Double channel high side driver for automotive applications
Max supply voltageV
Operating voltage rangeV
Max On-State resistance (per ch.)
Current limitation (typ)I
Off-state supply currentI
1. Typical value with all loads connected.
■ General
– Inrush current active management by
power limitation
– Very low standby current
– 3.0V CMOS compatible inputs
– Optimized electromagnetic emissions
– Very low electromagnetic susceptibility
– In compliance with the 2002/95/EC
european directive
■ Diagnostic functions
– Open Drain status output
– On-state open-load detection
– Off-state open-load detection
– Output short to Vcc detection
– Overload and short to ground (power
– Undervoltage shutdown
– Overvoltage clamp
– Load current limitation
– Self limiting of fast thermal transients
– Protection against loss of ground and loss
■ All types of resistive, inductive and capacitive
loads
Description
The VND5E050J-E and VND5E050K-E are
double channel high-side drivers manufactured in
the ST proprietary VIPower M0-5 technology
and housed in the tiny PowerSSO-12 and
PowerSSO-24 packages.
The
VND5E050J-E and VND5E050K-E
designed to drive automotive
grounded loads
delivering protection, diagnostics and easy 3V
and 5V CMOS-compatible interface with any
microcontroller.
The devices integrate advanced protective
functions such as load current limitation, inrush
and overload active management by power
limitation, over temperature shut-off with
auto-restart and over-voltage active clamp.
A dedicated active low digital status pin is
associated with every output channel in order to
provide Enhanced diagnostic functions including
fast detection of overload and short-circuit to
ground, over temperature indication, short-circuit
to V
diagnosis and on & off-state open-load
CC
detection.
The diagnostic feedback of the whole device can
be disabled by pulling the STAT_DIS pin up, thus
allowing wired-ORing with other similar devices.
Table 2.Suggested connections for unused and not connected pins
PowerSSO-24
Connection / pinStatusN.C.OutputInputSTAT_DIS
FloatingXXXXX
To groundNot allowedXNot allowed
Through 10KΩ
resistor
Through 10KΩ
resistor
6/40 Doc ID 14472 Rev 3
VND5E050K-EElectrical specifications
2 Electrical specifications
Figure 3.Current and voltage conventions
I
S
V
CC
V
CC
Fn
V
I
SD
V
SD
I
INn
INPUTn
V
INn
Note:V
Fn
= V
- VCC during reverse battery condition.
OUTn
2.1 Absolute maximum ratings
Stressing the device above the rating listed in the “Absolute maximum ratings” table may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the Operating sections of
this specification is not implied. Exposure to the conditions in table below for extended
periods may affect device reliability. Refer also to the STMicroelectronics SURE Program
and other relevant quality document.
Table 3.Absolute maximum ratings
SymbolParameterValueUnit
GND
OUTPUTnSTAT_DIS
STATUSn
I
GND
I
OUTn
I
STATn
V
STATn
V
OUTn
V
- V
- I
I
OUT
- I
I
STAT
I
STAT_DIS
E
DC supply voltage41V
CC
Reverse DC supply voltage0.3V
CC
DC reverse ground pin current200mA
GND
DC output currentInternally limitedA
Reverse DC output current 15A
OUT
DC input current+10 / -1mA
I
IN
DC status current+10 / -1mA
DC status disable current+10 / -1mA
Maximum switching energy
MAX
(L=3 mH; RL=0Ω; V
=13.5V; T
bat
jstart
=150ºC; I
OUT
= I
limL
(Typ.))
104mJ
Doc ID 14472 Rev 37/40
Electrical specificationsVND5E050K-E
Table 3.Absolute maximum ratings (continued)
SymbolParameterValueUnit
Electrostatic discharge
(Human Body Model: R=1.5KΩ; C=100pF)
4000
4000
4000
5000
5000
V
V
V
V
V
V
V
T
– Input
– Status
ESD
–STAT_DIS
– Output
–V
CC
Charge device model (CDM-AEC-Q100-011)750V
ESD
Junction operating temperature-40 to 150°C
T
j
Storage temperature- 55 to 150°C
stg
2.2 Thermal data
Table 4.Thermal data
Value
SymbolParameter
PowerSSO-12PowerSSO-24
Unit
R
thj-case
R
thj-amb
Thermal resistance junction-case (max.)
(with one channel ON)
Thermal resistance junction-ambient
(max.)
2.82.8°C/W
See Figure 36See Figure 40°C/W
8/40 Doc ID 14472 Rev 3
VND5E050K-EElectrical specifications
2.3 Electrical characteristics
Values specified in this section are for 8 V<VCC<28V; -40°C<Tj<150 °C, unless otherwise
stated.
.
Table 5.Power section
SymbolParameterTest conditionsMin.Typ. Max. Unit
V
CC
V
USD
V
USDhyst
R
ON
V
clamp
I
I
L(off1)
V
1. PowerMOS leakage included.
2. For each channel.
Operating supply voltage4.51328V
Undervoltage shutdown3.54.5V
Undervoltage shutdown
hysteresis
On-state resistance
Clamp voltageIS=20mA414652V
Supply current
S
Off-state output
(2)
current
Output - VCC diode
voltage
(2)
F
I
=2A; Tj=25°C
(2)
OUT
=2A; Tj=150°C
I
OUT
I
=2A; VCC=5V; Tj=25°C
OUT
Off-state; VCC=13V; Tj=25°C;
V
IN=VOUT
On-state; V
I
OUT
VIN=V
= 0V
CC
=0A
=0V; VCC=13V;
OUT
Tj=25°C
V
IN=VOUT
=0V; VCC=13V;
Tj=125°C
-I
=2 A; Tj=150°C0.7V
OUT
=13V; VIN=5V;
0.5V
100
(1)
5
2
3
000.013
50
mΩ
mΩ
65
mΩ
(1)
6µAmA
5
µA
Table 6.Switching (VCC=13V; Tj= 25°C)
SymbolParameterTest conditionsMin.Typ.Max. Unit
t
d(on)
t
d(off)
dV
/dt
OUT
/dt
dV
OUT
W
ON
W
OFF
Turn- On delay time RL= 6.5Ω (see Figure 6)20 µs
Turn- Off delay time RL= 6.5Ω (see Figure 6)40 µs
Turn- On voltage slopeRL= 6.5Ω
(on)
Turn- Off voltage slopeRL= 6.5Ω
(off)
Switching energy
losses during t
won
Switching energy
losses during t
woff
RL= 6.5Ω (see Figure 6)0.21mJ
RL= 6.5Ω (see Figure 6)0.28mJ
See
Figure 26
See
Figure 28
V/µs
V/µs
Doc ID 14472 Rev 39/40
Electrical specificationsVND5E050K-E
Table 7.Status pin (VSD=0V)
SymbolParameterTest conditionsMin.Typ.MaxUnit
V
STAT
I
LSTAT
C
STAT
V
Table 8.Protections
Status low output
voltage
Status leakage current
Status pin input
capacitance
Status clamp voltage
SCL
(1)
=1.6 mA, VSD=0V0.5V
I
STAT
Normal Operation or V
= 5V
V
STAT
SD
=5V,
Normal Operation or VSD=5V,
V
= 5V
STAT
I
STAT
I
STAT
= 1mA
= -1mA
5.5
-0.7
10µA
100pF
7V
SymbolParameterTest conditionsMin.Typ.Max.Unit
I
limH
I
limL
T
TSD
T
T
T
HYST
t
SDL
V
DEMAG
V
ON
RS
DC short circuit currentVCC=13V;5V<VCC<28V
=13V
Short circuit current
during thermal cycling
V
CC
TR<Tj<T
TSD
Shutdown temperature150175200°C
Reset temperature
R
Thermal reset of
STATUS
Thermal hysteresis
(T
Status delay in overload
conditions
Turn-off output voltage
clamp
Output voltage drop
limitation
TSD-TR
)
T
I
OUT
I
OUT
T
(see Figure 4)20µs
j>TTSD
=2A; VIN=0; L=6mH
=0.1A;
= -40°C...+150°C
j
(see Figure 5)
192738
38
7A
TRS + 1TRS + 5
135°C
7°C
VCC-41VCC-46VCC-52
25mV
V
A
A
°C
V
1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related
diagnostic signals must be used together with a proper software strategy. If the device is subjected to
abnormal conditions, this software must limit the duration and number of activation cycles.
CAll functions of the device are performed as designed after exposure to disturbance.
E
One or more functions of the device are not performed as designed after exposure to
disturbance and cannot be returned to proper operation without replacing the device.
14/40 Doc ID 14472 Rev 3
VND5E050K-EElectrical specifications
2.4 Waveforms
Figure 7.Normal operation
Normal operation
INPUT
Nominal loadNominal load
I
OUT
V
STATUS
V
ST_DIS
Figure 8.Undervoltage shutdown
Undervoltage shut-down
V
V
V
CC
USD
INPUT
I
OUT
V
STATUS
V
ST_DIS
USDhyst
UNDEFINED
Doc ID 14472 Rev 315/40
Electrical specificationsVND5E050K-E
Figure 9.Overload or Short to GND
Overload or Short to GND
INPUT
I
>
LimH
I
OUT
V
STATUS
V
ST_DIS
Power Limitation
Figure 10. Intermittent Overload
INPUT
I
>
LimH
I
OUT
Thermal cycling
I
>
LimL
Intermittent Overload
Overload
I
>
LimL
Nominal load
V
STATUS
V
ST_DIS
16/40 Doc ID 14472 Rev 3
VND5E050K-EElectrical specifications
Figure 11. Open-load with external pull-up
Open Load
with external pull-up
INPUT
VPU> V
OL
V
t
DOL(on)
OL
V
OUT
I
OUT
V
STATUS
V
ST_DIS
Figure 12. Open-load without external pull-up
Open Load
without external pull-up
INPUT
V
OUT
I
< I
OUT
OL
I
t
DOL(on)
OL
t
POL
I
OUT
V
STATUS
V
ST_DIS
Doc ID 14472 Rev 317/40
Electrical specificationsVND5E050K-E
Figure 13. Short to V
INPUT
V
OUT
I
OUT
V
STATUS
V
ST_DIS
CC
Resistive
Short to V
V
> V
OUT
V
OL
I
> I
OUT
I
OL
t
DSTK(on)
Short to V
CC
Hard
CC
OL
OL
Short to V
V
> V
OUT
I
< I
OUT
t
DOL(on)
CC
OL
OL
Figure 14. TJ evolution in overload or short to GND
TJ evolution in
Overload or Short to GND
INPUT
T
J
I
OUT
Self-limitation of fast thermal transients
T
J_START
Power Limitation
I
>
LimH
T
T
TSD
R
< I
T
HYST
LimL
18/40 Doc ID 14472 Rev 3
VND5E050K-EElectrical specifications
2.5 Electrical characteristics curves
Figure 15. Off-state output currentFigure 16. High level input current
Iloff (nA)
700
600
500
400
300
200
100
0
-50 -250255075 100 125 150 175
Off State
Vcc=13V
Vin=Vout=0V
Tc (°C)
Figure 17. Input clamp voltageFigure 18. Input high level
Vicl (V)
7
6,8
6,6
6,4
6,2
5,8
5,6
5,4
5,2
lin=1mA
6
5
-50 - 250255075 100 125 150 175
Tc (°C)
Iih (µA)
5
4,5
3,5
2,5
1,5
0,5
Vin=2.1V
4
3
2
1
0
-50 - 250255075 100 125 150 175
Tc (°C)
Vih (V)
4
3,5
3
2,5
2
1,5
1
0,5
0
-50 - 250255075 100 125 150 175
Tc (°C)
Figure 19. Input low levelFigure 20. Low level STAT_DIS current
Vil (V)
2
1,8
1,6
1,4
1,2
1
0,8
0,6
0,4
0,2
0
-50 - 250255075 100 125 150 175
Tc (°C)
Doc ID 14472 Rev 319/40
Isdl (µA)
5
4,5
3,5
2,5
1,5
0,5
Vsd= 0.9V
4
3
2
1
0
-50 - 250255075 100 125 150 175
Tc (°C)
Electrical specificationsVND5E050K-E
Figure 21. On-state resistance vs T
case
Ron (mOhm)
300
250
200
150
100
50
Iout= 2A
Vcc=13V
0
-50 -250255075 100 125 150 175
Tc (°C)
Figure 23. On-state resistance vs V
CC
Ron (mOhm)
100
80
60
40
20
0
0510152025303540
Tc=150°C
Tc=125°C
Tc=25°C
Tc=-40°C
Tc (°C)
Figure 22. High level STAT_DIS current
Isdh (µA)
5
4,5
3,5
2,5
1,5
0,5
Vsd= 2.1V
4
3
2
1
0
-50 - 250255075 100 125 150 175
Tc (°C)
Figure 24. Low level input current
Iil (µA)
5
4,5
3,5
2,5
1,5
0,5
Vin=0.9V
4
3
2
1
0
-50 - 250255075 100 125 150 175
Tc (°C)
Figure 25. I
LIM
vs T
case
Ilimh (A)
40
35
30
25
20
15
10
Vcc=13V
-50-250255075100125150
Tc (°C)
20/40 Doc ID 14472 Rev 3
Figure 26. Turn-On voltage slope
(dVout/dt )On (V/ms)
1000
900
800
700
600
500
400
300
200
100
0
-50 -250255075 100 125 150 175
Vcc=13V
RI=6.5 Ohm
Tc (°C)
VND5E050K-EElectrical specifications
Figure 27. Undervoltage shutdownFigure 28. Turn-Off voltage slope
Vusd (V)
8
7
6
5
4
3
2
1
0
-50 -250255075 100 125 150 175
Tc (°C)
(dVout/dt )Off (V/ms)
600
550
500
450
Vcc=13V
RI= 6.5 Ohm
400
350
300
250
200
150
100
50
0
-50 -250255075 100 125 150 175
Tc (°C)
Figure 29. STAT_DIS clamp voltageFigure 30. High level STAT_DIS voltage
Vsdcl(V)
10
9
8
Isd = 1 mA
7
6
5
4
3
2
1
0
-50 -250255075 100 125 150 175
Tc (°C)
Figure 31. Low level STAT_DIS voltage
VsdL(V)
3
VsdH(V)
4
3,5
3
2,5
2
1,5
1
0,5
0
-50 - 250255075 100 125 150 175
Tc (°C)
2,5
2
1,5
1
0,5
0
-50 - 250255075 100 125 150 175
Tc (°C)
Doc ID 14472 Rev 321/40
Application informationVND5E050K-E
3 Application information
Figure 32. Application schematic
+5V
μ
R
R
C
R
prot
prot
prot
+5V
STAT_DIS
STATUS
INPUT
V
CC
OUTPUT
GND
R
GND
GND
D
GND
V
Note:Channel 2 has the same internal circuit as channel 1.
3.1 GND protection network against reverse battery
D
ld
3.1.1 Solution 1: resistor in the ground line (R
This can be used with any type of load.
The following is an indication on how to dimension the R
1.R
2. R
where -I
maximum rating section of the device datasheet.
Power Dissipation in R
P
= (-VCC)2/R
D
This resistor can be shared amongst several different HSDs. Please note that the value of
this resistor should be calculated with formula (1) where I
maximum on-state currents of the different devices.
Please note that if the microprocessor ground is not shared by the device ground then the
R
GND
values. This shift will vary depending on how many devices are ON in the case of several
high side drivers sharing the same R
22/40 Doc ID 14472 Rev 3
≤ 600mV / (I
GND
≥ (−VCC) / (-I
GND
is the DC reverse ground pin current and can be found in the absolute
GND
S(on)max
GND
GND
).
)
(when VCC<0: during reverse battery situations) is:
GND
will produce a shift (I
S(on)max
* R
GND
GND
only)
GND
resistor.
GND
S(on)max
becomes the sum of the
) in the input thresholds and the status output
.
VND5E050K-EApplication information
If the calculated power dissipation leads to a large resistor or several devices have to share
the same resistor then ST suggests to utilize Solution 2 (see below).
3.1.2 Solution 2: diode (D
A resistor (R
=1kΩ) should be inserted in parallel to D
GND
) in the ground line
GND
inductive load.
This small signal diode can be safely shared amongst several different HSDs. Also in this
case, the presence of the ground network will produce a shift (≈600mV) in the input
threshold and in the status output values if the microprocessor ground is not common to the
device ground. This shift will not vary if more than one HSD shares the same diode/resistor
network.
3.2 Load dump protection
Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds the
V
max DC rating. The same applies if the device is subject to transients on the VCC line
CC
that are greater than the ones shown in the ISO 7637-2: 2004(E) table.
3.3 MCU I/Os protection
If a ground protection network is used and negative transient are present on the VCC line,
the control pins will be pulled negative. ST suggests to insert a resistor (R
prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between the leakage current of µC µand the
current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC
I/Os.
if the device drives an
GND
prot
) in line to
-V
CCpeak/Ilatchup
≤ R
prot
≤ (V
OHμC-VIH-VGND
) / I
IHmax
Calculation example:
For V
5kΩ ≤ R
Recommended values: R
CCpeak
prot
= - 100V and I
≤ 180kΩ.
latchup
=10kΩ.
prot
≥ 20mA; V
OHµC
≥ 4.5V
Doc ID 14472 Rev 323/40
Application informationVND5E050K-E
3.4 Open-load detection in off-state
Off-state open-load detection requires an external pull-up resistor (RPU) connected between
output pin and a positive supply voltage (V
microprocessor.
The external resistor has to be selected according to the following requirements:
1.no false open-load indication when load is connected: in this case we have to avoid
V
to be higher than V
OUT
V
=(VPU/(RL+RPU))RL<V
OUT
; this results in the following condition
Olmin
Olmin
.
2. no misdetection when load is disconnected: in this case the V
V
Because I
up resistor R
; this results in the following condition RPU<(VPU–V
OLmax
may significantly increase if V
s(OFF)
should be connected to a supply that is switched OFF when the module is in
PU
standby.
) like the +5V line used to supply the
PU
has to be higher than
OUT
)/I
OLmax
is pulled high (up to several mA), the pull-
out
L(off2)
.
The values of V
OLmin
, V
OLmax
and I
are available in the Electrical Characteristics
L(off2)
section.
Figure 33. Open-load detection in off-state
V batt.VPU
V
CC
INPUT
STATUS
DRIVER
+
LOGIC
+
-
VOL
GROUND
R
OUT
I
L(off2)
R
PU
RL
24/40 Doc ID 14472 Rev 3
VND5E050K-EApplication information
3.5 Maximum demagnetization energy (VCC = 13.5V)
Figure 34. Maximum turn-off current versus inductance (for each channel)
100
A
B
10
I (A)
1
0,1110100
C
L (mH)
A: T
B: T
C: T
VIN, I
L
Note:Values are generated with R
= 150°C single pulse
jstart
= 100°C repetitive pulse
jstart
= 125°C repetitive pulse
jstart
In case of repetitive pulses, T
must not exceed the temperature specified above for curves A and B.
DemagnetizationDemagnetizationDemagnetization
=0 Ω.
L
(at beginning of each demagnetization) of every pulse
jstart
t
Doc ID 14472 Rev 325/40
Package and PCB thermal dataVND5E050K-E
4 Package and PCB thermal data
4.1 PowerSSO-12 thermal data
Figure 35. PowerSSO-12 PC board
Note:Layout condition of R
area= 77mm x 86mm,PCB thickness=1.6mm, Cu thickness=70μm (front and back side),
Copper areas: from minimum pad lay-out to 8cm
Figure 36. R
thj-amb
on)
RTHj_amb(°C/ W)
70
65
60
55
50
45
40
35
30
0246810
and Zth measurements (PCB: Double layer, Thermal Vias, FR4
th
2
).
Vs. PCB copper area in open box free air condition (one channel
PCB Cu heatsink area (cm^ 2)
26/40 Doc ID 14472 Rev 3
VND5E050K-EPackage and PCB thermal data
Figure 37. PowerSSO-12 thermal impedance junction ambient single pulse (one
channel on)
ZTH (°C/ W)
100
Footprint
2 cm
8 cm
2
2
10
1
0,1
0,00010,0010,010,11101001000
Time ( s)
Equation 1: pulse calculation formula
Z
THδ
where δ = t
Figure 38. Thermal fitting model of a double channel HSD in PowerSSO-12
R
TH
/T
P
δZ
THtp
1 δ–()+⋅=
(a)
a. The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded
protections (power limitation or thermal cycling during thermal shutdown) are not triggered.
Doc ID 14472 Rev 327/40
Package and PCB thermal dataVND5E050K-E
Table 15.PowerSSO-12 thermal parameters
Area/island (cm2)Footprint28
R1= R7 (°C/W)0.7
R2= R8 (°C/W)2.8
R3 (°C/W)4
R4 (°C/W)887
R5 (°C/W)221510
R6 (°C/W)262015
C1= C7 (W.s/°C)0.001
C2= C8 (W.s/°C)0.0025
C3 (W.s/°C)0.05
C4 (W.s/°C)0.20.10.1
C5 (W.s/°C)0.270.81
C6 (W.s/°C)369
28/40 Doc ID 14472 Rev 3
VND5E050K-EPackage and PCB thermal data
4.2 PowerSSO-24 thermal data
Figure 39. PowerSSO-24 PC board
Note:Layout condition of R
area= 77mm x 86mm, PCB thickness=1.6mm, Cu thickness=70µm (front and back side),
Copper areas: from minimum pad lay-out to 8cm
Figure 40. R
thj-amb
on)
RTHj_amb(°C/W)
55
50
45
40
35
30
0246810
and Zth measurements (PCB: Double layer, Thermal Vias, FR4
th
2
).
Vs. PCB copper area in open box free air condition (one channel
PCB Cu heatsink area (cm^2)
Doc ID 14472 Rev 329/40
Package and PCB thermal dataVND5E050K-E
Figure 41. PowerSSO-24 thermal impedance junction ambient single pulse (one
channel on)
Equation 2: pulse calculation formula
Z
THδ
where δ = t
Figure 42. Thermal fitting model of a double channel HSD in PowerSSO-24
b. The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded
R
TH
/T
P
δZ
THtp
1 δ–()+⋅=
protections (power limitation or thermal cycling during thermal shutdown) are not triggered.
(b)
30/40 Doc ID 14472 Rev 3
VND5E050K-EPackage and PCB thermal data
Table 16.PowerSSO-24 thermal parameters
Area/island (cm2)Footprint28
R1=R7 (°C/W)0.4
R2=R8 (°C/W)2
R3 (°C/W)6
R4 (°C/W)7.7
R5 (°C/W)998
R6 (°C/W)281710
C1=C7 (W.s/°C)0.001
C2=C8 (W.s/°C)0.0022
C3 (W.s/°C)0.025
C4 (W.s/°C)0.75
C5 (W.s/°C)149
C6 (W.s/°C)2.2517
Doc ID 14472 Rev 331/40
Package and packing informationVND5E050K-E
5 Package and packing information
5.1 ECOPACK® packages
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com
ECOPACK
®
is an ST trademark.
5.2 PowerSSO-12 package information
Figure 43. PowerSSO-12 package dimensions
.
32/40 Doc ID 14472 Rev 3
VND5E050K-EPackage and packing information
Table 17.PowerSSO-12 mechanical data
Symbol
Min.Typ.Max.
A1.251.62
A100.1
A21.101.65
B0.230.41
C0.190.25
D4.85.0
E3.84.0
e0.8
H5.86.2
h0.250.5
L0.41.27
Millimeters
k0°8°
X1.92.5
Y3.64.2
ddd0.1
Doc ID 14472 Rev 333/40
Package and packing informationVND5E050K-E
5.3 PowerSSO-24 package information
Figure 44. PowerSSO-24 package dimensions
34/40 Doc ID 14472 Rev 3
VND5E050K-EPackage and packing information
Table 18.PowerSSO-24™ mechanical data
Millimeters
Symbol
MinTypMax
A2.45
A22.152.35
a100.1
b0.330.51
c0.230.32
D10.1010.50
E7.47.6
e0.8
e38.8
F2.3
G0.1
H10.110.5
h0.4
k0°8°
L0.550.85
O1.2
Q0.8
S2.9
T3.65
U1.0
N10°
X4.14.7
Y6.57.1
Doc ID 14472 Rev 335/40
Package and packing informationVND5E050K-E
5.4 PowerSSO-12 packing information
Figure 45. PowerSSO-12 tube shipment (no suffix)
B
C
Base Q.ty100
Bulk Q.ty2000
Tube length (± 0.5)532
A
A1.85
B6.75
C (± 0.1)0.6
All dimensions are in mm.
Figure 46. PowerSSO-12 tape and reel shipment (suffix “TR”)
REEL DIMENSIONS
Base Q.ty2500
Bulk Q.ty2500
A (max)330
B (min)1.5
C (± 0.2)13
F20.2
G (+ 2 / -0)12.4
N (min)60
T (max)18.4
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb. 1986
– Deleted A (min) value
– Changed A (max) value from 2.47 to 2.45
19-Jun-20092
22-Jul-20093
– Changed A2 (max) value from 2.40 to 2.35
– Changed a1 (max) value from 0.075 to 0.1
– Added F row
– Updated k row
Updated Figure 44: PowerSSO-24 package dimensions.
Updated Table 18: PowerSSO-24™ mechanical data:
– Deleted G1 row
– Added O, Q, S, T and U rows
Doc ID 14472 Rev 339/40
VND5E050K-E
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.