Teledyne GFC7001T User Manual

Page 1
Operation Manual
Model GFC7001T
Carbon Monoxide Analyzer
P/N M90914
DATE 07/22/13
TELEDYNE ELECTRONIC TECHNOLOGIES
16830 Chestnut Street City of Industry, CA 91748
Telephone: (626) 934-1500 Fax: (626) 961-2538
Web: www.teledyne-ai.com
Teledyne Analytical Instruments
Page 2
Model GFC7001T Carbon Monoxide Analyzer
Copyright © 2013 Teledyne Analytical Instruments
All Rights Reserved. No part of this manual may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any other language or computer language in whole or in part, in any form or by any means, whether it be electronic, mechanical, magnetic, optical, manual, or otherwise, without the prior written consent of Teledyne Analytical Instruments, 16830 Chestnut Street, City of Industry, CA 91748.
Warranty
This equipment is sold subject to the mutual agreement that it is warranted by us free from defects of material and of construction, and that our liability shall be limited to replacing or repairing at our factory (without charge, except for transportation), or at customer plant at our option, any material or construction in which defects become apparent within one year from the date of shipment, except in cases where quotations or acknowledgements provide for a shorter period. Components manufactured by others bear the warranty of their manufacturer. This warranty does not cover defects caused by wear, accident, misuse, neglect or repairs other than those performed by Teledyne or an authorized service center. We assume no liability for direct or indirect damages of any kind and the purchaser by the acceptance of the equipment will assume all liability for any damage which may result from its use or misuse.
We reserve the right to employ any suitable material in the manufacture of our apparatus, and to make any alterations in the dimensions, shape or weight of any parts, in so far as such alterations do not adversely affect our warranty.
Important Notice
This instrument provides measurement readings to its user, and serves as a tool by which valuable data can be gathered. The information provided by the instrument may assist the user in eliminating potential hazards caused by his process; however, it is essential that all personnel involved in the use of the instrument or its interface be properly trained in the process being measured, as well as all instrumentation related to it.
The safety of personnel is ultimately the responsibility of those who control process conditions. While this instrument may be able to provide early warning of imminent danger, it has no control over process conditions, and it can be misused. In particular, any alarm or control systems installed must be tested and understood, both as to how they operate and as to how they can be defeated. Any safeguards required such as locks, labels, or redundancy, must be provided by the user or specifically requested of Teledyne at the time the order is placed.
Therefore, the purchaser must be aware of the hazardous process conditions. The purchaser is responsible for the training of personnel, for providing hazard warning methods and instrumentation per the appropriate standards, and for ensuring that hazard warning devices and instrumentation are maintained and operated properly.
Teledyne Analytical Instruments, the manufacturer of this instrument, cannot accept responsibility for conditions beyond its knowledge and control. No statement expressed or implied by this document or any information disseminated by the manufacturer or its agents, is to be construed as a warranty of adequate safety control under the user’s process conditions.
Trademarks
All trademarks, registered trademarks, brand names or product names appearing in this document are the property of their respective owners and are used herein for identification purposes only.
Teledyne Analytical Instruments ii
Page 3
Model GFC7001T Carbon Monoxide Analyzer
INFORMATION ABOUT THE SPECIFIC CONFIGURATION OF YOUR MODEL GFC 7001T CARBON MONOXIDE ANALYZER
Selected Versions of the Model GFC 7001T
MODEL GFC 7001T— STANDARD VERSION
This Model GFC7001T CO Analyzer is a touch screen version designed for analyzing the CO concentration in a background gas specified by the customer. It has a minimum settable range of 0-1 ppm and a maximum settable range of 0-1000 ppm. The standard version is designed for positive pressure applications. The analyzer may have one or two analysis ranges with or without auto-ranging as listed below. Alarm relays are included with this version.
M
ODEL GFC 7001TA AMBIENT PRESSURE VERSION
The Model GFC7001TA CO Analyzer is a touch screen version designed for analyzing the CO concentration in a background gas specified by the customer. It has a minimum settable range of 0-1 ppm and a maximum settable range of 0-1000 ppm. The TA version is designed for ambient pressure applications. The analyzer may have one or two analysis ranges with or without auto-ranging as listed below. Alarm relays are an optional feature and if included, that option will be checked below.
M
ODEL GFC 7001TU ULTRA LOW RANGE VERSION
The Model GFC7001TU CO Analyzer is a touch screen version designed for analyzing trace CO concentrations in a background gas specified by the customer. It has a minimum settable range of 0-100 ppb and a maximum settable range of 0-100 ppm. The TU version is designed for positive pressure applications. The analyzer may have one or two analysis ranges with or without auto-ranging as listed below. Alarm relays are an optional feature and if included, that option will be checked below.
P
OWER REQUIREMENTS
This Model GFC 7001T is configured to operate from the following AC Power source:
100-120 VAC 60 Hz 220-240 VAC 60 Hz 100V 60 Hz
100-120 VAC 50 Hz 220-240 VAC 50 Hz 100V 50 Hz
NALOG OUTPUT SIGNALS
A
Analog output signals are available at A1 and A2 on the rear panel. This instrument is configured with the following analog outputs:
A1: 4-20 mA A2: 0-5 V A2: 4-20 mA
R
ANGE MODE
The analyzer can be designed with a single or dual analysis ranges with auto-ranging or dual independent ranges. This analyzer is configured with the following range mode:
Single Range:
Dual Range/Auto-ranging: Dual Range/Independent:
Low Range: Low Range:
High Range: High Range:
Teledyne Analytical Instruments iii
Page 4
Model GFC7001T Carbon Monoxide Analyzer
Selected Options for the Model GFC 7001T
MOUNTING OPTIONS
19” rack mounting with 26” sliders with ears 19” rack mounting with ears only
R
EAR PANEL GAS FITTINGS
1/4” SS Standard 6 mm SS Optional
V
ALVE OPTIONS
No Valves. The standard unit does not include internal span and zero valves. Internal Zero/Span Valves
A
LARM RELAYS
The standard instrument is equipped with two configurable concentration alarms and one fixed system failure alarm. This is an optional feature for GFC 7001TU version. The alarm relays for this instrument are configured as:
Hi, Hi-Hi, and System APCI Configuration:
AL1 energized when there is no fault detected and de-energized in a fault condition. AL2 configured as High Range Status and is energized when in high range. AL3 configured as Zero Calibration Status and is energized in zero calibration mode.
T
EST OPTIONS
The following optional tests with data reports must be requested at the time of order:
10 Point Linearity Test: For enhanced accuracy, a 10-point linearity test is performed at the factory during the setup and testing phase for this analyzer. Data results are included.
Temperature Compensation Test: Thermal testing is performed at the factory to accurately determine the temperature coefficient to be used in specific applications. Data results are included.
P
ROFIBUS MOUNTING OPTION
RS232 to Profibus Circuit Board: Special RS232 to Profibus PCB card for Profibus
communication using the existing RS232 port.
BACKGROUND GAS:
N
OTES:
Teledyne Analytical Instruments iv
Page 5
Model GFC7001T Carbon Monoxide Analyzer
ABOUT THIS MANUAL
This manual describes operation, specifications, and maintenance for the Model GFC 7001T.
In addition this manual contains important SAFETY messages for this instrument. It is strongly recommended that you read that operation manual in its entirety before operating the instrument.
ORGANIZATION
This manual is divided among three main parts and a collection of appendices at the end.
Part I contains introductory information that includes an overview of the analyzer,
descriptions of the available options, specifications, installation and connection instructions, and the initial calibration and functional checks. The last two sections contain Frequently Asked Questions (FAQs) followed by a glossary, and a description of available options.
Part II comprises the operating instructions, which include basic, advanced and remote
operation, calibration, diagnostics, testing, validating and verifying, and ends with specifics of calibrating for use in EPA monitoring.
Part III provides detailed technical information, such as theory of operation,
maintenance, and troubleshooting and repair. It also contains a section that provides important information about electro-static discharge and avoiding its consequences.
The appendices at the end of this manual provide support information such as, version­specific software documentation, lists of spare parts and recommended stocking levels, and schematics.
C
ONVENTIONS USED
In addition to the safety symbols as presented in the Important Safety Information page, this manual provides special notices related to the safety and effective use of the
analyzer and other pertinent information.
Special Notices appear as follows:
ATTENTION
COULD DAMAGE INSTRUMENT AND VOID WARRANTY
This special notice provides information to avoid damage to your instrument and possibly invalidate the warranty.
IMPORTANT
IMPACT ON READINGS OR DATA
Could either affect accuracy of instrument readings or cause loss of data.
Note Pertinent information associated with the proper care, operation or
maintenance of the analyzer or its parts.
Teledyne Analytical Instruments v
Page 6
Model GFC7001T Carbon Monoxide Analyzer
This page intentionally left blank.
Teledyne Analytical Instruments vi
Page 7
Safety Information Teledyne API – Model T300/T300M CO Analyzer
IMPORTANT SAFETY INFORMATION
Important safety messages are provided throughout this manual. Please read these messages carefully. A safety message alerts you to potential hazards that could hurt you or others. Each safety message is
associated with a safety alert symbol. These symbols are found in the manual and inside the instrument. The definition of these symbols is described below:
WARNING: Electrical Shock Hazard
HAZARD: Strong oxidizer
GENERAL WARNING/CAUTION: Read the accompanying message for specific information.
CAUTION: Hot Surface Warning
Note
Technician Symbol: All operations marked with this symbol are to be performed by qualified maintenance personnel only.
DO NOT TOUCH: Touching some parts of the instrument without protection or proper tools could result in damage to the part(s) and/or the instrument.
Electrical Ground: This symbol inside the instrument marks the central safety grounding point for the instrument.
CAUTION - General Safety Hazard
This instrument should only be used for the purpose and in the manner described in this manual. If you use this instrument in a manner other than that for which it was intended, unpredictable behavior could ensue with possible hazardous consequences.
NEVER use any gas analyzer to sample combustible gas(es).
Technical Assistance regarding the use and maintenance of the GFC7001T or any other Teledyne product can be obtained by contacting Teledyne Customer Service Department:
Phone: 888-789-8168
Email: ask_tai@teledyne.com
or by accessing various service options on our website at
http://www.teledyne-ai.com/.
Teledyne Analytical Instruments
Page 8
Safety Information Model GFC7001T Carbon Monoxide Analyzer
CONSIGNES DE SÉCURITÉ
Des consignes de sécurité importantes sont fournies tout au long du présent manuel dans le but d’éviter des blessures corporelles ou d’endommager les instruments. Veuillez lire attentivement ces consignes. Chaque consigne de sécurité est représentée par un pictogramme d’alerte de sécurité; ces pictogrammes se retrouvent dans ce manuel et à l’intérieur des instruments. Les symboles correspondent aux consignes suivantes :
AVERTISSEMENT : Risque de choc électrique
DANGER : Oxydant puissant
AVERTISSEMENT GÉNÉRAL / MISE EN GARDE : Lire la consigne
complémentaire pour des renseignements spécifiques
MISE EN GARDE : Surface chaude
Ne pas toucher : Toucher à certaines parties de l’instrument sans protection ou
sans les outils appropriés pourrait entraîner des dommages aux pièces ou à l’instrument.
Pictogramme « technicien » : Toutes les opérations portant ce symbole doivent être effectuées uniquement par du personnel de maintenance qualifié.
Mise à la terre : Ce symbole à l’intérieur de l’instrument détermine le point central de la mise à la terre sécuritaire de l’instrument.
MISE EN GARDE
Cet instrument doit être utilisé aux fins décrites et de la manière décrite dans ce manuel. Si vous utilisez cet instrument d’une autre manière que celle pour laquelle il a été prévu, l’instrument pourrait se comporter de façon imprévisible et entraîner des conséquences dangereuses.
NE JAMAIS utiliser un analyseur de gaz pour échantillonner des gaz combustibles!
Teledyne Analytical Instruments viii
Page 9
Table of Contents Teledyne API – Model T300/T300M CO Analyzer
TABLE OF CONTENTS
ABOUT THIS MANUAL ............................................................................................................ V
IMPORTANT SAFETY INFORMATION .................................................................................. VII
CONSIGNES DE SÉCURITÉ ............................................................................................................................. viii
TABLE OF CONTENTS ........................................................................................................... IX
LIST OF APPENDICES ....................................................................................................................................... xv
List of Figures ...................................................................................................................................................... xvi
List of Tables ...................................................................................................................................................... xvii
PART I GENERAL INFORMATION ...................................................................................... XXI
1. INTRODUCTION, FEATURES AND OPTIONS .................................................................. 23
1.1. GFC7001T Family Overview........................................................................................................................ 23
1.2. Features ....................................................................................................................................................... 24
1.3. GFC7001T/GFC7001TM Documentation .................................................................................................... 24
1.4. Options ......................................................................................................................................................... 24
2. SPECIFICATIONS AND APPROVALS ............................................................................... 29
2.1. Specifications ............................................................................................................................................... 29
2.2. EPA Equivalency Designation ..................................................................................................................... 31
2.3. Approvals and Certifications ........................................................................................................................ 31
2.3.1. Safety ..................................................................................................................................................... 32
2.3.2. EmC ....................................................................................................................................................... 32
2.3.3. Other Type Certifications ....................................................................................................................... 32
3. GETTING STARTED ........................................................................................................... 33
3.1. Unpacking the GFC7001T/GFC7001TM Analyzer ...................................................................................... 33
3.1.1. Ventilation Clearance ............................................................................................................................. 34
3.2. Instrument Layout ........................................................................................................................................ 35
3.2.1. Front Panel ............................................................................................................................................ 35
3.2.2. Rear panel ............................................................................................................................................. 39
3.2.3. GFC7001T/GFC7001TM Analyzer Layout ............................................................................................ 40
3.3. Connections and Setup ................................................................................................................................ 43
3.3.1. Electrical Connections ........................................................................................................................... 44
3.3.1.1. Connecting Power .......................................................................................................................... 44
3.3.1.2. Connecting Analog Inputs (Option) ................................................................................................ 44
3.3.1.3. Connecting Analog Outputs ........................................................................................................... 45
3.3.1.4. Current Loop Analog Outputs (Option 41) Setup .......................................................................... 46
3.3.1.5. Connecting the Status Outputs ...................................................................................................... 48
3.3.1.6. Connecting the Control Inputs ........................................................................................................ 49
3.3.1.7. Concentration Alarm Relay (Option 61) Standard Configuration ................................................... 50
3.3.1.8. Concentration Alarm Relay (Option 61) Air Products Configuration .............................................. 52
3.3.1.9. Connecting the Communication Interfaces .................................................................................... 52
3.3.2. Pneumatic Connections ......................................................................................................................... 59
3.3.2.1. Pneumatic Connections for Basic Configuration ............................................................................ 61
3.3.2.2. Pneumatic Layout for Basic configuration ...................................................................................... 62
3.3.2.3. Pneumatic Connections for Zero/Span Valve Option ..................................................................... 63
3.3.2.4. Pneumatic Layout for Zero/ Span Valve Option ............................................................................. 64
3.3.2.5. Pneumatic Layout for Internal Zero/ Span Valve Option ................................................................ 65
3.3.2.6. Pneumatic Connections for Zero Scrubber/Pressurized Span Option ........................................... 66
3.3.2.7. Pneumatic Layout for Zero Scrubber/Pressurized Span Option .................................................... 68
3.3.2.8. Pneumatic Connections for Zero Scrubber/Ambient Span Option ................................................. 68
3.3.2.9. Pneumatic Layout for Zero scrubber/ Ambient Span OPTion ........................................................ 70
3.3.2.10. Calibration Gases ......................................................................................................................... 71
Teledyne Analytical Instruments
Page 10
Table of ContentsTeledyne API – Model T300/T300M CO Analyzer
3.4. Startup, Functional Checks, and Initial Calibration ...................................................................................... 72
3.4.1. Startup .................................................................................................................................................... 72
3.4.2. Warning Messages ................................................................................................................................ 72
3.4.3. Functional Checks ................................................................................................................................. 74
3.4.4. Initial Calibration .................................................................................................................................... 75
3.4.4.1. Interferents for CO Measurements ................................................................................................. 76
3.4.4.2. Initial Calibration Procedure ........................................................................................................... 76
3.4.4.3. O2 Sensor Calibration Procedure ................................................................................................... 81
3.4.4.4. CO2 Sensor Calibration Procedure ................................................................................................ 81
PART II OPERATING INSTRUCTIONS .................................................................................. 83
4. OVERVIEW OF OPERATING MODES ............................................................................... 85
4.1. Sample Mode ............................................................................................................................................... 86
4.1.1. Test Functions ....................................................................................................................................... 86
4.1.2. Warning Messages ................................................................................................................................ 88
4.2. Calibration Mode .......................................................................................................................................... 90
4.3. Setup MODE ................................................................................................................................................ 91
4.3.1. Password Security ................................................................................................................................. 91
4.3.2. Primary Setup Menu .............................................................................................................................. 91
4.3.3. Secondary Setup Menu (SETUP>MORE) ............................................................................................. 92
5. SETUP MENU 93
5.1. SETUP CFG: Configuration Information ................................................................................................. 93
5.2. SETUP ACAL: Automatic Calibration ...................................................................................................... 94
5.3. SETUP DAS: Internal Data Acquisition System ....................................................................................... 94
5.4. SETUP RNGE: Analog Output Reporting Range Configuration ............................................................. 94
5.4.1. Analog Output Ranges for CO Concentration ....................................................................................... 94
5.4.2. Physical Range vs Analog Output Reporting Ranges ........................................................................... 95
5.4.3. Reporting Range Modes: Single, Dual, Auto Ranges ........................................................................... 96
5.4.3.1. SINGLE Range Mode (SNGL) ....................................................................................................... 98
5.4.3.2. DUAL Range Mode (DUAL) ........................................................................................................... 99
5.4.3.3. AUTO Range Mode (AUTO) ........................................................................................................101
5.4.4. Range Units .........................................................................................................................................103
5.4.5. Dilution Ratio (Option) ..........................................................................................................................104
5.5. SETUP PASS: Password Protection .....................................................................................................105
5.6. SETUP CLK: Setting the Internal Time-of-Day Clock and Adjusting Speed .........................................108
5.6.1.1. Setting the Internal Clock’s Time and Day ...................................................................................108
5.6.1.2. Adjusting the Internal Clock’s Speed ............................................................................................108
5.7. SETUP Comm: Communications Ports .................................................................................................110
5.7.1. ID (Machine Identification) ...................................................................................................................110
5.7.2. INET (Ethernet) ....................................................................................................................................110
5.7.3. COM1 and COM2 (Mode, Baud Rate and Test Port) ..........................................................................110
5.8. SETUP VARS: Variables Setup and Definition ......................................................................................111
5.9. SETUP Diag: Diagnostics Functions ......................................................................................................112
5.9.1. Signal I/O .............................................................................................................................................115
5.9.2. Analog Output ......................................................................................................................................116
5.9.3. Analog I/O Configuration ......................................................................................................................116
5.9.3.1. Analog Output Voltage / Current Range Selection .......................................................................119
5.9.3.2. Analog Output Calibration ............................................................................................................121
5.9.3.3. Enabling or Disabling the AutoCal for an Individual Analog Output .............................................121
5.9.3.4. Automatic Calibration of the Analog Outputs ...............................................................................122
5.9.3.5. Individual Calibration of the Analog Outputs ................................................................................124
5.9.3.6. Manual Calibration of the Analog Outputs Configured for Voltage Ranges .................................125
5.9.3.7. Manual Adjustment of Current Loop Output Span and Offset .....................................................127
5.9.3.8. Turning an Analog Output Over-Range Feature ON/OFF ...........................................................130
5.9.3.9. Adding a Recorder Offset to an Analog Output ............................................................................131
5.9.3.10. AIN Calibration ...........................................................................................................................132
Teledyne Analytical Instruments x
Page 11
Table of ContentsTeledyne API – Model T300/T300M CO Analyzer
5.9.3.11. Analog Inputs (XIN1…XIN8) Option Configuration ....................................................................133
5.9.4. Electrical Test ......................................................................................................................................133
5.9.5. Dark Calibration ...................................................................................................................................134
5.9.6. Pressure Calibration ............................................................................................................................134
5.9.7. Flow Calibration ...................................................................................................................................134
5.9.8. Test Chan Output .................................................................................................................................134
5.9.8.1. Selecting a Test Channel Function for Output A4 ........................................................................135
5.10. SETUP MORE ALRM (Option): Using the Gas Concentration Alarms ...........................................136
5.10.1. Setting the GFC7001T Concentration Alarm Limits ..........................................................................137
6. COMMUNICATIONS SETUP AND OPERATION ............................................................. 139
6.1. Data Terminal/Communication Equipment (DTE DCE) .............................................................................139
6.2. Communication Modes, Baud Rate and Port Testing ...................................................................................139
6.2.1. Communication Modes ........................................................................................................................139
6.2.2. COM Port Baud Rate ...........................................................................................................................141
6.2.3. Com Port Testing .................................................................................................................................142
6.3. RS-232 .......................................................................................................................................................143
6.4. RS-485 (Option) .........................................................................................................................................143
6.5. Ethernet ......................................................................................................................................................143
6.5.1. Configuring Ethernet Communication Manually (Static IP Address) ...................................................144
6.5.2. Configuring Ethernet Communication Using Dynamic Host Configuration Protocol (DHCP) .............146
6.5.3. Changing the Analyzer’s HOSTNAME ................................................................................................147
6.6. USB Port (Option) for Remote Access ......................................................................................................148
6.7. Communications Protocols ........................................................................................................................150
6.7.1. MODBUS .............................................................................................................................................150
6.7.2. Hessen .................................................................................................................................................152
6.7.2.1. Hessen COMM Port Configuration ...............................................................................................152
6.7.2.2. Activating Hessen Protocol ..........................................................................................................153
6.7.2.3. Selecting a Hessen Protocol Type ...............................................................................................154
6.7.2.4. Setting The Hessen Protocol Response Mode ............................................................................156
6.7.3. Hessen Protocol Gas List Entries ........................................................................................................157
6.7.3.1. Hessen Protocol Gas ID ...............................................................................................................157
6.7.3.2. Editing or Adding HESSEN Gas List Entries ................................................................................158
6.7.3.3. Deleting HESSEN Gas List Entries ..............................................................................................159
6.7.3.4. Setting Hessen Protocol Status Flags ..........................................................................................160
6.7.3.5. Instrument ID ................................................................................................................................161
7. DATA ACQUISITION SYSTEM (DAS) AND APICOM ...................................................... 163
7.1. DAS Structure ............................................................................................................................................164
7.1.1. DAS Data Channels .............................................................................................................................164
7.1.2. Default DAS Channels .........................................................................................................................165
7.1.3. Viewing DAS Channels and Individual Records ..................................................................................168
7.1.4. Editing DAS Channels .........................................................................................................................169
7.1.4.1. Editing DAS Data Channel Names ...............................................................................................170
7.1.5. Editing DAS Triggering Events ............................................................................................................171
7.1.6. Editing DAS Parameters ......................................................................................................................172
7.1.7. Sample Period and Report Period .......................................................................................................175
7.1.8. Number of Records ..............................................................................................................................177
7.1.9. RS-232 Report Function ......................................................................................................................178
7.1.9.1. The Compact Report Feature .......................................................................................................178
7.1.9.2. The Starting Date Feature ............................................................................................................179
7.1.10. Disabling/Enabling Data Channels ....................................................................................................179
7.1.11. HOLDOFF Feature ............................................................................................................................180
7.2. Remote DAS Configuration ........................................................................................................................181
7.2.1. DAS Configuration via APICOM ..........................................................................................................181
7.2.2. DAS Configuration Using Terminal Emulation Programs ....................................................................183
8. REMOTE OPERATION ..................................................................................................... 185
Teledyne Analytical Instruments xi
Page 12
Table of ContentsTeledyne API – Model T300/T300M CO Analyzer
8.1. Computer Mode .........................................................................................................................................185
8.1.1. Remote Control via APICOM ...............................................................................................................185
8.2. Interactive Mode ........................................................................................................................................185
8.2.1. Remote Control via a Terminal Emulation Program ............................................................................186
8.2.1.1. Help Commands in Interactive Mode ...........................................................................................186
8.2.1.2. Command Syntax .........................................................................................................................186
8.2.1.3. Data Types ...................................................................................................................................187
8.2.1.4. Status Reporting ...........................................................................................................................188
8.2.1.5. General Message Format .............................................................................................................188
8.3. Remote Access by Modem ........................................................................................................................188
8.4. Password Security for Serial Remote Communications ............................................................................191
9. CALIBRATION PROCEDURES ........................................................................................ 193
9.1. Calibration Preparations ............................................................................................................................193
9.1.1. Required Equipment, Supplies, and Expendables ..............................................................................193
9.1.1.1. Zero Air .........................................................................................................................................194
9.1.1.2. Span Gas ......................................................................................................................................194
9.1.1.3. Calibration Gas Standards and Traceability .................................................................................194
9.1.2. Data Recording Devices ......................................................................................................................195
9.2. Manual Calibration .....................................................................................................................................195
9.2.1. Setup for Basic Calibration Checks and Calibration ............................................................................195
9.2.2. Performing a Basic Manual Calibration Check ....................................................................................197
9.2.3. Performing a Basic Manual Calibration ...............................................................................................198
9.2.3.1. Setting the Expected Span Gas Concentration ............................................................................198
9.2.3.2. Zero/Span Point Calibration Procedure ........................................................................................200
9.3. Manual Calibration with Zero/Span Valves ................................................................................................201
9.3.1. Setup for Calibration Using Valve Options ..........................................................................................201
9.3.2. Manual Calibration Checks with Valve Options Installed ....................................................................204
9.3.3. Manual Calibration Using Valve Options .............................................................................................205
9.3.3.1. Setting the Expected Span Gas Concentration ............................................................................205
9.3.3.2. Zero/Span Point Calibration Procedure ........................................................................................206
9.3.3.3. Use of Zero/Span Valve with Remote Contact Closure ...............................................................208
9.4. Automatic Zero/Span Cal/Check (AutoCal) ...............................................................................................208
9.4.1. SETUP ACAL: Programming and AUTO CAL Sequence ...............................................................211
9.4.1.1. AutoCal with Auto or Dual Reporting Ranges Modes Selected ...................................................213
9.5. CO Calibration Quality ...............................................................................................................................214
9.6. Calibration of the GFC7001T/GFC7001TM Electronic Subsystems .........................................................215
9.6.1. Dark Calibration Test ...........................................................................................................................215
9.6.2. Pressure Calibration ............................................................................................................................216
9.6.3. Flow Calibration ...................................................................................................................................217
9.7. Calibration of Optional Sensors .................................................................................................................218
9.7.1. O2 Sensor Calibration ..........................................................................................................................218
9.7.1.1. O2 Pneumatics Connections ........................................................................................................218
9.7.1.2. Set O2 Span Gas Concentration ..................................................................................................218
9.7.1.3. Activate O2 Sensor Stability Function ..........................................................................................220
9.7.1.4. O2 ZERO/SPAN CALIBRATION ..................................................................................................221
9.7.2. CO2 Sensor Calibration Procedure ......................................................................................................222
9.7.2.1. CO2 Pneumatics Connections .....................................................................................................222
9.7.2.2. Set CO2 Span Gas Concentration: ..............................................................................................222
9.7.2.3. Activate CO2 Sensor Stability Function .......................................................................................224
9.7.2.4. CO2 Zero/Span Calibration ..........................................................................................................225
10. EPA CALIBRATION PROTOCOL .................................................................................. 226
10.1. Calibration Requirements ........................................................................................................................226
10.1.1. Calibration of Equipment - General Guidelines .................................................................................226
10.1.2. Calibration Equipment, Supplies, and Expendables ..........................................................................227
10.1.2.1. Data Recording Device...............................................................................................................227
Teledyne Analytical Instruments xii
Page 13
Table of ContentsTeledyne API – Model T300/T300M CO Analyzer
10.1.2.2. Spare Parts and Expendable Supplies .......................................................................................227
10.1.3. Recommended Standards for Establishing Traceability ....................................................................228
10.1.4. Calibration Frequency ........................................................................................................................229
10.1.5. Level 1 Calibrations versus Level 2 Checks ......................................................................................229
10.2. ZERO and SPAN Checks ........................................................................................................................230
10.2.1. Zero/Span Check Procedures ...........................................................................................................231
10.2.2. Precision Check .................................................................................................................................231
10.3. Precision Calibration ................................................................................................................................232
10.3.1. Precision Calibration Procedures ......................................................................................................232
10.4. Auditing Procedure ..................................................................................................................................232
10.4.1. Calibration Audit .................................................................................................................................232
10.4.2. Data Reduction Audit .........................................................................................................................233
10.4.3. System Audit/Validation .....................................................................................................................233
10.5. Dynamic Multipoint Calibration Procedure ..............................................................................................233
10.5.1. Linearity test .......................................................................................................................................233
10.6. References ..............................................................................................................................................235
PART III TECHNICAL INFORMATION ................................................................................ 237
11. MAINTENANCE SCHEDULE & PROCEDURES ............................................................ 241
11.1. Maintenance Schedule ............................................................................................................................241
11.2. Predicting Failures Using the Test Functions ..........................................................................................245
11.3. Maintenance Procedures .........................................................................................................................246
11.3.1. Replacing the Sample Particulate Filter .............................................................................................246
11.3.2. Performing Leak Checks ....................................................................................................................247
11.3.2.1. Pressure Leak Check .................................................................................................................247
11.3.3. Performing a Sample Flow Check .....................................................................................................247
11.3.4. Cleaning the Optical Bench ...............................................................................................................248
11.3.5. Cleaning Exterior Surfaces of the GFC7001T/GFC7001TM .............................................................248
12. TROUBLESHOOTING AND SERVICE ........................................................................... 249
12.1. General Troubleshooting .........................................................................................................................249
12.1.1. Fault Diagnosis with WARNING Messages .......................................................................................250
12.1.2. Fault Diagnosis with TEST Functions ................................................................................................253
12.1.3. the Diagnostic Signal I/O Function ....................................................................................................255
12.1.4. Status LEDs .......................................................................................................................................256
12.1.4.1. Motherboard Status Indicator (Watchdog) .................................................................................257
12.1.4.2. Sync Demodulator Status LEDs .................................................................................................258
12.1.4.3. Relay Board Status LEDs ...........................................................................................................259
12.2. Gas Flow Problems .................................................................................................................................261
12.2.1. GFC7001T/GFC7001TM Internal Gas Flow Diagrams .....................................................................262
12.2.2. Typical Sample Gas Flow Problems ..................................................................................................265
12.2.2.1. Flow is Zero ................................................................................................................................265
12.2.2.2. Low Flow ....................................................................................................................................265
12.2.2.3. High Flow ....................................................................................................................................266
12.2.2.4. Displayed Flow = “Warnings” .....................................................................................................266
12.2.2.5. Actual Flow Does Not Match Displayed Flow ............................................................................266
12.3. Calibration Problems ...............................................................................................................................266
12.3.1. Miscalibrated ......................................................................................................................................266
12.3.2. Non-Repeatable Zero and Span ........................................................................................................267
12.3.3. Inability to Span – No SPAN Button (CALS) ......................................................................................267
12.3.4. Inability to Zero – No ZERO Button (CALZ) .......................................................................................267
12.4. Other Performance Problems ..................................................................................................................268
12.4.1. Temperature Problems ......................................................................................................................268
12.4.1.1. Box or Sample Temperature ......................................................................................................268
12.4.1.2. Bench Temperature ....................................................................................................................268
12.4.1.3. GFC Wheel Temperature ...........................................................................................................269
12.4.1.4. IR Photo-Detector TEC Temperature .........................................................................................269
Teledyne Analytical Instruments xiii
Page 14
Table of ContentsTeledyne API – Model T300/T300M CO Analyzer
12.4.2. Excessive Noise .................................................................................................................................270
12.5. Subsystem Checkout ...............................................................................................................................271
12.5.1. AC Mains Configuration .....................................................................................................................271
12.5.2. DC Power Supply ...............................................................................................................................271
12.5.3. I2C Bus ...............................................................................................................................................272
12.5.4. Touchscreen Interface .......................................................................................................................272
12.5.5. LCD Display Module ..........................................................................................................................272
12.5.6. Relay Board .......................................................................................................................................272
12.5.7. Sensor Assembly ...............................................................................................................................273
12.5.7.1. Sync/Demodulator Assembly .....................................................................................................273
12.5.7.2. Electrical Test .............................................................................................................................274
12.5.7.3. Opto Pickup Assembly ...............................................................................................................274
12.5.7.4. GFC Wheel Drive .......................................................................................................................274
12.5.7.5. IR Source ....................................................................................................................................275
12.5.7.6. Pressure/Flow Sensor Assembly ...............................................................................................275
12.5.8. Motherboard .......................................................................................................................................276
12.5.8.1. A/D Functions .............................................................................................................................276
12.5.8.2. Test Channel / Analog Outputs Voltage .....................................................................................276
12.5.8.3. Analog Outputs: Current Loop ....................................................................................................278
12.5.8.4. Status Outputs ............................................................................................................................278
12.5.8.5. Control Inputs – Remote Zero, Span ..........................................................................................279
12.5.9. CPU ....................................................................................................................................................279
12.5.10. RS-232 Communications .................................................................................................................279
12.5.10.1. General RS-232 Troubleshooting .............................................................................................279
12.5.10.2. Troubleshooting Analyzer/Modem or Terminal Operation .......................................................280
12.5.11. The Optional CO2 Sensor ................................................................................................................280
12.6. Repair Procedures ...................................................................................................................................281
12.6.1. Repairing Sample Flow Control Assembly ........................................................................................281
12.6.2. Removing/Replacing the GFC Wheel ................................................................................................282
12.6.3. Checking and Adjusting the Sync/Demodulator, Circuit Gain (CO MEAS) ......................................284
12.6.3.1. Checking the Sync/Demodulator Circuit Gain ............................................................................284
12.6.3.2. Adjusting the Sync/Demodulator, Circuit Gain ...........................................................................285
12.6.4. Disk-On-Module Replacement ...........................................................................................................286
12.7. Frequently Asked Questions ...................................................................................................................287
12.8. Technical Assistance ...............................................................................................................................288
13. THEORY OF OPERATION .............................................................................................. 289
13.1. Measurement Method ..............................................................................................................................289
13.1.1. Beer’s Law .........................................................................................................................................289
13.2. Measurement Fundamentals ...................................................................................................................290
13.2.1. Gas Filter Correlation .........................................................................................................................291
13.2.1.1. The GFC Wheel ..........................................................................................................................291
13.2.1.2. The Measure Reference Ratio ...................................................................................................292
13.2.1.3. Summary Interference Rejection ................................................................................................294
13.3. Flow Rate Control ....................................................................................................................................295
13.3.1.1. Critical Flow Orifice .....................................................................................................................295
13.3.2. Particulate Filter .................................................................................................................................296
13.3.3. Pneumatic Sensors ............................................................................................................................297
13.3.3.1. Sample Pressure Sensor ...........................................................................................................297
13.3.3.2. Sample Flow Sensor ..................................................................................................................297
13.4. Electronic Operation ................................................................................................................................297
13.4.1. CPU ....................................................................................................................................................299
13.4.1.1. Disk-On-Module (DOM) ..............................................................................................................299
13.4.1.2. Flash Chip ..................................................................................................................................299
13.4.2. Optical Bench & GFC Wheel .............................................................................................................300
13.4.2.1. Temperature Control ..................................................................................................................300
13.4.2.2. IR Source ....................................................................................................................................300
Teledyne Analytical Instruments xiv
Page 15
Table of ContentsTeledyne API – Model T300/T300M CO Analyzer
13.4.2.3. GFC Wheel .................................................................................................................................300
13.4.2.4. IR Photo-Detector .......................................................................................................................302
13.4.3. Synchronous Demodulator (Sync/Demod) Assembly .......................................................................302
13.4.3.1. Signal Synchronization and Demodulation ................................................................................303
13.4.3.2. Sync/Demod Status LEDs ..........................................................................................................304
13.4.3.3. Photo-Detector Temperature Control .........................................................................................304
13.4.3.4. Dark Calibration Switch ..............................................................................................................305
13.4.3.5. Electric Test Switch ....................................................................................................................305
13.4.4. Relay Board .......................................................................................................................................305
13.4.4.1. Heater Control ............................................................................................................................305
13.4.4.2. GFC Wheel Motor Control ..........................................................................................................305
13.4.4.3. Zero/Span Valve Options ...........................................................................................................306
13.4.4.4. IR Source ....................................................................................................................................306
13.4.4.5. Status LEDs ................................................................................................................................306
13.4.4.6. I2C Watch Dog Circuitry .............................................................................................................307
13.4.5. MotherBoard ......................................................................................................................................307
13.4.5.1. A to D Conversion ......................................................................................................................307
13.4.5.2. Sensor Inputs .............................................................................................................................308
13.4.5.3. Thermistor Interface ...................................................................................................................308
13.4.5.4. Analog Outputs ...........................................................................................................................309
13.4.5.5. Internal Digital I/O .......................................................................................................................309
13.4.5.6. External Digital I/O ......................................................................................................................309
13.4.6. I2C Data Bus ......................................................................................................................................309
13.4.7. Power Supply/ Circuit Breaker ...........................................................................................................310
13.4.8. Front Panel Touchscreen/Display Interface .......................................................................................312
13.4.8.1. LVDS Transmitter Board ............................................................................................................312
13.4.8.2. Front Panel Touchscreen/Display Interface PCA .......................................................................312
13.5. Software Operation ..................................................................................................................................313
13.5.1. Adaptive Filter ....................................................................................................................................313
13.5.2. Calibration - Slope and Offset ............................................................................................................314
13.5.3. Measurement Algorithm .....................................................................................................................314
13.5.4. Temperature and Pressure Compensation ........................................................................................314
13.5.5. Internal Data Acquisition System (DAS) ............................................................................................314
14. A PRIMER ON ELECTRO-STATIC DISCHARGE .......................................................... 315
14.1. How Static Charges are Created .............................................................................................................315
14.2. How Electro-Static Charges Cause Damage ..........................................................................................316
14.3. Common Myths About ESD Damage ......................................................................................................317
14.4. Basic Principles of Static Control .............................................................................................................318
14.4.1. General Rules ....................................................................................................................................318
14.4.2. Basic anti-ESD Procedures for Analyzer Repair and Maintenance ..................................................319
14.4.2.1. Working at the Instrument Rack .................................................................................................320
14.4.2.2. Working at an Anti-ESD Work Bench .........................................................................................320
14.4.2.3. Transferring Components from Rack to Bench and Back ..........................................................320
14.4.2.4. Opening Shipments from Teledyne Customer Service ..............................................................321
14.4.2.5. Packing Components for Return to Teledyne Customer Service ..............................................322
GLOSSARY ................................................................................................................ 323
LIST OF APPENDICES
APPENDIX A - VERSION SPECIFIC SOFTWARE DOCUMENTATION APPENDIX B - GFC7001T/GFC7001TM SPARE PARTS LIST APPENDIX C - REPAIR QUESTIONNAIRE - GFC7001T APPENDIX D - SCHEMATICS
Teledyne Analytical Instruments xv
Page 16
Table of ContentsTeledyne API – Model T300/T300M CO Analyzer
LIST OF FIGURES
Figure 3-1:
Figure 3-2: Display Screen and Touch Control .............................................................................................. 36
Figure 3-3: Display/Touch Control Screen Mapped to Menu Charts ............................................................. 38
Figure 3-4: Rear Panel Layout ....................................................................................................................... 39
Figure 3-5: Internal Layout – GFC7001T ....................................................................................................... 41
Figure 3-6: Internal Layout – GFC7001TM .................................................................................................... 42
Figure 3-7: Optical Bench Layout (shorter bench, GFC7001TM, shown) ...................................................... 43
Figure 3-8: Analog In Connector .................................................................................................................... 45
Figure 3-9: Analog Output Connector ............................................................................................................ 46
Figure 3-10: Current Loop Option Installed on Motherboard ........................................................................... 47
Figure 3-11: Status Output Connector ............................................................................................................. 48
Figure 3-12: Control Input Connector ............................................................................................................... 50
Figure 3-13: Concentration Alarm Relay .......................................................................................................... 51
Figure 3-14: Rear Panel Connector Pin-Outs for RS-232 Mode ...................................................................... 54
Figure 3-15: Default Pin Assignments for CPU COM Port connector (RS-232) .............................................. 55
Figure 3-16: Jumper and Cables for Multidrop Mode ....................................................................................... 57
Figure 3-17: RS-232-Multidrop PCA Host/Analyzer Interconnect Diagram ..................................................... 58
Figure 3-18: Pneumatic Connections–Basic Configuration–Using Bottled Span Gas ..................................... 61
Figure 3-19: Pneumatic Connections–Basic Configuration–Using Gas Dilution Calibrator ............................. 61
Figure 3-20: GFC7001T/GFC7001TM Internal Gas Flow ................................................................................ 62
Figure 3-21: Pneumatic Connections – Option 50A: Zero/Span Calibration Valves ........................................ 63
Figure 3-22 Internal Pneumatic Flow OPT 50A – Zero/Span Valves .............................................................. 64
Figure 3-24: Internal Pneumatic Flow – Zero/Span/Shutoff Valves (Opt 50B) ................................................ 65
Figure 3-25: Pneumatic Connections – Zero Scrubber/Pressurized Span Calibration Valves (Opt 50E) ....... 66
Figure 3-26: Internal Pneumatic Flow Zero Scrubber/Pressurized Span Calibration Valves (Opt 50E) .......... 68
Figure 3-27: Pneumatic Connections – Option 50H: Zero/Span Calibration Valves ....................................... 69
Figure 3-28: Internal Pneumatic Flow OPT 50H – Zero Scrubber/Ambient Span ........................................... 70
Figure 3-29: Zero/Span Calibration Procedure ................................................................................................ 80
Figure 4-1: Front Panel Display ...................................................................................................................... 85
Figure 4-2: Viewing GFC7001T/GFC7001TM Test Functions ....................................................................... 87
Figure 4-3: Viewing and Clearing GFC7001T/GFC7001TM WARNING Messages ...................................... 90
Figure 5-1: Analog Output Connector Pin Out ............................................................................................... 95
Figure 5-2: COMM– Machine ID ..................................................................................................................110
Figure 5-3: Accessing the Analog I/O Configuration Submenus ..................................................................118
Figure 5-4: Setup for Checking / Calibrating DCV Analog Output Signal Levels .........................................125
Figure 5-5: Setup for Checking / Calibration Current Output Signal Levels Using an Ammeter ..................127
Figure 5-6: Alternative Setup Using 250 Resistor for Checking Current Output Signal Levels ................129
Figure 5-7. DIAG – Analog Inputs (Option) Configuration Menu .................................................................133
Figure 6-1: COM1[2] – Communication Modes Setup .................................................................................141
Figure 6-2: COMM Port Baud Rate ..............................................................................................................142
Figure 6-3: COMM – COM1 Test Port ..........................................................................................................142
Figure 6-4: COMM – LAN / Internet Manual Configuration ..........................................................................145
Figure 6-5 : COMM – LAN / Internet Automatic Configuration (DHCP) ........................................................146
Figure 7-1: Default DAS Channel Setup ......................................................................................................167
Figure 7-2: APICOM Remote Control Program Interface .............................................................................181
Figure 7-3: APICOM User Interface for Configuring the DAS ......................................................................182
Figure 7-4: DAS Configuration Through a Terminal Emulation Program .....................................................183
Figure 9-1: Pneumatic Connections – Basic Configuration – Using Bottled Span Gas ...............................196
Figure 9-2: Pneumatic Connections – Basic Configuration – Using Gas Dilution Calibrator .......................196
Figure 9-3: Pneumatic Connections – Option 50A: Ambient Zero/Ambient Span Calibration Valves .........201
Figure 9-4: Pneumatic Connections – Option 50B: Ambient Zero/Pressurized Span Calibration Valves ...202
Figure 9-5: Pneumatic Connections – Option 50H: Zero/Span Calibration Valves .....................................202
Front Panel Layout ....................................................................................................................... 35
Teledyne Analytical Instruments xvi
Page 17
Table of ContentsTeledyne API – Model T300/T300M CO Analyzer
Figure 9-6: Pneumatic Connections – Option 50E: Zero/Span Calibration Valves ......................................203
Figure 9-7: O2 Sensor Calibration Set Up ....................................................................................................218
Figure 9-8: CO2 Sensor Calibration Set Up ..................................................................................................222
Figure 11-1: Sample Particulate Filter Assembly ...........................................................................................246
Figure 12-1: Viewing and Clearing Warning Messages .................................................................................252
Figure 12-2: Example of Signal I/O Function .................................................................................................256
Figure 12-3: CPU Status Indicator .................................................................................................................257
Figure 12-4: Sync/Demod Board Status LED Locations ................................................................................258
Figure 12-5: Relay Board Status LEDs ..........................................................................................................259
Figure 12-6: GFC7001T/GFC7001TM – Basic Internal Gas Flow .................................................................262
Figure 12-7: Internal Pneumatic Flow OPT 50A – Zero/Span Valves (OPT 50A & 50B) ..............................262
Figure 12-8: Internal Pneumatic Flow OPT 50B – Zero/Span/Shutoff Valves ..............................................263
Figure 12-9: Internal Pneumatic Flow OPT 50H – Zero/Span Valves with Internal Zero Air Scrubber .........263
Figure 12-10: Internal Pneumatic Flow OPT 50E – Zero/Span/Shutoff w/ Internal Zero Air Scrubber ............264
Figure 12-11: GFC7001T/GFC7001TM – Internal Pneumatics with O2 Sensor Option 65A ...........................264
Figure 12-12: GFC7001T/GFC7001TM – Internal Pneumatics with CO2 Sensor Option 67A ........................265
Figure 12-13: Location of Diagnostic LEDs onCO2 Sensor PCA .....................................................................280
Figure 12-14: Critical Flow Restrictor Assembly/Disassembly .........................................................................281
Figure 12-15: Opening the GFC Wheel Housing .............................................................................................282
Figure 12-16: Removing the Opto-Pickup Assembly .......................................................................................283
Figure 12-17: Removing the GFC Wheel Housing ...........................................................................................283
Figure 12-18: Removing the GFC Wheel .........................................................................................................284
Figure 12-19: Location of Sync/Demod Housing Mounting Screws .................................................................285
Figure 12-20: Location of Sync/Demod Gain Potentiometer............................................................................285
Figure 13-1: Measurement Fundamentals .....................................................................................................291
Figure 13-2: GFC Wheel ................................................................................................................................291
Figure 13-3: Measurement Fundamentals with GFC Wheel ..........................................................................292
Figure 13-4: Affect of CO in the Sample on CO MEAS & CO REF ...............................................................293
Figure 13-5: Effects of Interfering Gas on CO MEAS & CO REF ..................................................................294
Figure 13-6: Chopped IR Signal .....................................................................................................................294
Figure 13-7: Internal Pneumatic Flow – Basic Configuration ........................................................................295
Figure 13-8: Flow Control Assembly & Critical Flow Orifice...........................................................................296
Figure 13-9: Electronic Block Diagram ...........................................................................................................298
Figure 13-10. CPU Board .................................................................................................................................299
Figure 13-11: GFC Light Mask .........................................................................................................................301
Figure 13-12: Segment Sensor and M/R Sensor Output .................................................................................302
Figure 13-13: GFC7001T/GFC7001TM Sync/Demod Block Diagram .............................................................303
Figure 13-14: Sample & Hold Timing ...............................................................................................................304
Figure 13-15: Location of relay board Status LEDs .........................................................................................307
Figure 13-16: Power Distribution Block Diagram .............................................................................................311
Figure 13-17: Front Panel and Display Interface Block Diagram .....................................................................312
Figure 13-18: Basic Software Operation ..........................................................................................................313
Figure 14-1: Triboelectric Charging ................................................................................................................315
Figure 14-2: Basic anti-ESD Workbench........................................................................................................318
LIST OF TABLES
Table 1-1: Analyzer Options .......................................................................................................................... 25
Table 2-1: GFC7001T/GFC7001TM Basic Unit Specifications ..................................................................... 29
Table 2-2: O2 Sensor Option Specifications .................................................................................................. 30
Table 2-3: CO2 Sensor Option Specifications ............................................................................................... 30
Teledyne Analytical Instruments xvii
Page 18
Table of ContentsTeledyne API – Model T300/T300M CO Analyzer
Table 3-1: Ventilation Clearance ................................................................................................................... 34
Table 3-2: Display Screen and Touch Control Description ........................................................................... 37
Table 3-3: Rear Panel Description ................................................................................................................ 40
Table 3-4: Analog Input Pin Assignments ..................................................................................................... 45
Table 3-5: Analog Output Pin-Outs ............................................................................................................... 46
Table 3-6: Status Output Signals .................................................................................................................. 49
Table 3-7: Control Input Signals .................................................................................................................... 50
Table 3-8: Zero/Span Valve Operating States for Option 50A ...................................................................... 65
Table 3-9: Zero/Span Valve Operating States for Option 50B ...................................................................... 66
Table 3-10: Zero/Span Valve Operating States for Option 50E ...................................................................... 68
Table 3-11: Zero/Span Valve Operating States for Option 50H ..................................................................... 70
Table 3-12: NIST-SRM's Available for Traceability of CO Calibration Gases .................................................. 71
Table 3-13: Possible Warning Messages at Start-Up ..................................................................................... 73
Table 3-14: Possible Startup Warning Messages – GFC7001T Analyzers with Options ............................... 74
Table 4-1: Analyzer Operating Modes .......................................................................................................... 86
Table 4-2: Test Functions Defined ................................................................................................................ 87
Table 4-3: List of Warning Messages............................................................................................................ 88
Table 4-4: Primary Setup Mode Features and Functions ............................................................................. 91
Table 4-5: Secondary Setup Mode (SETUP>MORE) Features and Functions ............................................ 92
Table 5-1: GFC7001T Family Physical Range by Model .............................................................................. 96
Table 5-2: Password Levels ........................................................................................................................105
Table 5-3: Variable Names (VARS) ............................................................................................................111
Table 5-4: Diagnostic Mode (DIAG) Functions ...........................................................................................113
Table 5-5: DIAG - Analog I/O Functions .....................................................................................................117
Table 5-6: Analog Output Voltage Ranges .................................................................................................119
Table 5-7: Voltage Tolerances for the TEST CHANNEL Calibration ..........................................................125
Table 5-8: Current Loop Output Check .......................................................................................................129
Table 5-9: Test Channels Functions available on the GFC7001T/GFC7001TM’s Analog Output .............135
Table 5-10: CO Concentration Alarm Default Settings .................................................................................137
Table 6-1: COMM Port Communication Modes ..........................................................................................140
Table 6-2: Ethernet Status Indicators..........................................................................................................143
Table 6-3: LAN/Internet Default Configuration Properties ..........................................................................144
Table 6-4: RS-232 Communication Parameters for Hessen Protocol ........................................................152
Table 6-5: Teledyne’s Hessen Protocol Response Modes .........................................................................156
Table 6-6: Default Hessen Status Flag Assignments .................................................................................160
Table 7-1: Front Panel LED Status Indicators for DAS ...............................................................................163
Table 7-2: DAS Data Channel Properties ...................................................................................................165
Table 7-3: DAS Data Parameter Functions ................................................................................................173
Table 8-1: Interactive Mode Software Commands ......................................................................................186
Table 8-2: Teledyne’s Serial I/O Command Types .....................................................................................186
Table 9-1: NIST-SRMs Available for Traceability of CO Calibration Gases ................................................194
Table 9-2: AUTOCAL Modes ......................................................................................................................208
Table 9-3: AutoCal Attribute Setup Parameters ..........................................................................................209
Table 9-4: Example AutoCal Sequence ......................................................................................................210
Table 9-5: Calibration Data Quality Evaluation ...........................................................................................214
Table 10-1: Matrix for Calibration Equipment & Supplies .............................................................................228
Table 10-2: Activity Matrix for Quality Assurance Checks ............................................................................229
Table 10-3: Definition of Level 1 and Level 2 Zero and Span Checks ..........................................................230
Table 11-1: GFC7001T/GFC7001TM Maintenance Schedule .....................................................................243
Table 11-2: GFC7001T/GFC7001TM Test Function Record ........................................................................244
Table 11-3: Predictive uses for Test Functions .............................................................................................245
Table 12-1: Warning Messages - Indicated Failures ....................................................................................252
Table 12-2: Test Functions - Indicated Failures ............................................................................................254
Table 12-3: Sync/Demod Board Status Failure Indications ..........................................................................258
Table 12-4: I2C Status LED Failure Indications .............................................................................................259
Table 12-5: Relay Board Status LED Failure Indications ..............................................................................260
Teledyne Analytical Instruments xviii
Page 19
Table of ContentsTeledyne API – Model T300/T300M CO Analyzer
Table 12-6: DC Power Test Point and Wiring Color Codes ..........................................................................271
Table 12-7: DC Power Supply Acceptable Levels ........................................................................................272
Table 12-8: Relay Board Control Devices .....................................................................................................273
Table 12-9: Opto Pickup Board Nominal Output Frequencies ......................................................................274
Table 12-10: Analog Output Test Function - Nominal Values Voltage Outputs .............................................277
Table 12-11: Analog Output Test Function - Nominal Values Voltage Outputs .............................................278
Table 12-12: Status Outputs Check ................................................................................................................278
Table 13-1: Absorption Path Lengths for GFC7001T and GFC7001TM ......................................................290
Table 13-2: Sync DEMOD Sample and Hold Circuits ...................................................................................304
Table 13-3: Sync/Demod Status LED Activity ...............................................................................................304
Table 13-4: Relay Board Status LEDs ..........................................................................................................306
Table 14-1: Static Generation Voltages for Typical Activities .......................................................................316
Table 14-2: Sensitivity of Electronic Devices to Damage by ESD ................................................................316
Teledyne Analytical Instruments xix
Page 20
Table of ContentsTeledyne API – Model T300/T300M CO Analyzer
This page intentionally left blank.
Teledyne Analytical Instruments xx
Page 21
Part I General InformationTeledyne API – Model T300/T300M CO Analyzer
PART I
GENERAL INFORMATION
Teledyne Analytical Instruments
Page 22
Part I General Information Teledyne API – Model T300/T300M CO Analyzer
This page intentionally left blank.
Teledyne Analytical Instruments xxii
Page 23
IntroductionTeledyne API – Model T300/T300M CO Analyzer
1. INTRODUCTION, FEATURES AND OPTIONS
This section provides an overview of the Model GFC7001T or GFC7001TM Analyzer, its features and its options, followed by a description of how this user manual is arranged.
1.1. GFC7001T FAMILY OVERVIEW
The family includes the GFC7001T and the GFC7001TM Gas Filter Correlation Carbon Monoxide Analyzer. The GFC7001T family of analyzers is a microprocessor-controlled analyzer that determines the concentration of carbon monoxide (CO) in a sample gas drawn through the instrument. It uses a method based on the Beer-Lambert law, an empirical relationship that relates the absorption of light to the properties of the material through which the light is traveling over a defined distance. In this case the light is infrared radiation (IR) traveling through a sample chamber filled with gas bearing a varying concentration of CO.
The GFC7001T/GFC7001TM uses Gas Filter Correlation (GFC) to overcome the interfering effects of various other gases (such as water vapor) that also absorb IR. The analyzer passes the IR beam through a spinning wheel made up of two separate
chambers: one containing a high concentration of CO known as the reference, and the other containing a neutral gas known as the measure. The concentration of CO in the
sample chamber is computed by taking the ratio of the instantaneous measure and reference values and then compensating the ratio for sample temperature and pressure.
The GFC7001T/GFC7001TM Analyzer’s multi-tasking software gives the ability to track and report a large number of operational parameters in real time. These readings are compared to diagnostic limits kept in the analyzers memory and should any fall outside of those limits the analyzer issues automatic warnings.
Built-in data acquisition capability, using the analyzer's internal memory, allows the logging of multiple parameters including averaged or instantaneous concentration values, calibration data, and operating parameters such as pressure and flow rate. Stored data are easily retrieved through the serial port or Ethernet port via our APICOM software or from the front panel, allowing operators to perform predictive diagnostics and enhanced data analysis by tracking parameter trends. Multiple averaging periods of one minute to 365 days are available for over a period of one year.
Teledyne Analytical Instruments
Page 24
IntroductionTeledyne API – Model T300/T300M CO Analyzer
1.2. FEATURES
Some of the common features of your GFC7001T family of analyzers include:
LCD color graphics with touch screen interface Microprocessor controlled for versatility Multi-tasking software allows viewing of test variables during operation Continuous self checking with alarms Bi-directional USB, RS-232, and 10/100Base-T Ethernet ports for remote
operation (optional RS-485)
Front panel USB ports for peripheral devices and software downloads Digital status outputs indicate instrument operating condition Adaptive signal filtering optimizes response time Gas Filter Correlation (GFC) Wheel for CO specific measurement GFC Wheel guaranteed against leaks for 5 years Temperature and pressure compensation Comprehensive internal data logging with programmable averaging periods Remote operation when used with TAI’s APICOM software
GFC7001T
GFC7001TM
FEATURES:
Ranges, 0-1 ppm to 0-1000 ppm, user selectable 14 meter path length for sensitivity
FEATURES:
Ranges, 0-1 ppm; Max: 0-5000 ppm, user selectable 2.5 meter path length for dynamic range
1.3. GFC7001T/GFC7001TM DOCUMENTATION
In addition to this operation manual (part number M90914), two other manuals are available for download from Teledyne’s website at http://www.teledyne­api.com/manuals/, to support the operation of this instrument:.
APICOM software manual, part number 07463 DAS Manual, part number 02837
1.4. OPTIONS
The options available for your analyzer are presented in Table 1-1 with name, option number, a description and/or comments, and if applicable, cross-references to technical details in this manual, such as setup and calibration. To order these options or to learn more about them, please contact the Sales department of Teledyne Analytical Instruments at:
Teledyne Analytical Instruments 24
Page 25
IntroductionTeledyne API – Model T300/T300M CO Analyzer
TELEDYNE ELECTRONIC TECHNOLOGIES
Analytical Instruments
16830 Chestnut Street City of Industry, CA 91748
Telephone: (626) 934-1500 Fax: (626) 961-2538
Web: www.teledyne-ai.com or your local representative.
Table 1-1: Analyzer Options
Option
Pumps
Rack Mount Kits
Carrying Strap/Handle Side-mounted strap for hand-carrying analyzer
29
Option
Number
Pumps meet all typical AC power supply standards while exhibiting same pneumatic performance.
10A External Pump 100V - 120V @ 60 Hz N/A 10B External Pump 220V - 240V @ 50 Hz N/A 10C External Pump 220V - 240V @ 60 Hz N/A 10D External Pump 100V – 12V @ 50 Hz N/A 10E External Pump 100V @ 60 Hz N/A 11 Pumpless, internal or external Pump Pack N/A 13 High Voltage Internal Pump 240V @ 50Hz N/A
Options for mounting the analyzer in standard 19” racks
20A Rack mount brackets with 26 in. chassis slides N/A 20B Rack mount brackets with 24 in. chassis slides N/A 21 Rack mount brackets only (compatible with carrying strap, Option 29) N/A 23 Rack mount for external pump pack (no slides) N/A
Extends from “flat” position to accommodate hand for carrying. Recesses to 9mm (3/8”) dimension for storage. Can be used with rack mount brackets, Option 21. Cannot be used with rack mount slides.
Description/Notes Reference
N/A
CAUTION - GENERAL SAFETY HAZARD
A fully loaded GFC7001T with valve options weighs about 18 kg or 40 lbs. (GFC7001TM weighs 22.7 kg or 50 lbs).
To avoid personal injury we recommend that two persons lift and carry the analyzer. Disconnect all cables and tubing from the analyzer before moving it.
Analog Inputs
64
Current Loop Analog Outputs
41
Used for connecting external voltage signals from other instrumentation (such as meteorological instruments).
Also can be used for logging these signals in the analyzer’s internal DAS
Adds isolated, voltage-to-current conversion circuitry to the analyzer’s analog outputs.
Can be configured for any output range between 0 and 20 mA. May be ordered separately for any of the analog outputs.
Sections 3.3.1.2,
5.9.3.11, and 7
Sections 3.3.1.3,
3.3.1.4, 5.9.1,
5.9.2 and 5.9.3.7
Teledyne Analytical Instruments 25
Page 26
IntroductionTeledyne API – Model T300/T300M CO Analyzer
Option
Parts Kits Spare parts and expendables
Calibration Valves
50A Ambient Zero and Ambient Span.
50B Ambient Zero and Pressurized Span
50E Zero Scrubber and Pressurized Span
50H Zero Scrubber and Ambient Span
Communication Cables For remote serial, network and Internet communication with the analyzer.
Type Description
60A RS-232
60B RS-232
60C Ethernet
60D USB
Concentration Alarm Relay Issues warning when gas concentration exceeds limits set by user.
61
RS-232 Multidrop Enables communications between host computer and up to eight analyzers.
62
Second Gas Sensors Choice of one additional gas sensor.
65A Oxygen (O2) Sensor
67A Carbon Dioxide (CO2) Sensor
Option
Number
42A
45
Can be installed at the factory or retrofitted in the field.
Expendables Kit includes a recommended set of expendables for one year of operation of this instrument including replacement sample particulate filters.
Spare Parts Kit includes spares parts for one unit. Used to control the flow of calibration gases generated from external sources, rather
than manually switching the rear panel pneumatic connections.
Shielded, straight-through DB-9F to DB-25M cable, about
1.8 m long. Used to interface with older computers or code activated switches with DB-25 serial connectors.
Shielded, straight-through DB-9F to DB-9F cable of about
1.8 m length. Patch cable, 2 meters long, used for Internet and LAN
communications. Cable for direct connection between instrument (rear
panel USB port) and personal computer.
Four (4) “dry contact” relays on the rear panel of the instrument. This relay option is different from and in addition to the “Contact Closures” that come standard on all TAI instruments.
Multidrop card seated on the analyzer’s CPU card. Each instrument in the multidrop network requires this card and a
communications cable (Option 60B).
Description/Notes Reference
Appendix B
Appendix B
Sections 3.3.2.3 and 3.3.2.4
Sections Error!
Reference source not found. and
3.3.2.5 Sections 3.3.2.6
and 3.3.2.7 Sections 3.3.2.8
and 3.3.2.9
Section 3.3.1.9 and 6.3
Sections 3.3.1.9, and 6.3
Sections 3.3.1.9 and 6.5
Sections 3.3.1.9 and 6.6
Section 3.3.1.7
Sections 3.3.1.9 and 5.7.1
• Sections 3.3.1.3 and 9.7.1
• Sections 3.3.1.3 and 9.7.2
Teledyne Analytical Instruments 26
Page 27
IntroductionTeledyne API – Model T300/T300M CO Analyzer
Option
Special Features Built in features, software activated
N/A
N/A
N/A
Option
Number
Maintenance Mode Switch, located inside the instrument, places the
analyzer in maintenance mode where it can continue sampling, yet ignore calibration, diagnostic, and reset instrument commands. This feature is of particular use for instruments connected to Multidrop or Hessen protocol networks.
Call Customer Service for activation.
Second Language Switch activates an alternate set of display messages in a language other than the instrument’s default language.
Call Customer Service for a specially programmed Disk on Module containing the second language.
Dilution Ratio Option allows the user to compensate for diluted sample gas, such as in continuous emission monitoring (CEM) where the quality of gas in a smoke stack is being tested and the sampling method used to remove the gas from the stack dilutes the gas.
Call Customer Service for activation.
Description/Notes Reference
Refer to page iii in this manual for configuration and specific options included with this instrument.
N/A
N/A
Sections 3.4.4.2 and 5.4.5
Teledyne Analytical Instruments 27
Page 28
IntroductionTeledyne API – Model T300/T300M CO Analyzer
This page intentionally left blank.
Teledyne Analytical Instruments 28
Page 29
SpecificationsTeledyne API – Model T300/T300M CO Analyzer
2. SPECIFICATIONS AND APPROVALS
This section presents specifications for the GFC7001T/GFC7001TM analyzer and for its second gas sensor options, EPA equivalency designation, and compliance statements.
2.1. SPECIFICATIONS
Table 2-1: GFC7001T/GFC7001TM Basic Unit Specifications
Parameter Specification
Ranges Min: 0-1 ppm Full scale
Max: 0-1,000 ppm Full scale (selectable, dual ranges and auto ranging supported)
Measurement Units
Zero Noise1 GFC7001T: < 0.02 ppm RMS
Span Noise1 GFC7001T:<0.5% of rdg RMS over 5ppm 3
Lower Detectable Limit1 GFC7001T: < 0.04 ppm
Zero Drift (24 hours) 2 GFC7001T: < 0.1 ppm
Span Drift (24 hours) 2 GFC7001T: < 0.5% of reading
Lag Time1 10 seconds Rise/Fall Time 1 <60 seconds to 95% Linearity
Precision GFC7001T: The greater of 0.5% of reading or 0.2ppm;
Sample Flow Rate
AC Power 100V-120V, 220V-240V, 50/60 Hz Analog Output Ranges
Analog Output Resolution 1 part in 4096 of selected full-scale voltage Recorder Offset ±10% Standard I/O
GFC7001T: ppb, ppm, µg/m GFC7001TM: ppm, mg/m
GFC7001TM: 0.1 ppm RMS
GFC7001TM:>0.5% of rdg RMS over 20ppm
GFC7001TM: 0.2 ppm
GFC7001TM: <0.5 ppm
GFC7001TM: 0.5ppm
GFC7001T: 1% of full scale GFC7001TM: 0 - 3000 ppm: 1% full scale; 3000 - 5000 ppm: 2% full scale
GFC7001TM: The greater of 1.0% of reading or 1ppm
3
800 cm (O
All Outputs: 10V, 5V, 1V, 0.1V (selectable) Three outputs convertible to 4-20 mA isolated current loop. All Ranges with 5% under/over-range
1 Ethernet: 10/100Base-T 2 RS-232 (300 – 115,200 baud) 2 USB device ports 8 opto-isolated digital status outputs 6 opto-isolated digital control inputs (2 defined, 4 spare) 4 user configurable analog outputs
/min. ±10%
Sensor option adds 120 cm³/min to total flow when installed)
2
3
, mg/m3 (user selectable)
3
(user selectable)
5;
Teledyne Analytical Instruments
Page 30
SpecificationsTeledyne API – Model T300/T300M CO Analyzer
Parameter Specification
Optional I/O 1 USB com port
1 RS485 8 analog inputs (0-10V, 12-bit) 4 digital alarm outputs (2 opto-isolated and 2 dry contact) Multidrop RS232 3 4-20mA current outputs
Temperature Range
5 - 40C operating, 10 - 40C EPA Equivalency (GFC7001T only) Humidity Range 0-95% RH, Non-Condensing Temp Coefficient
< 0.05 % per C (minimum 50 ppb/C) Voltage Coefficient < 0.05 % per V Dimensions (HxWxD) 7" x 17" x 23.5" (178 mm x 432 mm x 597 mm) Weight GFC7001T: 40 lbs (18.1 kg); GFC7001TM: 38.4 lbs (17.2) Environmental Conditions Installation Category (Over voltage Category) II Pollution Degree 2
1
As defined by the USEPA
2
At constant temperature and pressure
Table 2-2: O2 Sensor Option Specifications
Parameter Description
Ranges 0-1% to 0-100% user selectable. Dual ranges and auto-ranging supported. Zero Noise Lower Detectable Limit2 <0.04% O2 Zero Drift (24 hours) 3 <± 0.02% O2 Zero Drift (7 days) <±- 0.05% O2 Span Noise Span Drift (7 days) <± 0.1% O2 Accuracy (intrinsic error) <± 0.1% O2 Linearity <± 0.1 % O2 Temp Coefficient <± 0.05% O2 /°C, Rise and Fall Time <60 seconds to 95%
1
As defined by the USEPA
2
Defined as twice the zero noise level by the USEPA
3
Note: zero drift is typically <± 0.1% O
1
1
<0.02% O2
<± 0.05% O2
during the first 24 hrs of operation
2
Table 2-3: CO
Sensor Option Specifications
2
Parameter Description
Ranges 0-1% to 0-20% user selectable. Dual ranges and auto-ranging supported. Zero Noise
1
<0.02% CO2 Lower Detectable Limit2 <0.04% CO2 Zero Drift (24 hours) <± 0.02% CO2 Zero Drift (7 days) <± 0.05% CO2 Span Noise
1
<± 0.1% CO2 Span Drift (7 days) <± 0.1% CO2
Teledyne Analytical Instruments 30
Page 31
SpecificationsTeledyne API – Model T300/T300M CO Analyzer
Accuracy <± (0.02% CO2 + 2% of reading) Linearity <± 0.1% CO2 Temperature Coefficient <± 0.01% CO2 /°C Rise and Fall Time <60 seconds to 95%
1
As defined by the USEPA
2
Defined as twice the zero noise level by the USEPA
2.2. EPA EQUIVALENCY DESIGNATION
Note
GFC7001TM: EPA equivalency does not apply to this model.
TAI’s Model GFC7001T, Carbon Monoxide Analyzer, is designated as Reference Method Number RFCA-1093-093 as defined in 40 CFR Part 53, when operated under the following conditions:
Range: Any range from 10 ppm to 50 ppm Ambient temperature range of 10 to 40C Sample filter: Equipped with 5-micron PTFE filter element in the internal
filter assembly
Software settings:
Dilution factor 1.0 AutoCal ON or OFF Dynamic Zero ON or OFF Dynamic Span OFF Dual Range ON or OFF Auto Range ON or OFF Temp/Pres Compensation ON
Under the designation, the analyzer may be operated with or without the following options:
Rack mount with slides Rack mount without slides, ears only Zero/span valve options
Option 50A – Sample/Cal valves, or Option 50B – Sample/Cal valves with span shutoff & flow control
Internal zero/span (IZS) option with either:
Option 51A – Sample/Cal valves, or Option 51C – Sample/Cal valves with span shutoff & flow control
4-20mA, isolated output
2.3. APPROVALS AND CERTIFICATIONS
The TAI Model GFC7001T/GFC7001TM analyzer was tested and certified for Safety and Electromagnetic Compatibility (EMC). This section presents the compliance statements for those requirements and directives.
Teledyne Analytical Instruments 31
Page 32
SpecificationsTeledyne API – Model T300/T300M CO Analyzer
2.3.1. SAFETY
IEC 61010-1:2001, Safety requirements for electrical equipment for measurement, control, and laboratory use.
CE: 2006/95/EC, Low-Voltage Directive North American:
cNEMKO (Canada): CAN/CSA-C22.2 No. 61010-1-04 NEMKO-CCL (US): UL No. 61010-1 (2nd Edition)
2.3.2. EMC
EN 61326-1 (IEC 61326-1), Class A Emissions/Industrial Immunity EN 55011 (CISPR 11), Group 1, Class A Emissions FCC 47 CFR Part 15B, Class A Emissions
CE: 2004/108/EC, Electromagnetic Compatibility Directive
2.3.3. OTHER TYPE CERTIFICATIONS
MCERTS: Sira MC 050069/04
For additional certifications, please contact Customer Service.
Teledyne Analytical Instruments 32
Page 33
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
3. GETTING STARTED
This section first introduces you to the instrument, then presents the procedures for getting started, i.e., unpacking and inspection, making electrical and pneumatic connections, and conducting an initial calibration check.
3.1. UNPACKING THE GFC7001T/GFC7001TM ANALYZER
CAUTION
GENERAL SAFETY HAZARD
To avoid personal injury, always use two persons to lift and carry the GFC7001T/GFC7001TM.
ATTENTION
Printed Circuit Assemblies (PCAs) are sensitive to electro-static discharges too small to be felt by the human nervous system. Failure to use ESD protection when working with electronic assemblies will void the instrument warranty. See A Primer on Electro-Static Discharge in this manual for more information on preventing ESD damage.
Do not operate this instrument until you’ve removed dust plugs from SAMPLE and EXHAUST ports on the rear panel!
Note TAI recommends that you store shipping containers/materials for future
use if/when the instrument should be returned to the factory for repair and/or calibration service. Contact TAI for warranty repairs. This analyzer is shipped with all the materials you need to install and prepare the system for operation. Carefully unpack the analyzer and inspect it for damage. Immediately report any damage to the shipping agent. .
COULD DAMAGE INSTRUMENT AND VOID WARRANTY
CAUTION!
Teledyne Analytical Instruments
Page 34
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
Verify that there is no apparent external shipping damage. If damage has occurred, please advise the shipper first, then TAI.
Included with your analyzer is a printed record (Final Test and Validation Data Sheet:
PN 04307; PN 04311) of the final performance characterization performed on your
instrument at the factory. This record is an important quality assurance and calibration record for this instrument. It should be placed in the quality records file for this instrument.
With no power to the unit, craefully remove the top cover of the analyzer and check for internal shipping damage by carrying out the following steps:
1. Carefully remove the top cover of the analyzer and check for internal shipping damage by:
Removing the setscrew located in the top, center of the Front panel; Removing the two flat head, Phillips screws on the sides of the instrument
(one per side towards the rear);
Sliding the cover backwards until it clears the analyzer’s front bezel, and; Lifting the cover straight up.
2. Inspect the interior of the instrument to make sure all circuit boards and other components are in good shape and properly seated.
3. Check the connectors of the various internal wiring harnesses and pneumatic hoses to make sure they are firmly and properly seated.
4. Verify that all of the optional hardware ordered with the unit has been installed. These are listed on the paperwork accompanying the analyzer.
WARNING - ELECTRICAL SHOCK HAZARD
Never disconnect PCAs, wiring harnesses or electronic subassemblies while instrument is under power.
3.1.1. VENTILATION CLEARANCE
Whether the analyzer is set up on a bench or installed into an instrument rack, be sure to leave sufficient ventilation clearance.
Table 3-1: Ventilation Clearance
AREA MINIMUM REQUIRED CLEARANCE
Back of the instrument
Sides of the instrument
Above and below the instrument
Various rack mount kits are available for this analyzer. See Table 1-1 of this manual for more information.
4 in. 1 in. 1 in.
Teledyne Analytical Instruments 34
Page 35
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
3.2. INSTRUMENT LAYOUT
Instrument layout includes front panel and display, rear panel connectors, and internal chassis layout.
3.2.1. FRONT PANEL
Figure 3-1 shows the analyzer’s front panel layout, followed by a close-up of the display screen in Figure 3-2, which is described in Table 3-2. The two USB ports on the front panel are provided for the connection of peripheral devices:
Plug-in mouse (not included) to be used as an alternative to the
thouchscreen interface
Thumb drive (not included) to download updates to instruction software
(contact TAI Customer Service for information).
Figure 3-1: Front Panel Layout
Teledyne Analytical Instruments 35
Page 36
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
Figure 3-2: Display Screen and Touch Control
The front panel liquid crystal display screen includes touch control. Upon analyzer start­up, the screen shows a splash screen and other initialization indicators before the main display appears, similar to Figure 3-2 above (may or may not display a Fault alarm). The LEDs on the display screen indicate the Sample, Calibration and Fault states; also on the screen is the gas concentration field (Conc), which displays real-time readouts for the primary gas and for the secondary gas if installed. The display screen also shows what mode the analyzer is currently in, as well as messages and data (Param). Along the bottom of the screen is a row of touch control buttons; only those that are currently applicable will have a label. Table 3-2 provides detailed information for each component of the screen.
ATTENTION
COULD DAMAGE INSTRUMENT AND VOID WARRANTY
Do not use hard-surfaced instruments such as pens to touch the control buttons.
Teledyne Analytical Instruments 36
Page 37
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
Table 3-2: Display Screen and Touch Control Description
Field Description/Function
Status LEDs indicating the states of Sample, Calibration and Fault, as follows:
Name Color State Definition
Off On
SAMPLE Green
CAL Yellow
FAULT Red
Conc
Mode Displays the name of the analyzer’s current operating mode
Param
Control Buttons Displays dynamic, context sensitive labels on each button, which is blank when inactive until applicable.
Displays the actual concentration of the sample gas currently being measured by the analyzer in the currently selected units of measure
Displays a variety of informational messages such as warning messages, operational data, test function values and response messages during interactive tasks.
Blinking
Off On Blinking Off Blinking
Unit is not operating in Sample Mode, DAS is disabled. Sample Mode active; Front Panel Display being updated; DAS data
being stored. Unit is operating in Sample Mode, front panel display being updated,
DAS hold-off mode is ON, DAS disabled Auto Cal disabled Auto Cal enabled Unit is in calibration mode No warnings exist Warnings exist
Figure 3-3 shows how the front panel display is mapped to the menu charts that are illustrated throughout this manual. The Mode, Param (parameters), and Conc (gas concentration) fields in the display screen are represented across the top row of each menu chart. The eight touch control buttons along the bottom of the display screen are represented in the bottom row of each menu chart.
Teledyne Analytical Instruments 37
Page 38
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
Figure 3-3: Display/Touch Control Screen Mapped to Menu Charts
Note The menu charts in this manual contain condensed representations of the
analyzer’s display during the various operations being described. These menu charts are not intended to be exact visual representations of the actual display.
Teledyne Analytical Instruments 38
Page 39
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
3.2.2. REAR PANEL
Figure 3-4: Rear Panel Layout
Table 3-3 provides a description of each component on the rear panel.
Teledyne Analytical Instruments 39
Page 40
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
Table 3-3: Rear Panel Description
Component Function
cooling fan
AC power
connector
Model/specs label
SAMPLE
EXHAUST
SPAN 1
SPAN2/VENT
ZERO AIR
RX TX
COM 2
RS-232
DCE DTE
STATUS
ANALOG OUT
CONTROL IN
ALARM
ETHERNET
ANALOG IN
Pulls ambient air into chassis through side vents and exhausts through rear. Connector for three-prong cord to apply AC power to the analyzer.
CAUTION! The cord’s power specifications (specs) MUST comply with the power specs on the analyzer’s rear panel Model number label
Identifies the analyzer model number and provides voltage and frequency specs Connect a gas line from the source of sample gas here.
Calibration gases are also inlet here on units without zero/span/shutoff valve options installed.
Connect an exhaust gas line of not more than 10 meters long here that leads outside the shelter or immediate area surrounding the instrument.
On units with zero/span/shutoff valve options installed, connect a gas line to the source of calibrated span gas here.
Used as a second cal gas input line when instrument is configured with zero/span valves and a dual gas option, or as a cal gas vent line when instrument is configured with a pressurized span option (Call factory for details).
Internal Zero Air: On units with zero/span/shutoff valve options installed but no internal zero air scrubber attach a gas line to the source of zero air here.
LEDs indicate receive (RX) and transmit (TX) activity on the when blinking. Serial communications port for RS-232 or RS-485. (Sections 3.3.1.9, 5.7.3, 6). Serial communications port for RS-232 only. (Sections 3.3.1.9, 5.7, 6.3, 6.7.2.1) Switch to select either data terminal equipment or data communication equipment
during RS-232 communication. (Section 6.1). For ouputs to devices such as Programmable Logic Controllers (PLCs). (Section
3.3.1.5). For voltage or current loop outputs to a strip chart recorder and/or a data logger.
(Sections 3.3.1.3 and 3.3.1.4). For remotely activating the zero and span calibration modes. (Section 3.3.1.6).
Option for concentration alarms and system warnings. (Section 3.3.1.7). Connector for network or Internet remote communication, using Ethernet cable
(Section 3.3.1.9). Option for external voltage signals from other instrumentation and for logging these
signals (Section 3.3.1.2) Connector for direct connection to laptop computer, using USB cable. (Section 3.3.1.9).
USB
3.2.3. GFC7001T/GFC7001TM ANALYZER LAYOUT
Figure 3-5 shows the GFC7001T internal layout.
Teledyne Analytical Instruments 40
Page 41
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
Figure 3-5: Internal Layout – GFC7001T
Teledyne Analytical Instruments 41
Page 42
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
Figure 3-6 shows the GFC7001TM internal layout.
Figure 3-6: Internal Layout – GFC7001TM
Teledyne Analytical Instruments 42
Page 43
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
Opto-Pickup
PCA
Sync/Demod PCA
Housing
Sample Gas Flow
Sensor
Sample Gas Outlet
fitting
Sample Chamber
Pressure Sensor(s)
Bench
Temperature
Thermistor
Shock Absorbing
Mounting Bracket
Purge Gas
Pressure Regulator
IR Source
GFC Wheel
Heat Sync
GFC Temperature
Sensor
GFC Heater
Purge Gas
Inlet
Figure 3-7: Optical Bench Layout (shorter bench, GFC7001TM, shown)
3.3. CONNECTIONS AND SETUP
This section presents the electrical (Section 3.3.1) and pneumatic (Section 3.3.2) connections for setup and preparing for instrument operation
GFC Wheel Motor
Teledyne Analytical Instruments 43
Page 44
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
3.3.1. ELECTRICAL CONNECTIONS
Note To maintain compliance with EMC standards, it is required that the cable
length be no greater than 3 meters for all I/O connections, which include Analog In, Analog Out, Status Out, Control In, Ethernet/LAN, USB, RS-232, and RS-485.
3.3.1.1. CONNECTING POWER
Attach the power cord to the analyzer and plug it into a power outlet capable of carrying at least 10 A current at your AC voltage and that it is equipped with a functioning earth ground.
WARNING
ELECTRICAL SHOCK HAZARD
High Voltages are present inside the analyzer’s case. Power connection must have functioning ground connection. Do not defeat the ground wire on power plug. Turn off analyzer power before disconnecting or
connecting electrical subassemblies. Do not operate with cover off.
CAUTION
GENERAL SAFETY HAZARD
The GFC7001T/GFC7001TM Analyzer can be configured for both 100-130 V and 210-240 V at either 47 Hz or 63 Hz.
3.3.1.2. CONNECTING ANALOG INPUTS (OPTION)
To avoid damage to your analyzer, make sure that the AC power voltage matches the voltage indicated on the analyzer’s model/specs label (See Figure 3-4) before plugging the GFC7001T/GFC7001TM into line power.
The Analog In connector is used for connecting external voltage signals from other instrumentation (such as meteorological instruments) and for logging these signals in the analyzer’s internal DAS. The input voltage range for each analog input is 0-10 VDC.
Teledyne Analytical Instruments 44
Page 45
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
Figure 3-8: Analog In Connector
Pin assignments for the Analog In connector are presented in Table 3-4.
Table 3-4: Analog Input Pin Assignments
PIN DESCRIPTION
1 Analog input # 1 AIN 1 2 Analog input # 2 AIN 2 3 Analog input # 3 AIN 3 4 Analog input # 4 AIN 4 5 Analog input # 5 AIN 5 6 Analog input # 6 AIN 6 7 Analog input # 7 AIN 7 8 Analog input # 8 AIN 8
GND Analog input Ground N/A
1
See Section 7 for details on setting up the DAS.
DAS
PARAMETER
1
3.3.1.3. CONNECTING ANALOG OUTPUTS
The GFC7001T is equipped with several analog output channels accessible through a connector on the back panel of the instrument. The standard configuration for these outputs is mVDC. An optional current loop output is available for each.
When the instrument is in its default configuration, channels A1 and A2 output a signal
that is proportional to the CO concentration of the sample gas. Either can be used for connecting the analog output signal to a chart recorder or for interfacing with a datalogger.
Output A3 is only used on the GFC7001T/GFC7001TM if the optional CO
is installed.
Channel A4 is special. It can be set by the user (see Section 5.9.8.1) to output any one of the parameters accessible through the <TST TST> buttons of the units sample
display.
To access these signals attach a strip chart recorder and/or data-logger to the appropriate analog output connections on the rear panel of the analyzer.
or O2 sensor
2
Teledyne Analytical Instruments 45
Page 46
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
A
A1 A2 A3 A4 + - + - + - + -
NALOG OUT
Figure 3-9: Analog Output Connector
Table 3-5: Analog Output Pin-Outs
PIN ANALOG OUTPUT VOLTAGE SIGNAL CURRENT SIGNAL
1 2 Ground I Out ­3 4 Ground I Out ­5
(Only used if CO
6 Ground I Out -
7 8 Ground I Out -
A1
A2
A3
O
Sensor is
2
installed)
A4
or
2
V Out I Out +
V Out I Out +
V Out I Out +
V Out I Out +
3.3.1.4. CURRENT LOOP ANALOG OUTPUTS (OPTION 41) SETUP
If your analyzer had this option installed at the factory, there are no further connections to be made. Otherwise, it can be installed as a retrofit for each of the analog outputs of the analyzer. This option converts the DC voltage analog output to a current signal with 0-20 mA output current. The outputs can be scaled to any set of limits within that 0-20 mA range. However, most current loop applications call for either 2-20 mA or 4-20 mA range.
Figure 3-10 provides installation instructions and illustrates a sample combination of one current output and two voltage outputs configuration. Following Figure 3-10 are instructions for converting current loop analog outputs to standard 0-to-5 VDC outputs. Information on calibrating or adjusting these outputs can be found in Section 5.9.3.7
CAUTION – AVOID INVALIDATING WARRANTY
Servicing or handling of circuit components requires electrostatic discharge protection, i.e. ESD grounding straps, mats and containers. Failure to use ESD protection when working with electronic assemblies will void the instrument warranty. Refer to Section 14 for more information on preventing ESD damage.
Teledyne Analytical Instruments 46
Page 47
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
Figure 3-10: Current Loop Option Installed on Motherboard
CONVERTING CURRENT LOOP ANALOG OUTPUTS TO STANDARD VOLTAGE OUTPUTS
To convert an output configured for current loop operation to the standard 0 to 5 VDC output operation:
1. Turn off power to the analyzer.
2. If a recording device was connected to the output being modified, disconnect it.
3. Remove the top cover.
Remove the screw located in the top, center of the front panel. Remove the screws fastening the top cover to the unit (both sides). Slide the cover back and lift straight up.
4. Remove the screw holding the current loop option to the motherboard.
5. Disconnect the current loop option PCA from the appropriate connector on the motherboard (see Figure 3-10).
6. Each connector, J19 and J23, requires two shunts. Place one shunt on the two left­most pins and the second shunt on the two pins next to it (see Figure 3-10).
7. Reattach the top case to the analyzer.
The analyzer is now ready to have a voltage-sensing, recording device
attached to that output.
8. Calibrate the analog output as described in Section 5.9.3.2.
Teledyne Analytical Instruments 47
Page 48
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
3.3.1.5. CONNECTING THE STATUS OUTPUTS
The status outputs report analyzer conditions via optically isolated NPN transistors, which sink up to 50 mA of DC current. These outputs can be used interface with devices that accept logic-level digital inputs, such as Programmable Logic Controllers (PLCs). Each status bit is an open collector output that can withstand up to 40 VDC. All of the emitters of these transistors are tied together and available at D.
ATTENTION
COULD DAMAGE INSTRUMENT AND VOID WARRANTY
Most PLC’s have internal provisions for limiting the current that the input will draw from an external device. When connecting to a unit that does not have this feature, an external dropping resistor must be used to limit the current through the transistor output to less than 50 mA. At 50 mA, the transistor will drop approximately 1.2V from its collector to emitter.
The status outputs are accessed via a 12-pin connector on the analyzer’s rear panel labeled STATUS (see Figure 3-4). Pin-outs for this connector are:
1 2 3 4 5 6 7 8 D +
SYSTEM OK
CONC VALID
HIGH RANGE
Figure 3-11: Status Output Connector
STATUS
ZERO CAL
SPAN CAL
CAL
2
DIAG MODE
Optional O
+5V to external device
Teledyne Analytical Instruments 48
Page 49
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
Table 3-6: Status Output Signals
REAR PANEL
LABEL
1 SYSTEM OK ON if no faults are present.
2 CONC VALID
3 HIGH RANGE 4 ZERO CAL 5 SPAN CAL 6 DIAG MODE
7 CO2 CAL
8 O2 CAL
D EMITTER BUS The emitters of the transistors on pins 1-8 are bussed together. SPARE + DC POWER + 5 VDC, 300 mA source maximum.
STATUS
DEFINITION
OFF any time the HOLD OFF feature is active, such as during calibration or when other faults exist possibly invalidating the current concentration measurement (example: sample flow rate is outside of acceptable limits).
ON if concentration measurement is valid. ON if unit is in high range of either the DUAL or AUTO range modes. ON whenever the instrument’s ZERO point is being calibrated. ON whenever the instrument’s SPAN point is being calibrated. ON whenever the instrument is in DIAGNOSTIC mode.
Digital Ground The ground level from the analyzer’s internal DC power supplies.
If this analyzer is equipped with an optional CO2 sensor, this Output is ON when that sensor is in calibration mode.
Otherwise this output is unused. If this analyzer is equipped with an optional O2 sensor, this Output is ON when that
sensor is in calibration mode. Otherwise this output is unused.
CONDITION
3.3.1.6. CONNECTING THE CONTROL INPUTS
To remotely activate the zero and span calibration modes, several digital control inputs
are provided through a 10-pin connector labeled CONTROL IN on the analyzer’s rear
panel.
There are two methods for energizing the control inputs. The internal +5V available from the pin labeled “+” is the most convenient method. However, if full isolation is required, an external 5 VDC power supply should be used.
Teledyne Analytical Instruments 49
Page 50
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
A B C D E F U
ZERO
LOW SPAN
CONTROL IN
HIGH SPAN
Local Power Connections
+
A B C D E F U
ZERO
LOW SPAN
External Power Connections
CONTROL IN
HIGH SPAN
5 VDC Power
-
Supply
+
+
Figure 3-12: Control Input Connector
Table 3-7: Control Input Signals
INPUT # STATUS DEFINITION ON CONDITION
A
B
C
D, E
& F
REMOTE ZERO CAL
REMOTE SPAN CAL
REMOTE CAL HIGH RANGE
SPARE
Digital Ground
U External Power input Input pin for +5 VDC required to activate pins A – F.
+
5 VDC output
The analyzer is placed in Zero Calibration mode. The mode field of the display will read ZERO CAL R.
The analyzer is placed in span calibration mode as part of performing a low span (midpoint) calibration. The mode field of the display will read LO CAL R.
The analyzer is forced into high range for zero or span calibrations. This only applies when the range mode is either DUAL or AUTO. The mode field of the display will read HI CAL R.
The ground level from the analyzer’s internal DC power supplies (same as chassis ground).
Internally generated 5V DC power. To activate inputs A – F, place a jumper between this pin and the “U” pin. The maximum amperage through this port is 300 mA (combined with the analog output supply, if used).
3.3.1.7. CONCENTRATION ALARM RELAY (OPTION 61) STANDARD
CONFIGURATION
The concentration alarm option is comprised of four (4) “dry contact” relays on the rear panel of the instrument. This relay option is different from and in addition to the “Contact Closures” that come standard on all TAI instruments. Each relay has 3 pins: Normally Open (NO), Common (C), and Normally Closed (NC).
Teledyne Analytical Instruments 50
Page 51
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
Figure 3-13: Concentration Alarm Relay
Alarm 1 “System OK 2”
Alarm 2 “Conc 1”
Alarm 3 “Conc 2”
Alarm 4 “Range Bit”
“ALARM 1” RELAY
Alarm 1 which is “System OK 2” (system OK 1, is the status bit) is in the energized state when the instrument is “OK” & there are no warnings. If there is a warning active or if the instrument is put into the “DIAG” mode, Alarm 1 will change states. This alarm has “reverse logic” meaning that if you put a meter across the Common & Normally Closed pins on the connector you will find that it is OPEN when the instrument is OK. This is so that if the instrument should turn off or lose power, it will change states and you can record this with a data logger or other recording device.
LARM 2” RELAY & “ALARM 3” RELAY
“A
Alarm 2 relay is associated with the “Concentration Alarm 1” set point in the software; Alarm 3 Relay is associated with the “Concentration Alarm 2” set point in the software.
Alarm 2 Relay CO Alarm 1 = xxx PPM
Alarm 3 Relay CO
Alarm 2 = xxx PPM
2
Alarm 2 Relay CO Alarm 1 = xxx PPM
Alarm 3 Relay CO
Alarm 2 = xxx PPM
2
The Alarm 2 Relay will be turned on any time the concentration set-point is exceeded & will return to its normal state when the concentration value goes back below the concentration set-point.
Even though the relay on the rear panel is a NON-Latching alarm & resets when the concentration goes back below the alarm set point, the warning on the front panel of the instrument will remain latched until it is cleared. You can clear the warning on the front panel by either pushing the CLR button on the front panel or through the serial port.
In instruments that sample more than one gas type, there could be more than one gas type triggering the Concentration 1 Alarm (“Alarm 2” Relay). For example, the GFC7001TM instrument can monitor both CO & CO
gas. The software is flexible
2
enough to allow you to configure the alarms so that you can have 2 alarm levels for each gas.
CO Alarm 1 = 20 PPM
Teledyne Analytical Instruments 51
Page 52
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
CO Alarm 2 = 100 PPM
Alarm 1 = 20 PPM
CO
2
CO
Alarm 2 = 100 PPM
2
In this example, CO Alarm 1 & CO
Alarm 1 will both be associated with the “Alarm 2”
2
relay on the rear panel. This allows you do have multiple alarm levels for individual gasses.
A more likely configuration for this would be to put one gas on the “Alarm 1” relay & the other gas on the “Alarm 2” relay.
CO Alarm 1 = 20 PPM
CO Alarm 2 = Disabled
CO
Alarm 1 = Disabled
2
CO
Alarm 2 = 100 PPM
2
LARM 4” RELAY
“A
This relay is connected to the “range bit”. If the instrument is configured for “Auto Range” and the instrument goes up into the high range, it will turn this relay on.
3.3.1.8. CONCENTRATION ALARM RELAY (OPTION 61) AIR PRODUCTS CONFIGURATION
In the Air Products configuration, the 4 relay alarm outputs (AL1-AL4) on the rear panel are configured differently..
AL1 is for “system okay”, AL2 is for “high range status” AL3 is for “zero calibration status” AL4 is not used
The AL1 relay is energized when the system is okay and de-energized when the system has a fault. The AL2 relay is energized when the high auto-range is in use and and AL3 relays energize when the the instrument is in zero calibration mode.
Also, in the Air Products configuration, an additional control input is available on this instrument. Control input “C” is used to select the range for remote calibration. When input C is low, the instrument selects high range during contact closure calibration. See Section 6.15.12.
3.3.1.9. CONNECTING THE COMMUNICATION INTERFACES
The T-Series analyzers are equipped with connectors for remote communications
interfaces: Ethernet, USB, RS-232, optional RS-232 Multidrop, and optional RS-485.
In addition to using the appropriate cables, each type of communication method must be configured using the SETUP>COMM menu, Section 6. Although Ethernet is DHCP­enabled by default, it can also be configured manually (Section 6.5.1) to set up a static IP address, which is the recommended setting when operating the instrument via Ethernet.
Teledyne Analytical Instruments 52
Page 53
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
ETHERNET CONNECTION
For network or Internet communication with the analyzer, connect an Ethernet cable from the analyzer’s rear panel Ethernet interface connector to an Ethernet access port. Please see Section 6.5 for description and setup instructions.
For manual configuration, see Section 6.5.1.
For automatic configuration (default), see Section 6.5.2.
USB
CONNECTION
For direct communication between the analyzer and a PC, connect a USB cable between the analyzer and desktop or laptop USB ports. The baud rate for the analyzer and the computer must match; you may elect to change one or the other: to view and/or change the analyzer’s baud rate, see Section 6.2.2.
Note If this option is installed, the COM2 port cannot be used for anything
other than Multidrop communication.
For configuration, see 6.6.
IMPORTANT
RS-232
CONNECTION
For RS-232 communications with data terminal equipment (DTE) or with data communication equipment (DCE) connect either a DB9-female-to-DB9-female cable
(TAI part number WR000077) or a DB9-female-to-DB25-male cable (Option 60A, Section 1.4), as applicable, from the analyzer’s rear panel RS-232 port to the device. Adjust the DCE-DTE switch (Figure 3-4) to select DTE or DCE as appropriate.
Configuration: Sections 5.7 and 6.3.
IMPACT ON READINGS OR DATA Cables that appear to be compatible because of matching connectors may incorporate internal wiring that makes the link inoperable. Check cables acquired from sources other than TAI for pin assignments (Figure 3-14) before using.
RS-232
COM PORT CONNECTOR PIN-OUTS
Electronically, the difference between the DCE and DTE is the pin assignment of the Data Receive and Data Transmit functions.
Teledyne Analytical Instruments 53
Page 54
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
DTE devices receive data on pin 2 and transmit data on pin 3. DCE devices receive data on pin 3 and transmit data on pin 2.
Figure 3-14: Rear Panel Connector Pin-Outs for RS-232 Mode
The signals from these two connectors are routed from the motherboard via a wiring harness to two 10-pin connectors on the CPU card, J11 (COM1) and J12 (COM2) (Figure 3-15).
Teledyne Analytical Instruments 54
Page 55
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
Figure 3-15: Default Pin Assignments for CPU COM Port connector (RS-232)
RS-232 COM PORT DEFAULT SETTINGS
Received from the factory, the analyzer is set up to emulate a DCE or modem, with Pin 3 of the DB-9 connector designated for receiving data and Pin 2 designated for sending data.
RS-232 (COM1): RS-232 (fixed) DB-9 male connector.
Baud rate: 115200 bits per second (baud) Data Bits: 8 data bits with 1 stop bit Parity: None
COM2: RS-232 (configurable to RS-485), DB-9 female connector.
Baud rate: 19200 bits per second (baud) Data Bits: 8 data bits with 1 stop bit Parity: None
Teledyne Analytical Instruments 55
Page 56
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
RS-232 MULTIDROP OPTION CONNECTION
When the RS-232 Multidrop option is installed, connection adjustments and configuration through the menu system are required. This section provides instructions for the internal connection adjustments, then for external connections, and ends with instructions for menu-driven configuration.
Note Because the RS-232 Multidrop option uses both the RS232 and COM2
DB9 connectors on the analyzer’s rear panel to connect the chain of instruments, COM2 port is no longer available for separate RS-232 or RS-485 operation.
ATTENTION
COULD DAMAGE INSTRUMENT AND VOID WARRANTY
Printed Circuit Assemblies (PCAs) are sensitive to electro-static discharges too small to be felt by the human nervous system. Failure to use ESD protection when working with electronic assemblies will void the instrument warranty. Refer to Section 14 for more information on preventing ESD damage.
In each instrument with the Multidrop option there is a shunt jumpering two pins on the serial Multidrop and LVDS printed circuit assembly (PCA), as shown in Figure 3-16. This shunt must be removed from all instruments except that designated as last in the multidrop chain, which must remain terminated. This requires powering off and opening each instrument and making the following adjustments:
1. With NO power to the instrument, remove its top cover and lay the rear
panel open for access to the Multidrop/LVDS PCA, which is seated on the CPU.
2. On the Multidrop/LVDS PCA’s JP2 connector, remove the shunt that jumpers Pins 21 22 as indicated in. (Do this for all but the last instrument in the chain where the shunt should remain at Pins 21 22).
3. Check that the following cable connections are made in all instruments (again refer to Figure 3-16):
J3 on the Multidrop/LVDS PCA to the CPU’s COM1 connector
(Note that the CPU’s COM2 connector is not used in Multidrop)
J4 on the Multidrop/LVDS PCA to J12 on the motherboard J1 on the Multidrop/LVDS PCS to the front panel LCD
Teledyne Analytical Instruments 56
Page 57
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
Figure 3-16: Jumper and Cables for Multidrop Mode
Note: If you are adding an instrument to the end of a previously configured chain, remove the shunt between Pins 21 22 of JP2 on the Multidrop/LVDS PCA in the instrument that was previously the last instrument in the chain.
4. Close the instrument.
5. Referring to Figure 3-17 use straight-through DB9 male DB9 female cables to interconnect the host RS232 port to the first analyzer’s RS232 port; then from the first analyzer’s COM2 port to the second analyzer’s RS232 port; from the second analyzer’s COM2 port to the third analyzer’s RS232 port, etc., connecting in this fashion up to eight analyzers, subject to the distance limitations of the RS-232 standard.
6. On the rear panel of each analyzer, adjust the DCE DTE switch so that the green and the red LEDs (RX and TX) of the COM1 connector (labeled RS232) are both lit. (Ensure you are using the correct RS-232 cables internally wired specifically for RS-232 communication; see Table 1-1: Analyzer
Options, “Communication Cables” and Section 3.3.1.9:
Connecting the Communications Inerfaces, “RS-232 Connection”).
Teledyne Analytical Instruments 57
Page 58
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
Host
RS-232 port
Female DB9
Male DB9
Analyzer Analyzer Analyzer Last Analyzer
COM2
RS-232
Figure 3-17: RS-232-Multidrop PCA Host
COM2
RS-232
COM2
RS-232
Ensure jumper is
installed between
JP2 pins 21
last instrument of
multidrop chain.
/Analyzer Interconnect Diagram
COM2
RS-232
22 in
7. BEFORE communicating from the host, power on the instruments and check that the Machine ID code is unique for each (Section 5.7.1).
a. In the SETUP Mode menu go to SETUP>MORE>COMM>ID. The default
ID is typically the model number or “0”.
b. to change the identification number, press the button below the digit to
be changed.
c. Press/select ENTER to accept the new ID for that instrument.
8. Next, in the SETUP>MORE>COMM>COM1 menu (do not use the COM2 menu for multidrop), edit the COM1 MODE parameter as follows: press/select EDIT and set only QUIET MODE, COMPUTER MODE, and MULTIDROP MODE to ON. Do not change any other settings.
9. Press/select ENTER to accept the changed settings, and ensure that COM1 MODE now shows 35.
10. Press/select SET> to go to the COM1 BAUD RATE menu and ensure it reads the same for all instruments (edit as needed so that all instruments are set at the same baud rate).
Note
The Instrument ID’s should not be duplicated.
The (communication) Host instrument can only address one instrument at a time.
Note TAI recommends setting up the first link, between the Host and the first
analyzer, and testing it before setting up the rest of the chain.
Teledyne Analytical Instruments 58
Page 59
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
RS-485 CONNECTION
As delivered from the factory, COM2 is configured for RS-232 communications. This
port can be reconfigured for operation as a non-isolated, half-duplex RS-485 port. Using COM2 for RS-485 communication disables the USB port. To configure the instrument for RS-485 communication, please contact the factory.
3.3.2. PNEUMATIC CONNECTIONS
This section provides not only pneumatic connection information, but also important information about the gases required for accurate calibration; it also illustrates the pneumatic layouts for the analyzer in its basic configuration and with options.
Before making the pneumatic connections, carefully note the following cautionary and special messages:
CAUTION
GENERAL SAFETY HAZARD
CARBON MONOXIDE (CO) IS A TOXIC GAS.
Do not vent calibration gas and sample gas into enclosed areas. Obtain a Material Safety Data Sheet (MSDS) for this material. Read and rigorously follow the safety guidelines described there.
CAUTION
GENERAL SAFETY HAZARD
Sample and calibration gases should only come into contact with PTFE (Teflon), FEP, glass, stainless steel or brass.
It is important to conform to all safety requirements regarding exposure to CO.
Teledyne Analytical Instruments 59
Page 60
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
ATTENTION
COULD DAMAGE INSTRUMENT AND VOID WARRANTY
Maximum Pressure:
Ideally the maximum pressure of any gas at the sample inlet should equal ambient atmospheric pressure and should NEVER exceed
1.5 in-hg above ambient pressure.
Venting Pressurized Gas:
In applications where any gas (span gas, zero air supply, sample gas is) received from a pressurized manifold, a vent must be provided to equalize the gas with ambient atmospheric pressure before it enters the analyzer to ensure that the gases input do not exceed the maximum inlet pressure of the analyzer, as well as to prevent back diffusion and pressure effects. These vents should be:
• at least 0.2m long
• no more than 2m long
• vented outside the shelter or immediate area surrounding the
instrument.
Dust Plugs: Remove dust plugs from rear panel exhaust and supply line fittings
before powering on/operating instrument. These plugs should be kept for reuse in the event of future storage or shipping to prevent debris from entering the pneumatics.
IMPORTANT
Run a leak check once the appropriate pneumatic connections have
been made; check all pneumatic fittings for leaks using the procedures defined in Section 11.3.2.
See Figure 3-4 and Table 3-3 for the location and descriptions of the various pneumatic inlets/outlets referenced in this section.
Leak Check
Note: Depending on the application, some instruments may include an internal pump. Refer
to any addendum that may accompany this manual for information pertaining to custom configurations.
Teledyne Analytical Instruments 60
Page 61
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
3.3.2.1. PNEUMATIC CONNECTIONS FOR BASIC CONFIGURATION
Figure 3-18: Pneumatic Connections–Basic Configuration–Using Bottled Span Gas
Figure 3-19: Pneumatic Connections–Basic Configuration–Using Gas Dilution Calibrator
SAMPLE GAS SOURCE
Attach a sample inlet line to the SAMPLE inlet port. The sample input line should not
be more than 2 meters long.
Teledyne Analytical Instruments 61
Page 62
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
Maximum pressure of any gas at the sample inlet should not exceed 1.5 in-hg above
ambient pressure and ideally should equal ambient atmospheric pressure.
In applications where the sample gas is received from a pressurized manifold, a vent
must be placed on the sample gas before it enters the analyzer.
ALIBRATION GAS SOURCES
C
The source of calibration gas is also attached to the SAMPLE inlet, but only when a
calibration operation is actually being performed. The calibration gases should be available to the analyzer at the same pressure as the sample gas and with the same flow
3
rate (800 cm
/min).
EXHAUST OUTLET
Attach an exhaust line to the analyzer’s EXHAUST outlet fitting. The exhaust line should be:
PTEF tubing; minimum O.D 1/4”; A maximum of 10 meters long; Vented outside the GFC7001T/GFC7001TM Analyzer’s enclosure.
3.3.2.2. PNEUMATIC LAYOUT FOR BASIC CONFIGURATION
Figure 3-20: GFC7001T/GFC7001TM Internal Gas Flow
Teledyne Analytical Instruments 62
Page 63
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
3.3.2.3. PNEUMATIC CONNECTIONS FOR ZERO/SPAN VALVE OPTION
This valve option is intended for applications where:
Zero air is supplied by a zero air generator like the TAI’s T701 and; Span gas is supplied by Gas Dilution Calibrator like the TAI’s T700.
Internal zero/span and sample/cal valves control the flow of gas through the instrument, but because the generator and calibrator limit the flow of zero air and span gas, no shutoff valves are required.
See Figure 3-4 for the location of gas inlets.
Figure 3-21: Pneumatic Connections – Option 50A: Zero/Span Calibration Valves
SAMPLE GAS SOURCE
Attach a sample inlet line to the sample inlet port. The SAMPLE input line should not be more than 2 meters long.
Maximum pressure of any gas at the sample inlet should not exceed 1.5 in-hg above
ambient pressure and ideally should equal ambient atmospheric pressure.
3
Flow rate should meet the demand of the instrument (800 cm
C
ALIBRATION GAS SOURCES
S
PAN GAS:
/min).
Attach a gas line from the source of calibration gas (e.g. a Teledyne’s T700
Dynamic Dilution Calibrator) to the SPAN inlet.
ERO AIR:
Z
Zero air is supplied via a zero air generator such as a Teledyne’s T701. An adjustable valve is installed in the zero air supply line to regulate the gas flow.
Teledyne Analytical Instruments 63
Page 64
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
INLET PRESSURE RATING/CONSIDERATION
This instrument has no significant internal restriction other than the flow control device and pressure sensor shown in Figure 3-20. Sample must be introduced to the inlet fitting at a fraction of a PSI above ambient pressure, just enough to drive the flow to the proper value range. Depending on the ultimate sample or calibration gas source pressure, a needle valve, restrictor, critical orifice or combination there should be deployed to achieve this. Do not directly apply significant pressure to the inlet of the unit under any circumstances, as damage / and or personal injury may result.
XHAUST OUTLET
E
Attach an exhaust line to the analyzer’s EXHAUST outlet fitting. The exhaust line should be:
PTEF tubing; minimum O.D 1/4” Maximum length of 10 meters Vented outside the analyzer’s enclosure.
3.3.2.4. PNEUMATIC LAYOUT FOR ZERO/ SPAN VALVE OPTION
Figure 3-22 Internal Pneumatic Flow OPT 50A – Zero/Span Valves
Teledyne Analytical Instruments 64
Page 65
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
Table 3-8: Zero/Span Valve Operating States for Option 50A
MODE VALVE CONDITION
SAMPLE
(Normal
State)
ZERO CAL
SPAN CAL
Sample/Cal Open to SAMPLE inlet
Zero/Span Open to IZS inlet
Sample/Cal Open to ZERO/SPAN valve
Zero/Span Open to IZS inlet
Sample/Cal Open to ZERO/SPAN valve
Zero/Span Open to PRESSURE SPAN inlet
PTEF tubing; minimum O.D 1/4” 10 meters long max. Vented outside the analyzer’s enclosure
3.3.2.5. PNEUMATIC LAYOUT FOR INTERNAL ZERO/ SPAN VALVE OPTION
Figure 3-23: Internal Pneumatic Flow – Zero/Span/Shutoff Valves (Opt 50B)
Teledyne Analytical Instruments 65
Page 66
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
Table 3-9: Zero/Span Valve Operating States for Option 50B
MODE VALVE CONDITION
SAMPLE
(Normal
State)
ZERO CAL
SPAN CAL
Sample/Cal Open to SAMPLE inlet
Zero/Span Open to IZS inlet
Shutoff Valve Closed
Sample/Cal Open to ZERO/SPAN valve
Zero/Span Open to IZS inlet
Shutoff Valve Closed
Sample/Cal Open to ZERO/SPAN valve
Zero/Span Open to SHUTOFF valve
Shutoff Valve Open to PRESSURE SPAN Inlet
3.3.2.6. PNEUMATIC CONNECTIONS FOR ZERO SCRUBBER/PRESSURIZED
SPAN OPTION
Figure 3-24: Pneumatic Connections – Zero Scrubber/Pressurized Span Calibration Valves (Opt 50E)
SAMPLE GAS SOURCE
Attach a sample inlet line to the sample inlet port. The SAMPLE input line should not be more than 2 meters long.
Maximum pressure of any gas at the sample inlet should not exceed 1.5 in-hg above
ambient pressure and ideally should equal ambient atmospheric pressure.
In applications where the sample gas is received from a pressurized manifold, a vent
must be placed on the sample gas before it enters the analyzer.
ALIBRATION GAS SOURCES
C
S
PAN GAS:
Attach a gas line from the pressurized source of calibration gas (e.g. a bottle of
NIST-SRM gas) to the span inlet.
Teledyne Analytical Instruments 66
Page 67
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
Span gas can by generated by a T700 Dynamic Dilution Calibrator.
ERO AIR:
Z
Zero air is supplied internally via a zero air scrubber that draws ambient air through
the ZERO AIR inlet.
NLET PRESSURE RATING/CONSIDERATION
I
This instrument has no significant internal restriction other than the flow control device and pressure sensor shown in Figure 3-20. Sample must be introduced to the inlet fitting at a fraction of a PSI above ambient pressure, just enough to drive the flow to the proper value range.
If a pressurized source is used, both the zero air supply and sample gas line MUST be vented in order to ensure that the gases input do not exceed the maximum inlet pressure of the analyzer as well as to prevent back diffusion and pressure effects. These vents should be:
At least 0.2m long; No more than 2m long and; Vented outside the shelter or immediate area surrounding the instrument.
A similar vent line should be connected to the VENT SPAN outlet on the back of the analyzer.
XHAUST OUTLET
E
Attach an exhaust line to the analyzer’s EXHAUST outlet fitting. The exhaust line should be:
PTEF tubing; minimum O.D 1/4”; A maximum of 10 meters long; Vented outside the analyzer’s enclosure.
Teledyne Analytical Instruments 67
Page 68
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
3.3.2.7. PNEUMATIC LAYOUT FOR ZERO SCRUBBER/PRESSURIZED SPAN OPTION
Figure 3-25: Internal Pneumatic Flow Zero Scrubber/Pressurized Span Calibration Valves (Opt 50E)
Table 3-10: Zero/Span Valve Operating States for Option 50E
Mode Valve Condition
Sample/Cal Open to SAMPLE inlet
SAMPLE (Normal State)
ZERO CAL
SPAN CAL
Zero/Span
Shutoff Valve Closed Sample/Cal Open to zero/span valve Zero/Span
Shutoff Valve Closed Sample/Cal Open to ZERO/SPAN valve Zero/Span Open to SHUTOFF valve Shutoff Valve
Open to internal ZERO AIR scrubber
Open to internal ZERO AIR scrubber
Open to PRESSURE SPAN inlet
3.3.2.8. PNEUMATIC CONNECTIONS FOR ZERO SCRUBBER/AMBIENT SPAN
OPTION
Option 50H is operationally and pneumatically similar to Option 50A described earlier, except that the zero air is generated by an internal zero air scrubber. This means that the IZS inlet can simply be left open to ambient air.
Internal zero/span and sample/cal valves control the flow of gas through the instrument, but because the generator and calibrator limit the flow of zero air and span gas no shutoff valves are required.
See Figure 3-4 for the location of gas inlets and outlets.
Teledyne Analytical Instruments 68
Page 69
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
Figure 3-26: Pneumatic Connections – Option 50H: Zero/Span Calibration Valves
SAMPLE GAS SOURCE
Attach a sample inlet line to the sample inlet port. The SAMPLE input line should not be more than 2 meters long.
Maximum pressure of any gas at the sample inlet should not exceed 1.5 in-Hg above
ambient pressure and ideally should equal ambient atmospheric pressure.
In applications where the sample gas is received from a pressurized manifold, a vent
must be placed on the sample gas before it enters the analyzer.
C
ALIBRATION GAS SOURCES
SPAN
GAS
Attach a gas line from the source of calibration gas (e.g. a TAI’s T700E Dynamic
Dilution Calibrator) to the SPAN inlet.
ERO AIR
Z
Zero air is supplied internally via a zero air scrubber that draws ambient air through
the IZS inlet.
NLET PRESSURE RATING/CONSIDERATION
I
This instrument has no significant internal restriction other than the flow control device and pressure sensor shown in Figure 3-20. Sample must be introduced to the inlet fitting at a fraction of a PSI above ambient pressure, just enough to drive the flow to the proper value range.
If a pressurized source is used, both the zero air supply and sample gas line MUST be vented in order to ensure that the gases input do not exceed the maximum inlet pressure of the analyzer as well as to prevent back diffusion and pressure effects. These vents should be:
Teledyne Analytical Instruments 69
Page 70
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
At least 0.2m long; No more than 2m long and; Vented outside the shelter or immediate area surrounding the instrument.
A similar vent line should be connected to the VENT SPAN outlet on the back of the analyzer.
XHAUST OUTLET
E
Attach an exhaust line to the analyzer’s EXHAUST outlet fitting. The exhaust line should be:
PTEF tubing; minimum O.D ¼”; A maximum of 10 meters long; Vented outside the analyzer’s enclosure.
3.3.2.9. PNEUMATIC LAYOUT FOR ZERO SCRUBBER/ AMBIENT SPAN OPTION
Figure 3-27: Internal Pneumatic Flow OPT 50H – Zero Scrubber/Ambient Span
Table 3-11: Zero/Span Valve Operating States for Option 50H
MODE VALVE CONDITION
SAMPLE
(Normal
State)
ZERO CAL
SPAN CAL
Sample/Cal Open to SAMPLE inlet
Zero/Span Open to ZERO AIR scrubber
Sample/Cal Open to ZERO/SPAN valve
Zero/Span Open to ZERO AIR scrubber
Sample/Cal Open to ZERO/SPAN valve
Zero/Span Open to PRESSURE SPAN inlet
Teledyne Analytical Instruments 70
Page 71
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
3.3.2.10. CALIBRATION GASES
Zero air and span gas are required for accurate calibration.
Z
ERO AIR
Zero air is a gas that is similar in chemical composition to the earth’s atmosphere but scrubbed of all components that might affect the analyzer’s readings, in this case CO and water vapor. If your analyzer is equipped with an Internal Zero Span (IZS) or an external zero air scrubber option, it is capable of creating zero air.
If the analyzer is NOT equipped with the optional CO scrubbed of CO
as well, as this gas can also have an interfering effect on CO
2
measurements.
For analyzers without an IZS or external zero air scrubber option, a zero air generator such as the TAI Model T701 can be used.
PAN GAS
S
Span gas is a gas specifically mixed to match the chemical composition of the type of gas being measured at near full scale of the desired measurement range. In the case of CO measurements made with the GFC7001T or GFC7001TM Analyzer, it is recommended that you use a span gas with a CO concentration equal to 80-90% of the measurement range for your application.
EXAMPLE: If the application is to measure between 0 ppm and 500 ppb, an appropriate span gas concentration would be 400-450 ppb CO in N
Cylinders of calibrated CO gas traceable to NIST-Standard Reference Material specifications (also referred to as SRMs or EPA protocol calibration gases) are commercially available. Table 3-12 lists specific NIST-SRM reference numbers for various concentrations of CO.
sensor, zero air should be
2
.
2
Table 3-12: NIST-SRM's Available for Traceability of CO Calibration Gases
NIST-SRM TYPE NOMINAL CONCENTRATION
1680b CO in N2 500 ppm 1681b CO in N2 1000 ppm 2613a CO in Zero Air 20 ppm 2614a CO in Zero Air 45 ppm
1
2659a
2626a CO2 in N2 4% by weight
2745* CO2 in N2 16% by weight
1
Used to calibrate optional O2 sensor.
2
Used to calibrate optional CO2 sensor.
O2 in N2 21% by weight
SPAN GAS FOR MULTIPOINT CALIBRATION
Some applications, such as EPA monitoring, require a multipoint calibration procedure where span gases of different concentrations are needed. We recommend using a bottle of calibrated CO gas of higher concentration in conjunction with a gas dilution calibrator such as a TAI’s T700. This type of calibrator precisely mixes a high concentration gas
Teledyne Analytical Instruments 71
Page 72
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
with zero air (both supplied externally) to accurately produce span gas of the correct concentration. Linearity profiles can be automated with this model and run unattended over night.
3.4. STARTUP, FUNCTIONAL CHECKS, AND INITIAL
CALIBRATION
IMPORTANT
3.4.1. STARTUP
3.4.2. WARNING MESSAGES
IMPACT ON READINGS OR DATA The analyzer’s cover must be installed to ensure that the temperatures of the GFC Wheel and absorption cell assemblies are properly controlled.
If you are unfamiliar with the GFC7001T/GFC7001TM theory of operation, we recommend that you read Section 13. For information on navigating the analyzer’s software menus, see the menu trees described in Appendix A.
After the electrical and pneumatic connections are made, an initial functional check is in order. Turn on the instrument. The exhaust fan should start immediately. The display will briefly show a momentary splash screen of the TAI logo and other information during the initialization process while the CPU loads the operating system, the firmware and the configuration data at the start of initialization.
The analyzer should automatically switch to Sample Mode after completing the boot-up sequence and start monitoring CO gas. However, there is an approximately one hour warm-up period before reliable gas measurements can be taken. During the warm-up period, the front panel display may show messages in the Parameters field.
Because internal temperatures and other conditions may be outside the specified limits during the analyzer’s warm-up period, the software will suppress most warning conditions for 30 minutes after power up. If warning messages persist after the 60 minutes warm-up period is over, investigate their cause using the troubleshooting guidelines in Section 12.
To view and clear warning messages, press:
Teledyne Analytical Instruments 72
Page 73
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
Table 3-13 lists brief descriptions of the warning messages that may occur during start up.
Table 3-13: Possible Warning Messages at Start-Up
Message MEANING
ANALOG CAL WARNING
BENCH TEMP WARNING
BOX TEMP WARNING
CANNOT DYN SPAN2
CANNOT DYN ZERO3
CONFIG INITIALIZED
DATA INITIALIZED
PHOTO TEMP WARNING
REAR BOARD NOT DET
RELAY BOARD WARN
SAMPLE FLOW WARN
The instrument's A/D circuitry or one of its analog outputs is not calibrated.
Optical bench temperature is outside the specified limits.
The temperature inside the GFC7001T/GFC7001TM chassis is outside the specified limits.
Remote span calibration failed while the dynamic span feature was set to turned on.
Remote zero calibration failed while the dynamic zero feature was set to turned on.
Configuration was reset to factory defaults or was erased.
DAS data storage was erased.
Photometer temperature outside of warning limits specified by PHOTO_TEMP_SET variable.
Motherboard was not detected during power up.
CPU is unable to communicate with the relay PCA.
The flow rate of the sample gas is outside the specified limits.
SAMPLE PRESS WARN
SAMPLE TEMP WARN
SOURCE WARNING
SYSTEM RESET1
WHEEL TEMP WARNING
Sample pressure outside of operational parameters.
The temperature of the sample gas is outside the specified limits.
The IR source may be faulty.
The computer was rebooted.
The Gas Filter Correlation Wheel temperature is outside the specified limits.
Teledyne Analytical Instruments 73
Page 74
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
Message MEANING
1
Typically clears 45 minutes after power up.
2
Clears the next time successful zero calibration is performed.
3
Clears the next time successful span calibration is performed.
Table 3-14 lists brief descriptions of the warning messages that may occur during start up for GFC7001T analyzers with optional second gas options or alarms installed.
Table 3-14: Possible Startup Warning Messages – GFC7001T Analyzers with Options
Message Meaning
O2 CELL TEMP WARN
IZS TEMP WARNING
O2 ALARM 1 WARN
O2 ALARM 2 WARN
CO2 ALARM 1 WARN
CO2 ALARM 2 WARN
SO2 ALARM1 WARN
SO2 ALARM2 WARN
1
Only appears when the optional O2 sensor is installed.
2
Only appears when the optional internal zero span (IZS) option is installed.
3
Only appears when the optional CO2 sensor is installed.
4
Only Appears when the optional gas concentration alarms are installed
1
2
1, 4
1, 4
3, 4
3, 4`
4
4
O2 sensor cell temperature outside of warning limits specified by O2_CELL_SET variable.
On units with IZS options installed: The permeation tube temperature is outside of specified limits.
O2 Alarm limit #1 has been triggered.
O2 Alarm limit #2 has been triggered.
CO2 Alarm limit #1 has been triggered.
CO2 Alarm limit #2 has been triggered.
SO2 Alarm limit #1 has been triggered.
SO2 Alarm limit #2 has been triggered.
4
4
4
4
4
4
3.4.3. FUNCTIONAL CHECKS
After the analyzer’s components have warmed up for at least 60 minutes, verify that the software properly supports any hardware options that were installed: navigate through the analyzer’s software menus, see the menu trees described in Appendix A.
Then check to make sure that the analyzer is functioning within allowable operating parameters:
Appendix C includes a list of test functions viewable from the analyzer’s
front panel as well as their expected values.
These functions are also useful tools for diagnosing performance problems
with your analyzer (see Section 12.1.2).
The enclosed Final Test and Validation Data Sheet (P/N 04271) lists these
values as they were before the instrument left the factory.
To view the current values of these parameters press the following control button sequence on the analyzer’s front panel. Remember that until the unit has completed its warm-up these parameters may not have stabilized.
Teledyne Analytical Instruments 74
Page 75
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
3.4.4. INITIAL CALIBRATION
To perform the following calibration you must have sources for zero air and span gas available for input into the sample port on the back of the analyzer. See Section 3.3.2 for instructions for connecting these gas sources.
The initial calibration should be carried out using the same reporting range set up as used during the analyzer’s factory calibration. This will allow you to compare your
calibration results to the factory calibration as listed on the Final Test and Validation Data Sheet.
If both available DAS parameters for a specific gas type are being reported via the
instruments analog outputs e.g. CONC1 and CONC2 when the DUAL range mode is
activated, separate calibrations should be carried out for each parameter.
Use the LOW button when calibrating for CONC1 (equivalent to
RANGE1).
Use the HIGH button when calibrating for CONC2 (equivalent to
RANGE2).
NOTE The following procedure assumes that the instrument does not have any
of the available Valve Options installed. See Section 9.3 for instructions
Teledyne Analytical Instruments 75
Page 76
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
for calibrating instruments that have valve options.
3.4.4.1. INTERFERENTS FOR CO MEASUREMENTS
It should be noted that the gas filter correlation method for detecting CO is subject to interference from a number of other gases that absorb IR in a similar fashion to CO. Most notable of these are water vapor, CO The GFC7001T/GFC7001TM has been successfully tested for its ability to reject interference from of these sources, however high concentrations of these gases can interfere with the instrument’s ability to make low-level CO measurements.
For a more detailed discussion of this topic, see Section 13.2.1.3.
3.4.4.2. INITIAL CALIBRATION PROCEDURE
The following procedure assumes that: The instrument DOES NOT have any of the available calibration valve or gas inlet
options installed;
Cal gas will be supplied through the SAMPLE gas inlet on the back of the analyzer
(see Figure 3-4)
, N2O (nitrous oxide) and CH4 (methane).
2
The pneumatic setup matches that described in Section 3.3.2.1.
ERIFYING THE GFC7001T/GFC7001TM REPORTING RANGE SETTINGS
V
While it is possible to perform the following procedure with any range setting we recommend that you perform this initial checkout using following reporting range settings:
Unit of Measure: PPM Analog Output Reporting Range: 50 ppm Mode Setting: SNGL
While these are the default setting for the GFC7001T/GFC7001TM Analyzer, it is recommended that you verify them before proceeding with the calibration procedure, by pressing:
Teledyne Analytical Instruments 76
Page 77
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
SAMPLE RANGE=50.0 PPM CO= XX.XX
<TST TST> CAL SETUP
SETUP X.X PRIMARY SETUP MENU
CFG DAS RNGE PASS CLK MORE EXIT
SETUP X.X RANGE CONTROL MENU
MODE SET UNIT DIL EXIT
Verify that the MODE
is set for SNGL.
If it is not, press
SINGL
ENTR.
Verify that the RANGE is
set for 50.0
If it is not, toggle each
numeric button until the
proper range is set, then
press ENTR.
Verify that the UNIT
is set for PPM
If it is not, press
PPM
ENTR.
SETUP X.X RANGE MODE:SINGL
SNGL DUAL AUTO ENTR EXIT
SETUP X.X RANGE CONTROL MENU
MODE SET UNIT DIL EXIT
SETUP X.X RANGE: 50.0 Conc
00050.0ENTREXIT
SETUP X.X RANGE CONTROL MENU
MODE SET UNIT DIL EXIT
SETUP X.X CONC UNITS:PPM
PPB PPM UGM MGM ENTR EXIT
Press EXIT as
needed to
return to
SAMPLE
mode.
DILUTION RATIO SET UP
If the dilution ratio option is enabled on your GFC7001T/GFC7001TM Analyzer and your application involves diluting the sample gas before it enters the analyzer, set the dilution ratio as follows:
Teledyne Analytical Instruments 77
Page 78
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
SET CO SPAN GAS CONCENTRATION
Set the expected CO pan gas concentration. This should be 80-90% of range of concentration range for which the analyzer’s analog output range is set.
Teledyne Analytical Instruments 78
Page 79
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
ZERO/SPAN CALIBRATION
To perform the zero/span calibration procedure, press:
Teledyne Analytical Instruments 79
Page 80
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
Figure 3-28: Zero/Span Calibration Procedure
Teledyne Analytical Instruments 80
Page 81
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
3.4.4.3. O2 SENSOR CALIBRATION PROCEDURE
If your GFC7001T/GFC7001TM is equipped with the optional O
sensor, this sensor
2
should be calibrated during installation of the instrument. See Section 9.7.1 for instructions. Refer to any addenda that may accompany this instrument for custom configuration such as an optional O
3.4.4.4. CO
If your GFC7001T/GFC7001TM is equipped with the optional CO
SENSOR CALIBRATION PROCEDURE
2
sensor.
2
sensor, this sensor
2
should be calibrated during installation of the instrument. See Section 9.7.2 for instructions. Refer to any addenda that may accompany this instrument for custom configuration such as an optional CO
sensor.
2
Note Once you have completed the above set-up procedures, please fill out
the Quality Questionnaire that was shipped with your unit and return it to TAI. This information is vital to our efforts in continuously improving our service and our products. THANK YOU.
Teledyne Analytical Instruments 81
Page 82
Getting StartedTeledyne API – Model T300/T300M CO Analyzer
This page intentionally left blank.
Teledyne Analytical Instruments 82
Page 83
Part IITeledyne API – Model T300/T300M CO Analyzer
PART II
OPERATING INSTRUCTIONS
Teledyne Analytical Instruments
Page 84
Part II Opeerating InstructionsTeledyne API – Model T300/T300M CO Analyzer
This page intentionally left blank.
Teledyne Analytical Instruments 84
Page 85
OverviewTeledyne API – Model T300/T300M CO Analyzer
4. OVERVIEW OF OPERATING MODES
To assist in navigating the analyzer’s software, a series of menu trees can be found in Appendix A of this manual.
Note Some control buttons on the touch screen do not appear if they are not
applicable to the menu that you’re in, the task that you are performing, the command you are attempting to send, or to incorrect settings input by the user. For example, the ENTR button may disappear if you input a setting that is invalid or out of the allowable range for that parameter, such as trying to set the 24-hour clock to 25:00:00. Once you adjust the setting to an allowable value, the ENTR button will re-appear.
The GFC7001T/GFC7001TM software has a variety of operating modes. Most
commonly, the analyzer will be operating in Sample Mode. In this mode a continuous
read-out of the CO concentration can be viewed on the front panel and output as an analog voltage from rear panel terminals, calibrations can be performed and TEST functions and WARNING messages can be examined. If the analyzer is configured to measure a second gas (e.g. CO along with O both concentrations.
The second most important operating mode is SETUP mode. This mode is used for performing certain configuration operations, such as for the DAS system, the reporting ranges, or the serial (RS 232 / RS 485 / Ethernet) communication channels. The SETUP mode is also used for performing various diagnostic tests during troubleshooting.
or CO2) the display will show a readout of
2
Figure 4-1: Front Panel Display
Teledyne Analytical Instruments
Page 86
OverviewTeledyne API – Model T300/T300M CO AnalyzerTeledyne API – Model T300/T300M CO Analyzer
The mode field of the front panel display indicates to the user which operating mode the unit is currently running.
Besides SAMPLE and SETUP, other modes the analyzer can be operated in are:
Table 4-1: Analyzer Operating Modes
MODE EXPLANATION
DIAG
LO CAL A Unit is performing LOW SPAN (midpoint) calibration initiated automatically by the analyzer’s
LO CAL R Unit is performing LOW SPAN (midpoint) calibration initiated remotely through the COM ports or
M-P CAL SAMPLE
SAMPLE A
SETUP X.#2 SETUP mode is being used to configure the analyzer. The gas measurement will continue during
SPAN CAL A1 SPAN CAL M1 SPAN CAL R1 Unit is performing SPAN calibration initiated remotely through the COM ports or digital control
ZERO CAL A1 ZERO CAL M ZERO CAL R1 Unit is performing ZERO calibration procedure initiated remotely through the COM ports or digital
1
Only Appears on units with Z/S valve or IZS options.
2
The revision of the analyzer firmware is displayed following the word SETUP, e.g., SETUP G.3.
One of the analyzer’s diagnostic modes is active (refer to Section 5.9).
AUTOCAL feature
digital control inputs. This is the basic calibration mode of the instrument and is activated by pressing the CAL button. Sampling normally, flashing text indicates adaptive filter is on. Indicates that unit is in SAMPLE mode and AUTOCAL feature is activated.
this process. Unit is performing SPAN calibration initiated automatically by the analyzer’s AUTOCAL feature Unit is performing SPAN calibration initiated manually by the user.
inputs. Unit is performing ZERO calibration procedure initiated automatically by the AUTOCAL feature
1
Unit is performing ZERO calibration procedure initiated manually by the user.
control inputs.
4.1. SAMPLE MODE
This is the analyzer’s standard operating mode. In this mode the instrument is analyzing the gas in the sample chamber, calculating CO concentration and reporting this information to the user via the front panel display, the analog outputs and, if set up properly, the RS-232/RS-485/Ethernet/USB ports.
4.1.1. TEST FUNCTIONS
A series of TEST functions is available for viewing at the front panel whenever the analyzer is at the SAMPLE mode. These parameters provide information about the
present operating status of the instrument and are useful during troubleshooting (refer to Section 12.1.2). They can also be recorded in one of the DAS channels (refer to Section
7.2) for data analysis. To view the test functions, press one of the <TST TST> buttons repeatedly in either direction.
Teledyne Analytical Instruments 86
Page 87
OverviewTeledyne API – Model T300/T300M CO AnalyzerTeledyne API – Model T300/T300M CO Analyzer
Figure 4-2: Viewing GFC7001T/GFC7001TM Test Functions
IMPORTANT
MPACT ON READING OR DATA
I
A value of “XXXX” displayed for any of the TEST functions indicates an out-of-range reading or the analyzer’s inability to calculate it. All pressure measurements are represented in terms of absolute pressure. Absolute, atmospheric pressure is 29.92 in-Hg-A at sea level. It decreases about 1 in-Hg per 300 m gain in altitude. A variety of factors such as air conditioning and passing storms can cause changes in the absolute atmospheric pressure.
Table 4-2: Test Functions Defined
PARAMETER DISPLAY TITLE UNITS MEANING
Standard deviation of CO concentration readings. Data points are recorded every ten seconds using the last 25 data points. This function can be reset to show O those sensor options installed.
The full scale limit at which the reporting range of the analyzer is currently set. THIS IS NOT the Physical Range of the instrument. See Section 5.4.1 for more information.
or CO2 stability in instruments with
2
Stability
Range
STABIL
RANGE
RANGE1 RANGE2
3
, PPM
PPB
3
UGM
, MGM
PPB, PPM,
UGM, MGM
1 1
Teledyne Analytical Instruments 87
Page 88
OverviewTeledyne API – Model T300/T300M CO AnalyzerTeledyne API – Model T300/T300M CO Analyzer
RANGE
O2 Range 1
CO2 Range2
CO Measure
CO Reference
Measurement /
Reference Ratio
Sample Pressure
Sample Flow
Sample
Temperature
Bench
Temperature
Wheel
Temperature
Box Temperature
O2 Cell
Temperature
1
O
2
CO2 RANGE
CO MEAS
CO REF
MR Ratio
PRES
SAMPLE FL
SAMP TEMP
BENCH TEMP
WHEEL TEMP
BOX TEMP
O2 CELL TEMP
3
% The range setting for the optional O % The range setting for the optional CO
MV
MV
-
In-Hg-A
3
/min
cm
C
C
C
C
C
Photo-detector Temp. Control
PHT DRIVE
mV
Voltage
Slope
Offset
O2 Sensor
O2 Sensor Offset
CO2 Sensor
CO2 Sensor
Slope
1
Slope
Offset
1
2
2
Current Time
1
Only appears when the optional O2 sensor is installed.
2
Only appears when the optional CO2 sensor is installed.
3
Only available on the GFC7001T.
SLOPE
OFFSET
O
SLOPE
2
O
OFFSET
2
CO
SLOPE
2
CO
OFFSET
2
TIME
-
-
- O
- O
- CO
- CO
-
The demodulated, peak IR detector output during the measure portion of the GFC Wheel cycle.
The demodulated, peak IR detector output during the reference portion of the GFC Wheel cycle.
The result of CO MEAS divided by CO REF. This ratio is the primary value used to compute CO concentration. The value displayed is not linearized.
The absolute pressure of the Sample gas as measured by a pressure sensor located inside the sample chamber.
Sample mass flow rate as measured by the flow rate sensor in the sample gas stream.
The temperature of the gas inside the sample chamber.
Optical bench temperature.
GFC Wheel temperature.
The temperature inside the analyzer chassis.
The current temperature of the O
The drive voltage being supplied to the thermoelectric coolers of the IR photo-detector by the sync/demod Board.
The sensitivity of the instrument as calculated during the last calibration activity.
The overall offset of the instrument as calculated during the last calibration activity.
slope, computed during zero/span calibration.
2
offset, computed during zero/span calibration.
2
slope, computed during zero/span calibration.
2
offset, computed during zero/span calibration.
2
The current time. This is used to create a time stamp on DAS readings, and by the AUTOCAL feature to trigger calibration events.
Sensor.
2
Sensor.
2
sensor measurement cell.
2
4.1.2. WARNING MESSAGES
The most common instrument failures will be reported as a warning on the analyzer’s
front panel and through the COMM ports. Section 12.1.1 explains how to use these
messages to troubleshoot problems. Section 4.1.2 shows how to view and clear warning messages.
Table 4-3: List of Warning Messages
MESSAGE
ANALOG CAL WARNING
The instrument’s A/D circuitry or one of its analog outputs is not calibrated.
Teledyne Analytical Instruments 88
MEANING
Page 89
OverviewTeledyne API – Model T300/T300M CO AnalyzerTeledyne API – Model T300/T300M CO Analyzer
BENCH TEMP WARNING
BOX TEMP WARNING
CANNOT DYN SPAN2
CANNOT DYN ZERO3 CONC ALRM1 WARNING CONC ALRM2 WARNING
CONFIG INITIALIZED
DATA INITIALIZED
O2 CELL TEMP WARN2
PHOTO TEMP WARNING
REAR BOARD NOT DET
RELAY BOARD WARN SAMPLE FLOW WARN
SAMPLE PRESS WARN
SAMPLE TEMP WARN
SOURCE WARNING
SYSTEM RESET1
WHEEL TEMP WARNING
1
Alarm warnings only present when optional alarm package is activated.
2
Only enabled when the optional O2 Sensor is installed.
The temperature of the optical bench is outside the specified limits. The temperature inside the chassis is outside the specified limits. Remote span calibration failed while the dynamic span feature was set to turned on. Remote zero calibration failed while the dynamic zero feature was set to turned on.
1
Concentration alarm 1 is enabled and the measured CO level is the set point.
1
Concentration alarm 2 is enabled and the measured CO level is the set point. Configuration storage was reset to factory configuration or erased. DAS data storage was erased.
sensor cell temperature outside of warning limits.
O
2
The temperature of the IR photo detector is outside the specified limits. The CPU is unable to communicate with the motherboard. The firmware is unable to communicate with the relay board. The flow rate of the sample gas is outside the specified limits. Sample gas pressure outside of operational parameters. The temperature of the sample gas is outside the specified limits.
The IR source may be faulty.
The computer was rebooted. The Gas Filter Correlation Wheel temperature is outside the specified limits.
To view and clear warning messages:
Teledyne Analytical Instruments 89
Page 90
OverviewTeledyne API – Model T300/T300M CO AnalyzerTeledyne API – Model T300/T300M CO Analyzer
Figure 4-3: Viewing and Clearing GFC7001T/GFC7001TM WARNING Messages
4.2. CALIBRATION MODE
Pressing the CAL button switches the GFC7001T/GFC7001TM into calibration mode. In this mode the user can calibrate the instrument with the use of calibrated zero or span gases. This mode is also used to check the current calibration status of the instrument.
IMPORTANT
For more information about setting up and performing standard calibration
operations or checks, see Section 9.
For more information about setting up and performing EPA equivalent calibrations,
see Section 10.
If the instrument includes one of the available zero/span valve options, the
SAMPLE mode display will also include CALZ and CALS buttons. Pressing
either of these buttons also puts the instrument into calibration mode.
The CALZ button is used to initiate a calibration of the analyzer’s zero point using
internally generated zero air.
The CALS button is used to calibrate the span point of the analyzer’s current
reporting range using span gas.
For more information concerning calibration valve options, see Table 1-1.
For information on using the automatic calibration feature (ACAL) in conjunction with
the one of the calibration valve options, see Section 9.4.
IMPACT ON READINGS OR DATA It is recommended that this span calibration be performed at 80-90% of full scale of the analyzer’s currently selected reporting range. EXAMPLES: If the reporting range is set for 0 to 50 ppm, an appropriate span point would be 40-45 ppm. If the of the reporting range is set for 0 to 1000 ppb, an appropriate span point would be 800-900 ppb.
Teledyne Analytical Instruments 90
Page 91
OverviewTeledyne API – Model T300/T300M CO AnalyzerTeledyne API – Model T300/T300M CO Analyzer
4.3. SETUP MODE
The SETUP mode contains a variety of choices that are used to configure the analyzer’s
hardware and software features, perform diagnostic procedures, gather information on the instrument’s performance, and configure or access data from the internal data acquisition system (DAS). For a visual representation of the software menu trees, refer to Appendix A.
Setup Mode is divided between Primary and Secondary Setup menus and can be protected through password security.
4.3.1. PASSWORD SECURITY
Setup Mode can be protected by password security through the SETUP>PASS menu (Section 5.5) to prevent unauthorized or inadvertent configuration adjustments.
4.3.2. PRIMARY SETUP MENU
The areas accessible under the SETUP mode are shown in Table 4-4 and Secondary
Setup Menu (SETUP>MORE)
Table 4-5.
Table 4-4: Primary Setup Mode Features and Functions
MODE OR FEATURE
Analyzer Configuration
Auto Cal Feature
Internal Data Acquisition
(DAS)
Analog Output Reporting
Range Configuration
Calibration Password Security
Internal Clock Configuration
Advanced SETUP features
CONTROL
BUTTON
CFG
ACAL
DAS
RNGE
PASS
CLK
MORE
Lists button hardware and software configuration information 5
Used to set up and operate the AutoCal feature. Only appears if the analyzer has one of the internal valve options installed.
Used to set up the DAS system and view recorded data 7 Used to configure the output signals generated by the
instruments Analog outputs. Turns the calibration password feature ON/OFF. 5.3
Used to Set or adjust the instrument’s internal clock. 5.6
This button accesses the instruments secondary setup menu.
DESCRIPTION
MANUAL
SECTION
5.2
and
9.4
5.7
See
Table 6-5
Teledyne Analytical Instruments 91
Page 92
OverviewTeledyne API – Model T300/T300M CO AnalyzerTeledyne API – Model T300/T300M CO Analyzer
1
4.3.3. SECONDARY SETUP MENU (SETUP>MORE)
Table 4-5: Secondary Setup Mode (SETUP>MORE) Features and Functions
MODE OR FEATURE
External Communication Channel Configuration
System Status Variables
System Diagnostic Features and Analog Output Configuration
Alarm Limit Configuration
Alarm warnings only present when optional alarm package is activated.
1
CONTROL
BUTTON
COMM
VARS
DIAG
ALRM
Used to set up and operate the analyzer’s various serial channels including RS-232,RS-485, modem communication, Ethernet and/or USB.
Used to view various variables related to the instruments current operational status.
Changes made to any variable are not recorded in the
instrument’s memory until the ENTR button is pressed.
Pressing the EXIT button ignores the new setting.
Used to access a variety of functions that are used to configure, test or diagnose problems with a variety of the analyzer’s basic systems. Most notably, the menus used to configure the output signals generated by the instruments Analog outputs are located here. Used to turn the instrument’s two alarms on and off as well as set the trigger limits for each.
IMPORTANT
IMPACT ON READINGS OR DATA Any changes made to a variable during the SETUP procedures are not acknowledged by the instrument until the ENTR button is pressed. If the EXIT button is pressed before the ENTR button, the analyzer will beep, alerting the user that the newly entered value has not been accepted.
DESCRIPTION
MANUAL SECTION
5.7
5.8
5.9
5.10
Teledyne Analytical Instruments 92
Page 93
SetupTeledyne API – Model T300/T300M CO Analyzer
5. SETUP MENU
The SETUP menu is sued to set instrument parameters for performing configuration, calibration, reporting and diagnostics operations according to user needs.
5.1. SETUP CFG: CONFIGURATION INFORMATION
Pressing the CFG button displays the instrument’s configuration information. This
display lists the analyzer model, serial number, firmware revision, software library revision, CPU type and other information.
Special instrument or software features or installed options may also be listed here. Use this information to identify the software and hardware installed in your
GFC7001T/GFC7001TM Analyzer when contacting customer service.
To access the configuration table, press:
Press NEXT or PREV to move back and
forth through the following list of
Configuration information:
MODEL TYPE AND NUMBER PART NUMBER SERIAL NUMBER SOFTWARE REVISION LIBRARY REVISION iCHIP SOFTWARE REVISION CPU TYPE & OS REVISION DATE FACTORY CONFIGURATION
SAVED
SAMPLE RANGE=50.00 PPM CO= XX.XX
<TST TST> CAL SETUP
SETUP PRIMARY SETUP MENU
CFG DAS RNGE PASS CLK MORE EXIT
SETUP T300 CO Analyzer
PREV NEXT EXIT
Press EXIT at
any time to
return to the
SETUP menu.
Teledyne Analytical Instruments
Page 94
SetupTeledyne API – Model T300/T300M CO Analyzer
5.2. SETUP ACAL: AUTOMATIC CALIBRATION
Instruments with one of the internal valve options installed can be set to automatically run calibration procedures and calibration checks. These automatic procedures are
programmed using the submenus and functions found under the ACAL menu. A menu tree showing the ACAL menu’s entire structure can be found in Appendix A-1
of this manual.
Instructions for using the ACAL feature are located in the Section 9.4 of this manual
along with all other information related to calibrating the GFC7001T/GFC7001TM Analyzer.
5.3. SETUP DAS: INTERNAL DATA ACQUISITION SYSTEM
Use the SETUP>DAS menu to capture and record data. Refer to Section 7 for configuration and operation details.
5.4. SETUP RNGE: ANALOG OUTPUT REPORTING RANGE
CONFIGURATION
Use the SETUP>RNGE menu to configure output reporting ranges, including scaled reporting ranges to handle data resolution challenges. This section also describes configuration for Single, Dual, and Auto Range modes.
5.4.1. ANALOG OUTPUT RANGES FOR CO CONCENTRATION
The analyzer has several active analog output signals, accessible through the ANALOG OUT connector on the rear panel.
Teledyne Analytical Instruments 94
Page 95
SetupTeledyne API – Model T300/T300M CO Analyzer
A
CO concentration
A1 A2 A3 A4 + - + - + - + -
LOW range when DUAL
mode is selected
outputs
NALOG OUT
Only active if the Optional
or O2 Sensor is
CO
2
Test Channel
HIGH range when DUAL
mode is selected
Figure 5-1: Analog Output Connector Pin Out
The outputs can be configured either at the factory or by the user for full scale outputs of
0.1 VDC, 1VDC, 5VDC or 10VDC.
Additionally, A1, A2 and A3 may be equipped with optional 0-20 mADC current loop
drivers and configured for any current output within that range (e.g. 0-20, 2-20, 4-20, etc.). The user may also adjust the signal level and scaling of the actual output voltage or current to match the input requirements of the recorder or datalogger (See Section
5.9.3.9).
In its basic configuration, the A1 and A2 channels output a signal that is proportional to
the CO
concentration of the sample gas. Several modes are available which allow them
to operate independently or be slaved together (See Section 5.4.3).
EXAMPLE:
A1 OUTPUT: Output Signal = 0-5 VDC representing 0-1000 ppm concentration values A2 OUTPUT: Output Signal = 0 – 10 VDC representing 0-500 ppm concentration
values.
Output A3 is only active if the CO
representing the currently measured CO
or O2 sensor option is installed. In this case a signal
2
or O2 concentration is output on this channel.
2
The output, labeled A4 is special. It can be set by the user (See Section 5.9.8.1) to output several of the test functions accessible through the <TST TST> buttons of the
units sample display.
5.4.2. PHYSICAL RANGE VS ANALOG OUTPUT REPORTING RANGES
Functionally, the GFC7001T Family of CO Analyzers have one hardware PHYSICAL RANGE that is capable of determining CO concentrations between across a very wide array of values.
Teledyne Analytical Instruments 95
Page 96
SetupTeledyne API – Model T300/T300M CO Analyzer
Table 5-1: GFC7001T Family Physical Range by Model
MODEL RANGE
GFC7001T 0 – 1000 ppm
GFC7001TM 0 – 5000 ppm
This architecture improves reliability and accuracy by avoiding the need for extra, switchable, gain-amplification circuitry. Once properly calibrated, the analyzer’s front panel will accurately report concentrations along the entire span of its physical range.
Because many applications use only a small part of the analyzer’s full physical range, this can create data resolution problems for most analog recording devices. For example, in an application where an GFC7001T is being used to measure an expected concentration of typically less than 50 ppm CO, the full scale of expected values is only 4% of the instrument’s full 1000 ppm measurement range. Unmodified, the corresponding output signal would also be recorded across only 2.5% of the range of the recording device.
The GFC7001T/GFC7001TM Analyzers solve this problem by allowing the user to select a scaled reporting range for the analog outputs that only includes that portion of the physical range relevant to the specific application.
Only this REPORTING RANGE of the analog outputs is scaled; the physical range of the analyzer and the readings displayed on the front panel remain unaltered.
Note Neither the DAS values stored in the CPU’s memory nor the concentration
values reported on the front panel are affected by the settings chosen for the reporting range(s) of the instrument.
5.4.3. REPORTING RANGE MODES: SINGLE, DUAL, AUTO RANGES
The GFC7001T/GFC7001TM provides three analog output range modes to choose from.
Single range (SNGL) mode sets a single maximum range for the analog output. If
single range is selected both outputs are slaved together and will represent the same measurement span (e.g. 0-50 ppm), however their electronic signal levels may be configured for different ranges (e.g. 0-10 VDC vs. 0-.1 VDC).
Dual range (DUAL) allows the A1 and A2 outputs to be configured with different
measurement spans as well as separate electronic signal levels.
Auto range (AUTO) mode gives the analyzer to ability to output data via a low
range and high range. When this mode is selected the analyzer will automatically switch between the two ranges dynamically as the concentration value fluctuates.
Range status is also output via the external digital I/O status outputs (See Section
3.3.1.4).
To select the Analog Output Range Type press:
Teledyne Analytical Instruments 96
Page 97
SetupTeledyne API – Model T300/T300M CO Analyzer
Upper span limit setting for the individual range modes are shared. Resetting the span limit in one mode also resets the span limit for the corresponding range in the other modes as follows:
SNGL DUAL AUTO Range  Range1  Low Range Range2  High Range
Teledyne Analytical Instruments 97
Page 98
SetupTeledyne API – Model T300/T300M CO Analyzer
5.4.3.1. SINGLE RANGE MODE (SNGL)
Single Range Mode (SNGL) is the default reporting range mode for the analyzer.
When the single range mode is selected (SNGL), all analog CO concentration outputs (A1 and A2) are slaved together and set to the same reporting range limits (e.g. 500.0
ppb). The span limit of this reporting range can be set to any value within the physical range of the analyzer.
Although both outputs share the same concentration reporting range, the electronic signal ranges of the analog outputs may still be configured for different values (e.g. 0-5 VDC, 0-10 VDC, etc; see Section 5.9.3.1)
To select SNGL range mode and to set the upper limit of the range, press:
Teledyne Analytical Instruments 98
Page 99
SetupTeledyne API – Model T300/T300M CO Analyzer
5.4.3.2. DUAL RANGE MODE (DUAL)
Selecting the DUAL range mode allows the A1 and A2 outputs to be configured with
different reporting ranges. The analyzer software calls these two ranges low and high.
The LOW range setting corresponds with the analog output labeled A1 on the rear
panel of the instrument.
The HIGH range setting corresponds with the A2 output.
While the software names these two ranges low and high, they do not have to be configured that way. For example: The low range can be set for a span of 0-1000 ppm while the high range is set for 0-500 ppm.
In DUAL range mode the RANGE test function displayed on the front panel will be
replaced by two separate functions:
RANGE1: The range setting for the A1 output. RANGE2: The range setting for the A2 output.
To select the DUAL range mode press following buttonstroke sequence
.
When the instrument’s range mode is set to DUAL, the concentration field in the upper right hand corner of the display alternates between displaying the low range value and the high range value. The concentration currently being displayed is identified as
follows: C1= LOW (or A1) and C2 = HIGH (or A2).
Teledyne Analytical Instruments 99
Page 100
SetupTeledyne API – Model T300/T300M CO Analyzer
IMPORTANT
IMPACT ON READINGS OR DATA In DUAL range mode the LOW and HIGH ranges have separate slopes and offsets for computing CO concentrations. The two ranges must be independently calibrated.
To set the upper range limit for each independent reporting range, press:
.
Teledyne Analytical Instruments 100
Loading...