1W differential input/output audio power amplifier
Features
■ Differential inputs
■ Near-zero pop & click
■ 100dB PSRR @ 217Hz with grounded inputs
■ Operating range from V
■ 1W rail-to-rail output power @ V
THD = 1%, F = 1kHz, with 8Ω
■ 90dB CMRR @ 217Hz
■ Ultra-low consumption in standby mode (10nA)
■ Selectable standby mode (active low or active
high)
■ Ultra fast startup time: 15ms typ.
■ Available in DFN10 3x3 (0.5mm pitch) &
MiniSO-8
■ All lead-free packages
Description
The TS4994 is an audio power amplifier capable
of delivering 1W of continuous RMS output power
into an 8Ω load @ 5V. Due to its differential input s,
it exhibits outstanding noise immunity.
An external standby mode control reduces the
supply current to less than 10nA. An STBY
MODE pin allows the standby to be active HIGH
or LOW (except in the MiniSO-8 version). An
internal thermal shutdown protection is also
provided, making the de vice capable of sustain ing
short-circuits.
The device is equipped with common mode
feedback circuitry allowing outputs to be always
= 2.5V to 5.5V
CC
CC
load
=5V,
TS4994
with selectable standb y
Pin connections (top view)
TS4994IQT - DFN10
1
1
1
STBY
STBY
2
2
2
V
V
IN -
IN -
3
3
STBY MODE
STBY MODE
BYPASS
BYPASS
3
V
V
4
4
4
IN +
IN +
5
5
5
TS4994IST - MiniSO-8
STBY
biased at V
STBY
BYPASS
BYPASS
/2 regardless of the input common
CC
1
1
V
V
IN-
IN-
2
2
V
V
IN+
IN+
3
3
4
4
mode voltage.
The TS4994 is designed for high quality audio
applications such as mobile phones and requir es
few external components.
Applications
■ Mobile phones (cellular / cordless)
■ Laptop / notebook computers
■ PDAs
■ Portable audio devices
10
10
10
V
V
O+
O+
V
V
9
9
9
DD
DD
N/C
N/C
8
8
8
GND
GND
7
7
7
6
6
6
V
V
O-
O-
V
V
O+
O+
8
8
Vcc
Vcc
7
7
GND
GND
6
6
V
V
5
5
O-
O-
Order codes
Part number Temperature range Package Packing Marking
TS4994IQT
-40°C to +85°C
TS4994IST MiniSO-8 K994
December 2006 Rev 6 1/35
DFN10
Tape & reel
K994
www.st.com
35
Contents TS4994
Contents
1 Application component information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 5
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 Differential configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Gain in typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Common mode feedback loop limitations . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Low and high frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Calculating the influence of mismatching on PSRR performance . . . . . . 23
4.6 CMRR performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.7 Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.8 Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.9 Wake-up time: t
4.10 Shutdown time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.11 Pop performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.12 Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.13 Demoboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
WU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1 DFN10 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 MiniSO-8 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2/35
TS4994 Application component information
1 Application component information
Components Functional description
C
s
C
b
R
feed
R
in
C
in
Supply bypass capacitor that provides power supply filtering.
Bypass capacitor that provides half supply filtering.
Feedback resistor that sets the closed loop gain in conjunction with Rin
AV= closed loop gain = R
feed/Rin
.
Inverting input resistor that sets the closed loop gain in conjunction with R
Optional input capacitor making a high pass filter together with Rin.
(FCL= 1/(2πR inCin).
Figure 1. Typical application, DFN10 version
Rfeed1
20k
Diff. input -
GND
Diff. Input +
Cin1
220nF
Cin2
220nF
Optional
Rin1
+
20k
Rin2
+
20k
+
Cb
1u
GND
Vin-
2
Vin+
4
Bypass
5
Mode Stdby TS4994IQ
1
VCC
9
VCC
-
+
Bias
Standby
GND
7 3
GND
+
GND
Rfeed2
20k
Cs
1u
Vo+
Vo-
.
feed
10
6
8 Ohms
GND GND VCC VCC
3/35
Application component information TS4994
Figure 2. Typical application, MiniSO-8 version
VCC
+
Cs
GND
Rfeed2
20k
1u
Vo+
8
Vo-
5
8 Ohms
TS4994IS
Diff. input -
GND
Diff. Input +
Cin1
220nF
Cin2
220nF
Optional
Rfeed1
20k
Rin1
+
20k
Rin2
+
20k
+
Cb
1u
GND
2
3
4
Vin-
Vin+
Bypass
Stdby
1
7
VCC
-
+
Bias
Standby
GND
6
GND
GNDVCC
4/35
TS4994 Absolute maximum ratings and operating conditions
2 Absolute maximum ratings and operating conditions
Table 1. Absolute maximum ratings
Symbol Parameter Value Unit
(2)
(1)
(3)
6V
GND to V
CC
120
215
V
T
T
R
P
CC
V
oper
stg
T
thja
diss
Supply voltage
Input voltage
i
Operating free air tempe rature range -40 to + 85 °C
Storage temperature -65 to +150 °C
Maximum junction temperature 150 °C
j
Thermal resistance junction to ambient
DFN10
MiniSO-8
Power dissipation internally limited W
Human body model 2 kV
ESD
Machine model 200 V
Latch-up immunity 200 mA
Lead temperature (soldering, 10sec) 260 °C
1. All voltage values are measured with respect to the ground pin.
2. The magnitude of the input signal must never exceed V
3. The device is protected by a thermal shutdown active at 150°C.
Table 2. Operating conditions
+ 0.3V / GND - 0.3V.
CC
V
°C/W
Symbol Parameter Value Unit
V
CC
Supply voltage 2.5 to 5.5 V
Standby mode voltage input:
V
SM
Standby active LOW
Standby active HIGH
=GND
V
SM
V
SM=VCC
Standby voltage input:
V
T
STBY
SD
R
L
Device ON (VSM= GND) or device OFF (VSM=VCC)
Device OFF (V
= GND) or device ON (VSM=VCC)
SM
Thermal shutdown temperature 150 °C
Load resistor ≥ 8 Ω
1.5 ≤ V
≤ V
GND
STBY
STBY
≤ V CC
≤ 0.4
(1)
Thermal resistance junction to ambient
R
thja
DFN10
MiniSO-8
1. The minimum current consumption (I
temperature range.
2. When mounted on a 4-layer PCB.
(2)
) is guaranteed when V
STBY
80
190
=GND or VCC (i.e. supply rails) for the whole
STBY
V
V
°C/W
5/35
Electrical characteristics TS4994
3 Electrical characteristics
Table 3. Electrical characteristics for VCC = +5V, GND = 0V, T
= 25°C (unless otherwise
amb
specified)
Symbol Parameter Min. Typ. Max. Unit
I
CC
I
STBY
V
oo
V
ICM
P
out
THD + N
PSRR
CMRR
SNR
Supply current
No input signal, no load
Standby current
No input signal, V
No input signal, V
= VSM = GND, RL = 8Ω
STBY
= VSM = VCC, RL = 8Ω
STBY
Differential output offset voltage
No input signal, RL = 8Ω
Input common mode voltage
CMRR ≤ -60dB
Output power
THD = 1% Max, F= 1kHz, RL = 8Ω
Total harmonic distortion + noise
=850mW rms, AV=1, 20Hz ≤ F ≤ 20kHz, R L=8Ω
P
out
Power supply rejection ratio with inputs grounded
F = 217Hz, R = 8Ω, A V = 1, Cin = 4.7μ F, Cb =1μF
IG
V
ripple
= 200mV
PP
Common mode rejection ratio
F = 217Hz, R
= 200mV
V
ic
= 8Ω, A V = 1, Cin = 4.7μ F, Cb =1μF
L
PP
Signal-to-noise ratio (A-weighted filter, A
RL = 8Ω, THD +N < 0.7%, 20Hz ≤ F ≤ 20kHz
= 2.5)
V
(1)
47m A
10 1000 nA
0.1 10 mV
0.6 V
-0.9 V
CC
0.8 1 W
0.5 %
100 dB
90 dB
100 dB
GBP
Gain bandwidth product
R
= 8Ω
L
Output voltage noise, 20Hz ≤ F ≤ 20kHz, R L = 8Ω
Unweighted, A
A-weighted, A
Unweighted, A
V
N
A-weighted, A
Unweighted, A
A-weighted, A
= 1
V
= 1
V
= 2.5
V
= 2.5
V
= 7.5
V
= 7.5
V
Unweighted, Standby
A-weighted, Standby
t
WU
1. Dynamic measurements - 20*log(rms(V
2. Transition time from standby mode to fully operational amplifier.
Wake-up time
Cb =1μF
(2)
)/rms (V
out
ripple
)). V
ripple
6/35
2M H z
6
5.5
12
10.5
33
28
1.5
1
15 ms
is the super-imposed sinus signal relative to VCC.
μ V
RMS
TS4994 Electrical characteristics
Table 4. Electrical characteristics for VCC = +3.3V (all electrical values are guaranteed with
correlation measurements at 2.6V and 5V), GND = 0V, T
= 25°C (unless otherwise
amb
specified)
Symbol Parameter Min. Typ. Max. Unit
I
CC
I
STBY
V
oo
V
ICM
P
out
THD + N
PSRR
CMRR
SNR
Supply current no input signal, no load 3 7 mA
Standby current
No input signal, V
No input signal, V
= VSM = GND, RL = 8Ω
STBY
= VSM = VCC, RL = 8Ω
STBY
Differential output offset voltage
No input signal, RL = 8Ω
Input common mode voltage
CMRR ≤ -60dB
Output power
THD = 1% max, F= 1kHz, R
= 8Ω
L
Total harmonic distortion + noise
= 300mW rms, AV = 1, 20Hz ≤ F ≤ 20kHz, R L = 8Ω
P
out
Power supply rejection ratio with inputs grounded
F = 217Hz, R = 8Ω, A V = 1, Cin = 4.7μ F, Cb =1μF
IG
V
ripple
= 200mV
PP
0.6 V
300 380 mW
(1)
10 1000 nA
0.1 10 mV
-0.9 V
CC
0.5 %
100 dB
Common mode rejection ratio
F = 217Hz, R
= 200mV
V
ic
Signal-to-noise ratio (A-weighted filter, A
RL = 8Ω, THD +N < 0.7%, 20Hz ≤ F ≤ 20kHz
= 8Ω, A V = 1, Cin = 4.7μ F, Cb =1μF
L
PP
= 2.5)
V
90 dB
100 dB
GBP
Gain bandwidth product
R
= 8Ω
L
Output voltage noise, 20Hz ≤ F ≤ 20kHz, R L = 8Ω
Unweighted, A
V
= 1
A-weighted, AV = 1
V
N
A-weighted, A
Unweighted, A
A-weighted, A
Unweighted, A
= 2.5
V
= 2.5
V
= 7.5
V
= 7.5
V
Unweighted, Standby
A-weighted, Standby
t
WU
1. Dynamic measurements - 20*log(rms(V
2. Transition time from standby mode to fully operational amplifier.
Wake-up time
Cb =1μF
(2)
)/rms (V
out
ripple
)). V
ripple
2M H z
6
5.5
12
10.5
33
28
1.5
1
15 ms
is the super-imposed sinus signal relative to VCC.
μ V
RMS
7/35
Electrical characteristics TS4994
Table 5. Electrical characteristics for VCC = +2.6V, GND = 0V, T
= 25°C (unless otherwise
amb
specified)
Symbol Parameter Min. Typ. Max. Unit
I
CC
I
STBY
V
V
ICM
P
out
THD + N
PSRR
CMRR
SNR
GBP
V
t
WU
Supply current
No input signal, no load
Standby current
No input signal, V
No input signal, V
Differential output offset voltage
oo
No input signal, R
= VSM = GND, RL = 8Ω
STBY
= VSM = VCC, RL = 8Ω
STBY
= 8Ω
L
Input common mode voltage
CMRR ≤ -60dB
Output power
THD = 1% max, F= 1kHz, RL = 8Ω
Total harmonic distortion + noise
= 225mW rms, AV = 1, 20Hz ≤ F ≤ 20kHz, R L = 8Ω
P
out
Power supply rejection ratio with inputs grounded
F = 217Hz, R = 8Ω, A V = 1, Cin = 4.7μ F, Cb =1μF
IG
V
= 200mV
ripple
PP
Common mode rejection ratio
F = 217Hz, R
Vic = 200mV
= 8Ω, A V = 1, Cin = 4.7μ F, Cb =1μF
L
PP
Signal-to-noise ratio (A-weighted filter, A
= 8Ω, THD +N < 0.7%, 20Hz ≤ F ≤ 20kHz
R
L
Gain bandwidth product
= 8Ω
R
L
Output voltage noise, 20Hz ≤ F ≤ 20kHz, R L = 8Ω
Unweighted, AV = 1
A-weighted, A
V
= 1
Unweighted, AV = 2.5
N
A-weighted, A
Unweighted, A
A-weighted, A
= 2.5
V
= 7.5
V
= 7.5
V
Unweighted, Standby
A-weighted, Standby
Wake-up time
(2)
Cb =1μF
= 2.5)
V
(1)
37m A
10 1000 nA
0.1 10 mV
0.6 V
- 0.9 V
CC
200 250 mW
0.5 %
100 dB
90 dB
100 dB
2M H z
6
5.5
12
10.5
33
28
1.5
1
15 ms
μ V
RMS
1. Dynamic measurements - 20*log(rms(V
2. Transition time from standby mode to fully operational amplifier.
)/rms (V
out
ripple
)). V
ripple
8/35
is the super-imposed sinus signal relative to VCC.
TS4994 Electrical characteristics
012345
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
Standby mode=0V
Standby mode=5V
Vcc = 5V
No load
Tamb=25°C
Current Consumption (mA)
Standby Voltage (V)
0.0 0.6 1.2 1.8 2.4
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Standby mode=0V
Standby mode=2.6V
Vcc = 2.6V
No load
Tamb=25° C
Current Consumption (mA)
Standby Voltage (V)
Figure 3. Current consumption vs. power
supply voltage
4.0
No load
Tamb=25°C
3.5
3.0
2.5
2.0
1.5
1.0
Current Consumption (mA)
0.5
0.0
012345
Power Supply Voltage (V)
Figure 5. Current consumption vs. power
supply voltage
3.5
3.0
2.5
Standby mode=0V
Figure 4. Current consumption vs. standby
voltage
Figure 6. Current consumption vs. standby
voltage
2.0
1.5
1.0
Current Consumption (mA)
0.5
0.0
0.0 0.6 1.2 1.8 2.4 3.0
Standby mode=3.3V
Standby Voltage (V)
Figure 7. Differential DC output voltage vs.
common mode input voltage
1000
Av = 1
Tamb = 25°C
100
Vcc=2.5V
10
Voo (mV)
1
0.1
0.01
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Common Mode Input Voltage (V)
Vcc = 3.3V
No load
Tamb=25° C
Vcc=3.3V
Vcc=5V
Figure 8. Power dissipation vs. output power
0.6
RL=8
Ω
0.4
0.2
Power Dissipation (W)
0.0
0.0 0.2 0.4 0.6 0.8 1.0
9/35
RL=16
Ω
Output Power (W)
Vcc=5V
F=1kHz
THD+N<1%
Electrical characteristics TS4994
Figure 9. Power dissipation vs. output powe r Figure 10. Power dissipation vs. output power
0.3
RL=8
Ω
0.2
0.1
Power Dissipation (W)
RL=16
Ω
Vcc=3.3V
F=1kHz
0.0
0.0 0.1 0.2 0.3 0.4
THD+N<1%
Output Power (W)
Figure 11. Output power vs. power supply
voltage
1.0
Cb = 1μF
F = 1kHz
0.8
BW < 125kHz
Tamb = 25°C
0.6
0.4
8
Ω
16
Ω
0.20
Vcc=2.6V
F=1kHz
THD+N<1%
0.15
RL=8
Ω
0.10
0.05
Power Dissipation (W)
0.00
0.0 0.1 0.2 0.3
RL=16
Ω
Output Power (W)
Figure 12. Output power vs. power supply
voltage
1.50
1.25
1.00
0.75
0.50
Cb = 1μF
F = 1kHz
BW < 125kHz
Tamb = 25°C
8
Ω
16
Ω
0.2
32
Output power @ 1% THD + N (W)
0.0
2.5 3.0 3.5 4.0 4.5 5.0
Ω
Vcc (V)
0.25
Output power @ 10% THD + N (W)
0.00
2.5 3.0 3.5 4.0 4.5 5.0
Vcc (V)
Figure 13. Output power vs. load resistance Figure 14. Power derating curves
1.0
THD+N=1%
Cb = 1 F
0.8
0.6
Vcc=5V
Vcc=4.5V
Vcc=4V
F = 1kHz
BW < 125kHz
Tamb = 25°C
0.4
Output power (W)
0.2
Vcc=3.5V
0.0
881 21 6 16 20 2424 28 3232
Vcc=3V
Vcc=2.5V
Load Resistance
1.5
with 4 layers PCB
1.0
0.5
AMR Value
DFN10 Package Power Dissipation (W)
0.0
0 25 50 75 100 125
Ambiant Temperature ( C)
32
Ω
10/35
TS4994 Electrical characteristics
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
-200
-160
-120
-80
-40
0
Gain
Phase
Gain (dB)
Frequency (kHz)
Vcc = 5V
ZL = 8Ω + 500pF
Tamb = 25°C
Phase (°)
Figure 15. Power derating curves Figure 16. Open loop gain vs. frequency
0.6
Nominal Value
0.4
0.2
MiniSO8 Package Power Dissipation (W)
0.0
AMR Value
0 25 50 75 100 125
Ambiant Temperature ( C)
Figure 17. Open loop gain vs. frequency Figure 18. Open loop gain vs. frequency
0
60
Gain
40
20
Gain (dB)
0
Phase
-40
-80
-120
Phase (°)
60
Gain
40
20
Gain (dB)
0
Phase
0
-40
-80
-120
Phase (°)
Vcc = 3.3V
-20
ZL = 8Ω + 500pF
Tamb = 25°C
-40
0.1 1 10 100 1000 10000
Frequency (kHz)
-160
-200
Vcc = 2.6V
-20
ZL = 8Ω + 500pF
Tamb = 25°C
-40
0.1 1 10 100 1000 10000
Frequency (kHz)
-160
-200
Figure 19. Closed loop gain vs. frequency Figure 20. Closed loop gain vs. frequency
10
Gain
0
-10
-20
Gain (dB)
Vcc = 5V
-30
Av = 1
ZL = 8Ω + 500pF
Tamb = 25°C
-40
0.1 1 10 100 1000 10000
Frequency (kHz)
Phase
0
-40
-80
-120
-160
-200
10
Gain
0
-10
Phase (°)
-20
Gain (dB)
Vcc = 3.3V
-30
Av = 1
ZL = 8Ω + 500pF
Tamb = 25°C
-40
0.1 1 10 100 1000 10000
Frequency (kHz)
Phase
11/35
0
-40
-80
-120
-160
-200
Phase (°)