ST TS4984 User Manual

TS4984
2 x 1W Stereo audio power amplifier
with active low standby mode
Operating from VCC=2.2V to 5.5V
1W output power per channel @ V
CC
=5V,
THD+N=1%, RL=8
10nA standby current
High SNR: 100dB(A) typ.
Near-zero pop & click
Available in QFN16 4x4 mm, 0.5mm pitch,
leadfree package
Description
The TS4984 has been designed for top of the class stereo audio applications. Thanks to its compact and power dissipation efficient QFN package, it suits various applications.
With a BTL configuration, this Audio Power Amplifier is capable of delivering 1W per channel of continuous RMS output power into an 8 @ 5V.
An externally controlled standby mode control reduces the supply current to less than 10nA per channel. The device also features an internal thermal shutdown protection.
load
Pin Connections (top view)
TS4984IQ — TQFN16 4x4mm
VO-L
IN- L
IN- L
IN+ L
IN+ L
BYPASS L
BYPASS L
NC
NC
VO-L
VO+L
VO+L
16 15 14
16 15 14
16 15 14
1
1
2
2
3
3
4
4
56 7
56 7
GND1 GND2 VO+R VO-R
GND1 GND2 VO+R VO-R
VCC1
VCC1
VCC2
VCC2
13
13
13
8
8
12
12
11
11
10
10
STBY
STBY
BYPASS R
BYPASS R
IN+ R
IN+ R
9
9
IN- R
IN- R
The gain of each channel can be configured by external gain setting resistors.
Applications
Cellular mobile phones
Notebook computers & PDAs
LCD monitors & TVs
Portable audio devices
Order Codes
Part Number Temperature Range Package Packaging Marking
TS4984IQT -40, +85°C QFN Tape & Reel K984
January 2005 Revision 1 1/29
TS4984 Typical Application

1 Typical Application

Figure 1 shows a schematic view of a typical audio amplification application using the TS4984. Table 1
describes the components used in this typical application.
Figure 1: Typical application schematic
Cfeed-L
Rfeed-L
22k
VCC
+
Cs 1u
Input R
GND
GND
Wire opti onal Internal connection
Cin-LInput L
100n
Cin-R
100n
145
Rin-L
22k
VCC
1 2 3
+
Cb 1u
Rin-R
22k
1
2
12
3
10
9
11
Cfeed-R
Rfeed-R
22k
IN-L
IN+L
Standby
Bypass L
IN+R
IN-R
Bypass R
VCC1
-
+
GND1
-
AV = -1
+
-
AV = -1
+
GND2 VCC2
6 13
Bias
+
-
VO-L
VO+L
VO-R
VO+R
TS4984
U1
16
15
8
7
Neg. Output L
Pos. Output L
Neg. Output R
Pos. Output R
Table 1: External component descriptions
Components Functional Description
Inverting input resistors which sets the closed loop gain in conjunction with R also form a high pass filter with C
(fc = 1 / (2 x Pi x RIN x CIN)).
IN
Input coupling capacitors which blocks the DC voltage at the amplifier input terminal.
Feedback resistors which sets the closed loop gain in conjunction with RIN.
Supply Bypass capacitor which provides power supply filtering.
Bypass pin capacitor which provides half supply filtering.
Closed loop gain in BTL configuration = 2 x (R
/ RIN) on each channel.
FEED
2/29
R
IN L,R
C
IN L,R
R
FEED L,R
C
C
A
V L, R
S
B
. These resistors
feed
Absolute maximum ratings and operating conditions TS4984

2 Absolute maximum ratings and operating conditions

Table 2: Key parameters and their absolute maximum ratings
Symbol Parameter Value Unit
V
T
T
R
ESD
Supply voltage
CC
V
Input Voltage
i
Operating Free Air Temperature Range
oper
Storage Temperature
stg
T
Maximum Junction Temperature
j
Thermal Resistance Junction to Ambient
thja
QFN16 120
P
Power Dissipation
d
Human Body Model
ESD Machine Model 200 V
Latch-up Immunity 200mA
1) All voltages values are measured with respect to the ground pin
2) The magnitude of input signal must never exceed VCC + 0.3V / GND - 0.3V
3) The voltage value is measured with respect from pin to supply
1
2
6V
GND to V
CC
V
-40 to + 85 °C
-65 to +150 °C
150 °C
°C/W
Internally Limited
3
2kV
Table 3: Operating conditions
Symbol Parameter Value Unit
V
V
V
R
OUTGND
T
R
1) When mounted on a 4-layer PCB with via
2) When mounted on a 2 layer PCB
Supply Voltage
CC
Common Mode Input Voltage Range 1.2V to V
ICM
Standby Voltage Input: Device ON
STB
Device OFF
Load Resistor
R
L
Resistor Output to GND (V
Thermal Shutdown Temperature
SD
STB
= GND)
Thermal Resistance Junction to Ambient
1
QFN16
THJA
QFN16
2
2.2 to 5.5 V
CC
V
1.35
GND V
STB
STB
V
0.4
CC
4
1M
150 °C
45 85
V
V
°C/W
3/29
TS4984 Electrical characteristics

3 Electrical characteristics

Table 4: Electrical characteristics for VCC= +5V, GND = 0V, T
= 25°C (unless otherwise
amb
specified)
Symbol Parameter Min. Typ. Max. Unit
I
CC
I
STANDBY
Voo
P
THD + N
PSRR
Crosstalk
T
WU
T
STDB
V
STDBH
V
STDBL
Φ
GM
GBP
Supply Current No input signal, no load 7.4 12
Standby Current
1
No input signal, Vstdby = GND, RL = 8
Output Offset Voltage No input signal, RL = 8
Output Power
out
THD = 1% Max, F = 1kHz, RL = 8
110
0.8 1 W
Total Harmonic Distortion + Noise Po = 1Wrms, Av = 2, 20Hz
Power Supply Rejection Ratio
F 20kHz, RL = 8
2
RL = 8Ω, Av = 2, Vripple = 200mVpp, Input Grounded F = 217Hz F = 1kHz
Channel Separation, R
= 8
L
55 55
F = 1kHz F = 20Hz to 20kHz
Wake-Up Time (Cb = 1µF)
Standby Time (Cb = 1µF)
Standby Voltage Level High
Standby Voltage Level Low
Phase Margin at Unity Gain
M
R
= 8Ω, CL = 500pF
L
Gain Margin
= 8Ω, CL = 500pF
R
L
Gain Bandwidth Product
= 8
R
L
10 1000 nA
0.2 %
62 64
-92
-70
90 130 ms
10 µs
1.3 V
0.4 V
65 Degrees
15 dB
1.5 MHz
mA
mV
dB
dB
1) Standby mode is activated when Vstdby is tied to Gnd.
2) All PSRR data limits are guaranteed by production sampling tests Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoid al signal superimposed upon Vcc.
4/29
Electrical characteristics TS4984
Table 5: Electrical characteristics for VCC = +3.3V, GND = 0V, T
= 25°C (unless otherwise
amb
specified)
Symbol Parameter Min. Typ. Max. Unit
I
CC
I
STANDBY
Voo
P
THD + N
PSRR
Crosstalk
T
WU
T
STDB
V
STDBH
V
STDBL
Φ
GM
GBP
Supply Current No input signal, no load 6.6 12
Standby Current
1
No input signal, Vstdby = GND, RL = 8
Output Offset Voltage No input signal, RL = 8
Output Power
out
THD = 1% Max, F = 1kHz, RL = 8
110
300 450 mW
Total Harmonic Distortion + Noise Po = 400mWrms, Av = 2, 20Hz
Power Supply Rejection Ratio
F 20kHz, RL = 8
2
RL = 8Ω, Av = 2, Vripple = 200mVpp, Input Grounded F = 217Hz F = 1kHz
Channel Separation, R
= 8
L
55 55
F = 1kHz F = 20Hz to 20kHz
Wake-Up Time (Cb = 1µF)
Standby Time (Cb = 1µF)
Standby Voltage Level High
Standby Voltage Level Low
Phase Margin at Unity Gain
M
= 8Ω, CL = 500pF
R
L
Gain Margin R
= 8Ω, CL = 500pF
L
Gain Bandwidth Product
L
= 8
R
10 1000 nA
0.1 %
61 63
-94
-68
110 140 ms
10 µs
1.2 V
0.4 V
65 Degrees
15 dB
1.5 MHz
mA
mV
dB
dB
1) Standby mode is activated when Vstdby is tied to Gnd
2) All PSRR data limits are guaranteed by production sampling tests Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon Vcc.
5/29
TS4984 Electrical characteristics
Table 6: Electrical characteristics for VCC = +2.6V, GND = 0V, T
= 25°C (unless otherwise
amb
specified)
Symbol Parameter Min. Typ. Max. Unit
I
CC
I
STANDBY
Voo
Pout
THD + N
PSRR
Crosstalk
T
WU
T
STDB
V
STDBH
V
STDBL
Φ
GM
GBP
Supply Current No input signal, no load 6.2 12
Standby Current
1
No input signal, Vstdby = GND, RL = 8
Output Offset Voltage No input signal, RL = 8
Output Power THD = 1% Max, F = 1kHz, RL = 8
110
200 250 mW
Total Harmonic Distortion + Noise Po = 200mWrms, Av = 2, 20Hz
Power Supply Rejection Ratio
F 20kHz, RL = 8
2
RL = 8Ω, Av = 2, Vripple = 200mVpp, Input Grounded F = 217Hz F = 1kHz
Channel Separation, R
= 8
L
55 55
F = 1kHz F = 20Hz to 20kHz
Wake-Up Time (Cb = 1µF)
Standby Time (Cb = 1µF)
Standby Voltage Level High
Standby Voltage Level Low
Phase Margin at Unity Gain
M
= 8Ω, CL = 500pF
R
L
Gain Margin R
= 8Ω, CL = 500pF
L
Gain Bandwidth Product
= 8
R
L
10 1000 nA
0.1 %
60 62
-95
-68
125 150 ms
10 µs
1.2 V
0.4 V
65 Degrees
15 dB
1.5 MHz
mA
mV
dB
dB
1) Standby mode is activated when Vstdby is tied to Gnd
2) All PSRR data limits are guaranteed by production sampling tests Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon Vcc.
6/29
Electrical characteristics TS4984
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
100
-200
-160
-120
-80
-40
0
Gain
Phase
Gain (dB)
Frequency (kHz)
Vcc = 5V CL = 560pF Tamb = 25°C
Phase (°)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
100
-200
-160
-120
-80
-40
0
Gain
Phase
Gain (dB)
Frequency (kHz)
Vcc = 3.3V CL = 560pF Tamb = 25°C
Phase (°)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
100
-200
-160
-120
-80
-40
0
Gain
Phase
Gain (dB)
Frequency (kHz)
Vcc = 2.6V CL = 560pF Tamb = 25°C
Phase (°)
Figure 2: Open loop frequency response
60
40
20
0
Gain (dB)
-20
-40
-60
0.1 1 10 100 1000 10000
Phase
Vcc = 5V RL = 8
Tamb = 25°C
Frequency (kHz)
Gain
Figure 3: Open loop frequency response
60
40
20
0
Gain (dB)
-20
-40
-60
0.1 1 10 100 1000 10000
Vcc = 3.3V RL = 8
Tamb = 25°C
Phase
Gain
Frequency (kHz)
0
-40
-80
-120
-160
-200
0
-40
-80
-120
-160
-200
Figure 5: Open loop frequency response
Phase (°)
Figure 6: Open loop frequency response
Phase (°)
Figure 4: Open loop frequency response
60
40
20
0
Gain (dB)
-20
-40
-60
0.1 1 10 100 1000 10000
Vcc = 2.6V RL = 8
Tamb = 25°C
Phase
Gain
Frequency (kHz)
Figure 7: Open loop frequency response
0
-40
-80
Phase (°)
-120
-160
-200
7/29
TS4984 Electrical characteristics
Figure 8: Power supply rejection ratio (PSRR)
vs. frequency
0
Vripple = 200mVpp
-10
Av = 2 Input = Grounded
-20
Cb = Cin = 1µF RL >= 4
-30
-40
PSRR (dB)
-50
-60
-70
Tamb = 25°C
100 1000 10000 100000
Vcc :
2.2V
2.6V
3.3V 5V
Frequency (Hz)
Figure 9: Power supply rejection ratio (PSRR)
vs. frequency
0
Vripple = 200mVpp
-10
Av = 5 Input = Grounded Cb = Cin = 1µF
-20
RL >= 4
Tamb = 25°C
-30
PSRR (dB)
-40
-50
-60
100 1000 10000 100000
Vcc :
2.2V
2.6V
3.3V 5V
Frequency (Hz)
Figure 11: Power supply rejection ratio (PSRR)
vs. frequency
0
-10
-20
-30
PSRR (dB)
-40
-50
-60
Vripple = 200mVpp Av = 2 Input = Grounded Cb = 0.1µF, Cin = 1µF RL >= 4
Tamb = 25°C
Vcc = 5, 3.3, 2.5 & 2.2V
100 1000 10000 100000
Frequency (Hz)
Figure 12: Power supply rejection ratio
(PSRR) vs. frequency
0
Vripple = 200mVpp
-10
Rfeed = 22kΩ Input = Floating
-20
Cb = 1µF RL >= 4
-30
-40
PSRR (dB)
-50
-60
-70
-80
Tamb = 25°C
100 1000 10000 100000
Vcc = 2.2, 2.6, 3.3, 5V
Frequency (Hz)
Figure 10: Power supply rejection ratio
(PSRR) vs. frequency
0
8/29
Vripple = 200mVpp Av = 10
-10
Input = Grounded Cb = Cin = 1µF
-20
RL >= 4
Tamb = 25°C
-30
PSRR (dB)
-40
-50
100 1000 10000 100000
Vcc :
2.2V
2.6V
3.3V 5V
Frequency (Hz)
Figure 13: Power supply rejection ratio
(PSRR) vs. frequency
0
Vripple = 200mVpp
-10
Rfeed = 22kΩ Input = Floating
-20
Cb = 0.1µF RL >= 4
-30
-40
PSRR (dB)
-50
-60
-70
-80
Tamb = 25°C
100 1000 10000 100000
Vcc = 2.2, 2.6, 3.3, 5V
Frequency (Hz)
Electrical characteristics TS4984
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
-60
-50
-40
-30
-20
-10
0
Vcc = 3.3V Vripple = 200mVpp RL = 8
Cb = 1µF AV = 5 Tamb = 25°C
PSRR (dB)
Differential DC Output Voltage (V)
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
-50
-40
-30
-20
-10
0
Vcc = 3.3V Vripple = 200mVpp RL = 8
Cb = 1µF AV = 10 Tamb = 25°C
PSRR (dB)
Differential DC Output Voltage (V)
Figure 14: Power supply rejection ratio
(PSRR) vs. DC output voltage
0
-10
-20
-30
-40
PSRR (dB)
-50
-60
-70
-5-4-3-2-1012345
Vcc = 5V Vripple = 200mVpp RL = 8
Cb = 1µF AV = 2 Tamb = 25°C
Differential DC Output Voltage (V)
Figure 15: Power supply rejection ratio
(PSRR) vs. DC output voltage
0
-10
-20
-30
PSRR (dB)
-40
Vcc = 5V Vripple = 200mVpp RL = 8
Cb = 1µF AV = 5 Tamb = 25°C
Figure 17: Power supply rejection ratio
(PSRR) vs. DC output voltage
0
-10
-20
-30
-40
PSRR (dB)
-50
-60
-70
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Vcc = 3.3V Vripple = 200mVpp RL = 8
Cb = 1µF AV = 2 Tamb = 25°C
Differential DC Output Voltage (V)
Figure 18: Power supply rejection ratio
(PSRR) vs. DC output voltage
-50
-60
-5-4-3-2-1012345
Differential DC Output Voltage (V)
Figure 16: Power supply rejection ratio
(PSRR) vs. DC output voltage
0
Vcc = 5V
-10
-20
-30
PSRR (dB)
-40
-50
-5-4-3-2-1012345
Vripple = 200mVpp RL = 8
Cb = 1µF AV = 10 Tamb = 25°C
Differential DC Output Voltage (V)
Figure 19: Power supply rejection ratio
(PSRR) vs. DC output voltage
9/29
Loading...
+ 20 hidden pages