
6)
Carrier suppression
900 MHz @ P9
MIXLO
= –10 dBm
@ P9RF = –15 dBm
0.05 to 2 GHz Frequency range @ P9 @ P9
MIXLO MIXLO
= –15 dBm = –15 dBm
f
PFD
f
V
I,
AC
AC
AC
I
MDO MDO
P9
CS9
FD
V
NI,
f
IO
AC
I,
Q, ACNQ
AC
DI,
f
MDLO
Z
MDLO
P
MDLO
, I
NMDO
, VC
P
MDO
CS
MDO
SS
MDO
SP
MDO
N
MDO
f
MDO
P9
RF
SP9
RF
MIXLO
f
MIXO
P9
MIXO
MIXO
V
Q,
NQ
NI,
DQ
NMDOVS
БББББ
V
БББББ
VC
50
225
300
ÁÁÁÁÁÁÁ
1.35
VS1/2
VS1/2
+ 0.1
DC
1
200
ÁÁÁÁ
ÁÁÁÁÁ
400
100
850
250
–20
–15
–10
2.4
– 0.7
120
–32 –35
–35 –40 –50
5.5
150
–45
–115
100
–23
450
–17 –40
–22
50
–12 450
70
–20
MHz
MHz
ÁÁ
V
MHz
mV
pp
mV
pp
MHz
W
dBm
mA
V
mV
rms
dBc dBc dBc
dBc/Hz
MHz
dBm dBm
dBm MHz
mV
rms
dBc
3)
4)
PFD can be used as a frequency comparator until 300 MHz for loop acquisition Single-ended operation (complementary baseband input is AC-grounded) leads to reduced linearity
(degrading suppression of odd harmonics)
5)
6)
With typical drive levels at MDLO- & I/Q-inputs –1 dB compression point (CP-1)
Rev . A3, 30-Sep-984 (16)
Electrical Characteristics (continued)
Á
Á
Á
Á
Á
pp
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
U2895B
VS = 2.7 to 5.5 V, T
= –20°C to +85°C, final test at 25°C
amb
Parameters T est Conditions / Pin Symbol Min. T yp. Max. Unit
Mixer (1900 MHz)
RF input level LO-spurious at
ББББББ
RF/NRF ports MIXLO input level
0.5 to 2 GHz @ P19
ББББББ
@ P19RF = –15 dBm
MIXLO
= –10 dBm
0.05 to 2 GHz
SP19
ÁÁÁÁ
P19 MIXO (100 W load) Output level Carrier suppression
Charge-pump output CPO (V
Pump-current pulse
TK pump current Mismatch source / sink
current
ББББББ
Sensivity to VSP
ББББББ
V
CPO
6)
voltage range
@ P19 @ P19
VSP
MIXLO MIXLO
= 5 V; V
= –17 dBm = –17 dBm
CPO
CPC open for DC
CPOSO sourc
sink
7)
7)
)/I
CPOSI
D
VSP
VSP
R
= 2.2 k
CPC
P
= 680
CPC
(I
– I
CPOSI
I
= I
CPOSO
ББББББ
I
= I
CPOSI
D
I
CPO
|
||
I
CPO
= 2.5 V)
ÁÁÁÁ
|
ÁÁÁÁ
P19
CS19
| I
| I
Tk_| I
Charge-pump control input CPC
Compensation capacitor Short circuit current
8)
CPC grounded
| I
Mode control
Sink current
VMC = VS
Power-up input PU (power-up for all functions, except mixer) Settling time
ББББББ
High level Low level High-level current Low-level current
Output power within 10%
ББББББ
of steady state values Active Standby Active, V Standby , V
PUH
PUL
= 2.2 V
= 0.4 V
ÁÁÁÁ
Power-up input PUMIX (power -up for mixer only) Settling time
ББББББ
High level Low level High-level current Low-level current
Output power within 10%
ББББББ
of steady state values Active Standby Active, V
PUMIXH
= 2.2 V
Standby , V
PUMIXL
= 0.4 V
ÁÁÁÁ
V
V
I I
P19
RF
RF
MIXLO
MIXO
MIXO
| I
|
CPO
CPO 2
CPO_4
CPC
M
ICPO
S
ICPO
V
CPO
C
CPC
CPCK
I
MC
S
PU
V
PUH
V
PUL
I
PUH
I
PUL
t
setl
PUMIXH
PUMIXL PUMIXH PUMIXL
–23
ÁÁÁÁÁÁÁÁ
–22
55
–20
0.7
|
|
|
1.4 3
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
1 2 4
0.5
500
|
1.6
60
ÁÁÁÁÁ
5
2.0 0
50
–1
ÁÁÁÁÁ
5
2.0 0
50
–1
–17 –40
–12
V
VSP
ÁÁ
ÁÁ
V
1.3
2.6 5
15
0.1
0.1
10
0.4
75 20
10
0.4
75 20
–0.6
S2
dBm dBm
ÁÁ
dBm
mVrms
dBc
mA mA mA
%/100°K
ÁÁ
ÁÁ
V
pF
mA
m
A
m
s
ÁÁ
V V
m
A
m
A
m
s
ÁÁ
V V
m
A
m
A
6)
7)
8)
Rev . A3, 30-Sep-98 5 (16)
– 1 dB compression point (CP – 1) R
: external resistor to GND for charge-pump current control
CPC
See figure 7.
U2895B
Supply Current of the Charge Pump I
vs. Time
VSP
Due to the pulsed operation of the charge pump, the cur­rent into the charge-pump supply pin VSP is not constant. Depending on I (see figure 6) and the phase difference at the phase detector inputs, the current I ries. Basically , the total current is the sum of the quiescent current, the charge-/discharge current, and – after each phase comparison cycle – a current spike (see figure 3).
Up
Down
5I
I
VSP
3I
I
2I
I
CPO
–2I
over time va-
VSP
t
t
14552
Initial Charge-Pump Current after Power-Up
Due to stability reasons, the reference current generator for the charge pump needs an external capacitor (>500 pF from CPC to GND). After power-up, only the on-chip generated current I = I external capacitor. Due to the char ge pump’s architecture,
the charge pump current will be 2 I = 2 I the voltage on CPC has reached the reference voltage (1.1 V). The following figures illustrate this behavior .
I
CPCK
V
CPC
V
Ref
t
1
2x I
I
CPC
is available for charging the
CPCK
x R
CPC
t
0
CPCK
t
2
CPCK
t
until
Figure 3. Supply current of the charge pump = f(t)
Internal current, I, |I
R
CPC
| and I
CPC
I |I
CPC
vs. R
CPCO
CPC
| I
CPC open 0.5 mA 1 mA 0
2.2 k 680
W
W
1.0 mA 2 mA –0.5 mA
2.0 mA 4 mA –1.5 mA
(typical values)
CPC
I
t
1
Time t1 can be calculated as t1 [ (1.1 V C e.g., C
Time t e.g., C
The behavior of |I
= 1 nF, I
CPC
can be calculated as t2 [ (R
2
= 1 nF, R
CPC
= 2.7 mA ³ t1 [ 0.4 ms.
CPCK
= 2200 W ³ t2 [ 1.1 ms
CPC
Figure 4.
| after power-up can be very
CPO
/2200 W) C
CPC
t
CPC
14561
)/I
CPCK
CPC
advantageous for a fast settling of the loop. By using larger capacitors (>1 nF), an even longer period with maximum charge pump current is possible.
Ramp-up time for the internal band gap reference is about 1 ms. This time has to be added to the times calculated for the charge pump reference.
Rev . A3, 30-Sep-986 (16)
U2895B
Mode Selection
The device can be programmed to different modes via an external resistor RMODE (including short, open) from Pin MC to VS2. The mode is distinguished from specific N-, R-divider ratios, and the polarity of the charge pump current.
Mode Selection N-Divider R-Divider CPO Current Polarity
Mode Resistance between
fN < fR
1)
fN > fR
Pin MC and Pin VS2 1 0 (<50 W) 1:1 1:1 Sink Source 2 2.7 kW (±5%) 1:1 1:1 Source Sink 3 10 kW (±5%) 1:1 2:1 Source Sink 4 47 kW (±5%) 2:1 2:1 Source Sink PCN/PCS 5
1)
Frequencies referred to PFD input
2)
LO frequencies below VCO frequency
3)
LO frequencies above VCO frequency
4
) Sink current into Pin CPO. Source: current out from Pin CPO.
R
(>1 MW) 2:1 2:1 Sink Source GSM
Equivalent Circuits at the IC’s Pins
V
Bias_MDLO
2230 2230
L,Q
MDLO
NI, NQ
250
4)
1)
Application
2)
3)
VS1 MDO NMDO
V
Ref_input
Baseband input LO input Output
Figure 5. I/Q modulator
1 k
RF
890 890 Ω
NRF
LO input
V
Bias_RF
V
MIXLO
Ref_RF
Figure 6. Mixer
V
Ref_MDLO
30 pF
1 k
1.6 k 1.6 k
V
Ref_LO
Output
V
Bias_LO
40 pF
V
Ref_output
GND
15049
VS3
6.3
MIXO
GND
14554
Rev . A3, 30-Sep-98 7 (16)
U2895B
VS2
CPC
GND
ND/RD
NND/NRD
4
I
I
/4
CPCK
1.1 V
2230
= Transistor with an emitter area–factor of “n”
n
2 k 2 k
Ref
Figure 7. Charge pump
VS2
4
up
Ref
2
PU, PUMIX
2
down
20 k
2I
2I
VSP
4
CPO
GNDP
14555
VS2
MC
GND
Figure 8. Dividers
2x
60 µA
Figure 10. Mode control
V
Ref_div
Logic
GND
14556
N–divider
R–divider
MUX
14898
GND
14557
Figure 9. Power-up
C (U)
2.5 pF @ 2 V
C (U) is a non-linear junction capacitance
14559
Figure 11. ESD-protection diodes
Rev . A3, 30-Sep-988 (16)
Application Hints
Interfacing
For some of the baseband ICs it may be necessary to reduce the I/Q voltage swing so that it can be handled by the U2895B. In those cases, the following circuitry can be used.
R
II
Baseband IC
NI
Q
NQ
Figure 12. Interfacing the U2895B to I/Q baseband circuits
1
R
R
R
2
1
1
R
2
NI Q
U2895B
NQ
R
1
14914
Mode Control
U2895B
VS2
R
Mode
R
Mode1RMode2
MC
a) any single mode b) any 2 modes
U2895B
VS2
R
Mode
MC
U2895B
U2895B
VS2
MC
U2895B
VS2
R
Mode
36 kΩor 10 k
MC
Due to a possible current offset in the differential base­band inputs of the U2895B the best values for the carrier suppression of the I/Q modulator can be achieved with voltage driven I/NI-, and Q/NQ-inputs. A value of
R
= R2/2*RS v 1.5 kW should be realized. RS is the
source
sum of R1 (above drawing) and the output resistance of the baseband IC.
Charg-Pump Current Programming
GND CPC
= 2.2 k
R
CPC1
= 1 kΩ (incl. rds_on of FET)
R
R
CPC2
CPC2
‘H’
‘L’
|I
CPO
|I
CPO
| = 4 mA | = 2 mA
12497
1 nF
R
CPC1
Figure 13. Programming the charge-pump current
c) any mode
d) mode 5 & mode 3 or mode 4
& mode 5
Figure 14. Application examples for programming
different modes
15050
Rev . A3, 30-Sep-98 9 (16)
U2895B
Test Circuit
VDC
1.35 V – VS1/2 +0.1 V
Modulator
LO input
Modulator
outputs
V
S
VSP
VDO
Baseband input
VAC
50
<450 mV
50 50
Baseband input
pp
<450 mV
281
2
27
pp
VAC
VDC
1.35 V –VS1/2+0.1 V
3
4
5
6
26
25
24
23
V
S
Mixer output
50
7
8
9
22
21
20
Mixer input
V
S
Mixer LO input
PFD
Pulse output
PFD
input
50
Bias voltage for
charge pump output:
0.5 V < VDO < VSP – 0.5 V
1 nF
V
10
11
12
13
19
18
17
16
PFD input
50
14
15
Mode control
Power–up
S
R R R
VS2
1 2 3
13315
Figure 15. Test circuit
Rev . A3, 30-Sep-9810 (16)
Application Circuit for DCS1800 (1710 – 1785 MHz)
U2895B
Attention!
Differential source impedance seen by the I/NI, Q/NQ inputs should not exceed 1000 Ohms
MDLO
2nd IF 816 MHz, –15 dBm
V
S
100 pF
100 nH
100 nH
330
330
100 nH
100 pF100 pF
100 pF
mode control
12 nH
12 pF
10 nH
10 pF
220
100 pF
R
Baseband processor
MIXLO 1st IF
1288...1323 MHz
1302...1377 MHz
RF TX
850...915 MHz
1710...1785 MHz
VCO
100 pF
10
22 pF
V
15051
SO
+
I/Q modulator
50
100pF
90°
50
100pF
25 2019122728321
Voltage
2
MUX
reference
PFD
680W...2.2 k
Mixer
Charge
pump
101124184
W
470 pF
100 pF
22
23
100 pF
8
9
7
21
26
10
MQES50–902 MQE5A1–1747
100 pF
1.2 nF
100 pF
100 pF
100 pF
560
6.8 nF
100
V
SP
330
250
r_diff
10 pF
5 6
16
N1
17
divider
13
R1
14
divider
15
Mode
control
Figure 16. Application circuit (power-up and 680 W to 2.2 kW charge-pump control is not shown)
Measurements
Modulation-Loop Settling Time
As valid for all PLL loops the settling time depends on several factors. The following figure is an extraction from measurements performed in an arrangement like the ap­plication circuit. It shows that a loop settling time of a few
m
s can be achieved.
Vertical: VCO tuning voltage 1 V/Div Horizontal: Time 1 ms/Div
Rev . A3, 30-Sep-98 11 (16)
CPC: 1 k to GND
CPC ‘open’
Figure 17.
U2895B
Modulation Spectrum & Phase Error
Application for GSM900
Figure 18. Modulation spectrum
Figure 19. Phase error
Rev . A3, 30-Sep-9812 (16)
Application for DCS1800
U2895B
Figure 20. Modulation spectrum
Figure 21. Phase error
Rev . A3, 30-Sep-98 13 (16)
U2895B
Application for PCS1900
PCS 1900 USER TOL.
Figure 22. Modulation spectrum
Figure 23. Phase error
Complete transmitters (including PA) were measured. The test equipment was the R & S CMD55 performing standard approval tests. Typically, the spectrum @ 400 kHz off the center carrier frequency is approximately –65 dB attenuated (–60 dB according specificarion). The
PCS 1900
corresponding rms phase error is in the range of about 3°. Dimensioning the loop-filters allows you to optimize spectral-and phase error performance.
Rev . A3, 30-Sep-9814 (16)
Package Information
U2895B
Package SSO28
Dimensions in mm
0.25
0.65
28 15
114
9.10
9.01
8.45
1.30
0.15
0.05
5.7
5.3
4.5
4.3
6.6
6.3
technical drawings according to DIN specifications
0.15
13018
Rev . A3, 30-Sep-98 15 (16)
U2895B
Ozone Depleting Substances Policy Statement
It is the policy of TEMIC Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).
The Montreal Protocol ( 1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.
TEMIC Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
TEMIC Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer
application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized
application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of,
directly or indirectly, any claim of personal damage, injury or death associated with such unintended or
unauthorized use.
TEMIC Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
T elephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423
Rev . A3, 30-Sep-9816 (16)
Loading...