The TSH690 is a wide band RF amplifier, designed in advanced bi polar process. At 450 MHz,
it features 28dB gain and +13.5dBm (20 mW) output power at 3V. At 900 MHz, it features 23 dB
gain and +15.5 dBm (35 mW) output power at 3V.
The pin 8 allows a bias current adjust, setting t he
RF output level and the am plifier be haviour. I t allows using the TSH690 from the linear A-class
trough the AB-class to power-down mode.
The TSH690 is suited to drive power amplifiers in
cellular phones (GSM, TDMA) for which the
’turn-on time’ is controlled by a voltage ramp.
The more than 20 m W output power makes the
TSH690 dedicated as output stage for 433MHz
and 868 MHz ISM transmitters.
PACKAGE
D
SO8
(Plastic Micropackage)
PIN CONNECTIONS (top view)
APPLICATIONS
■ 433 MHz and 868 MHz ISM transmitters
■ Telemetering systems
■ Remote controls
■ Cordless T elephones
■ Driver for cellular phones
■ Wide band applications
ORDER CODE
Part NumberTemperature Range
TSH690ID-40, +85°C
D = Small Outline Package (SO) - also available in Tape & Reel (DT)
March 2001
Package
D
•
1/14
TSH690
SCHEMATIC DIAGRAM
ABSOLUTE MAXIMUM RATINGS
SymbolParameterValueUnit
V
, V
CC1
CC2
, V
Supply Voltage & Bias Voltage5.5V
bias
RF inRF Input Power+10dBm
RF outRF Output Power+21dBm
T
oper
T
stg
Operating Free Air Temperature Range-40 to +85°C
Storage Temperature Range-65 to +150°C
OPERATING CONDITIONS
SymbolParameterValueUnit
V
CC1
V
RF
, V
bias
CC2
sr
Supply Voltages1.5 to 5V
Bias Voltage0 to 5V
RF Signal Range40 to 1000MHz
Rth-(j-a): Junction Ambient Thermal Resistance for SO-8 Package140180°C/W
connected to V
CC
, ZL = 50Ω (unless otherwise specified)
bias
ParameterMin.Typ.Max.Unit
29
33
46
53
mA
79
105
TSH690 DISSIPATION CONSIDERATIONS
In order to respect t he d issipat ion limitati on of the
package, you should co nsider the f ollo wing eq uation:
with:
R
= junction ambient thermal resistance
th(j-a)
T
(°C) = max. junction temperature (150°C)
j
(°C) = ambient temperature
T
amb
(W) = maxi mu m dissi pa ted power
P
d
The respect of this condition forms a safe area on
the following figure:
Figure 1 : Dissipation capability vs T ambient
900
V
800
700
600
500
(mW)
MAX
400
Pd
300
200
100
0
-40-30-20-100 102030405060708090
SAFE
AREA
T
(°C)
AMB
= V
BIAS
CC
RTH = 180°C/W
If VBIAS is DC connected to VCC, the operating
temperature can be directly determined without
determining ICC, thanks to the direct reading
curve:
Figure 2 : Maximu m T
160
140
120
100
(°C)
80
AMB
T
60
40
20
0
0123456
SAFE
AREA
amb
vs V
VCC(V)
CC
V
BIAS=VCC
R
THmax
=180°C/W
In applications using a duty cycle, the average dissipation is less than in continuous mode. The following figure gives the relation beetween the dissipated power and the duty cycle.
Figure 3 : Dissipation vs Duty cycle
900
Pd = VCC x ICC x Duty Cycle
800
700
600
500
400
Pd(mW)
300
200
100
0
0 102030405060708090100
Duty Cycle(%)
VCC = 5V
VCC = 4V
VCC = 3V
VCC = 2V
3/14
TSH690
ELECTRICAL CHARACTERISTICS AT 450 MHz
Tamb = 25°C, V
Power gain S21 (P
Output Power 1dB Compression812dBm
3rd Order Intercept Point (f = 430MHz)1622dBm
Reverse Isolation S12 (f = 400MHz)-46dB
Input Return Loss S11-10-15dB
Noise Figure4.5dB
1. All min. and m ax. parameters of this table are garanteed by co rrelation with 900 MHz t ests.
ELECTRICAL CHARACTERISTICS AT 900 MHz
Tamb = 25°C, V
Power gain S21 (P
Output Power at 1dB compression point+12+14.3dBm
Output power, Pin = -7 dBm+10+11.7dBm
3rd Order Intercept Point+25dBm
Reverse Isolation S12-35dB
Input Return Loss S11-14dB
Output Return Loss S22-4.5dB
Noise figure5.4dB
1. All min. and m ax. parameters of this table are garanteed by te st .