ST TDA7564B User Manual

4 x 50W multifunction quad power amplifier
Features
Multipower BCD technology
MOSFET output power stage
New high efficiency (class SB)
High output power capability 4x28 W/4 Ω @
14.4 V, 1 kHz, 10 % THD, 4x50 W max, power
Max. output power 4x72 W/2 Ω
Full I
Full fault protection
DC offset detection
Four independent short circuit protection
Clipping detector (2 %/10 %)
Linear thermal shutdown with multiple thermal
ESD protection
Description
The TDA7564B is a new BCD technology quad bridge type of car radio amplifier in Flexiwatt25 /

Table 1. Device summary

2
C bus driving: – Standby – Independent front/rear soft play/mute – Selectable gain (for low noise line output
function)
– High efficiency enable/disable
2
–I
C bus digital diagnostics (including AC
and DC load detection)
warning
TDA7564B
with built-in diagnostics feature
Flexiwatt25
(Vertical)
PowerSO36
(slug up)
PowerSO36 package specially intended for car radio applications.
Thanks to the DMOS output stage the TDA7564B has a very low distortion allowing a clear powerful sound. Among the features, its superior efficiency performance coming from the internal exclusive structure, makes it the most suitable device to simplify the thermal management in high power sets.
The dissipated output power under average listening condition is in fact reduced up to 50% when compared to the level provided by conventional class AB solutions. This device is equipped with a full diagnostics array that communicates the status of each speaker through
2
the I
C bus.
Flexiwatt25
(Horizontal)
Order code Package Packing
TDA7564B Flexiwatt25 (vertical) Tube
TDA7564BH Flexiwatt25 (horizontal) Tube
TDA7564BPD PowerSO36 Tube
TDA7564BPDTR PowerSO36 Tape and reel
December 2009 Doc ID 12734 Rev 3 1/34
www.st.com
1
Contents TDA7564B
Contents
1 Block diagrams and application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Diagnostics functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1 Turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Permanent diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Output DC offset detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 AC diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5 Multiple faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1 Faults availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1 I2C programming/reading sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7 Fast muting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2
8I
C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.1 Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.2 Start and stop conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.3 Byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.4 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
9 Software specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
10 Examples of bytes sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2/34 Doc ID 12734 Rev 3
TDA7564B Contents
11 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
12 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Doc ID 12734 Rev 3 3/34
List of tables TDA7564B
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 3. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 5. Double fault table for turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 6. IB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 7. IB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 8. DB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 9. DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 10. DB3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 11. DB4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 12. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4/34 Doc ID 12734 Rev 3
TDA7564B List of figures
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. Flexiwatt25 pins connection diagram (top of view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 4. PowerSO36 (slug-up) pins connection diagram (top of view) . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 5. Quiescent current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 6. Output power vs. supply voltage (4 W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 7. Output power vs. supply voltage (2 W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 8. Distortion vs. output power (4 W, STD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 9. Distortion vs. output power (4 Ω, HI-EFF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 10. Distortion vs. output power (2 Ω, STD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 11. Distortion vs. frequency (4 W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 12. Distortion vs. frequency (2 W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 13. Crosstalk vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 14. Supply voltage rejection vs. freq. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 15. Power dissipation and efficiency vs. output power (4 W, STD, SINE) . . . . . . . . . . . . . . . . 13
Figure 16. Power dissipation and efficiency vs. output power (4 Ω, Hi-eff, SINE) . . . . . . . . . . . . . . . . 13
Figure 17. Power dissipation vs. average output power (audio program simulation, 4 W) . . . . . . . . . 13
Figure 18. Power dissipation vs. average output power (audio program simulation, 2 W) . . . . . . . . . 13
Figure 19. Turn - on diagnostic: working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 20. SVR and output behavior (case 1: without turn-on diagnostic). . . . . . . . . . . . . . . . . . . . . . 14
Figure 21. SVR and output pin behavior (case 2: with turn-on diagnostic) . . . . . . . . . . . . . . . . . . . . . 15
Figure 22. Short circuit detection thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 23. Load detection thresholds - high gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 24. Load detection threshold - low gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 25. Restart timing without diagnostic enable (permanent) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 26. Restart timing with diagnostic enable (permanent). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 27. Current detection high: load impedance |Z| vs. output peak voltage . . . . . . . . . . . . . . . . . 18
Figure 28. Current detection low: load impedance |Z| vs. output peak voltage . . . . . . . . . . . . . . . . . . 18
Figure 29. Thermal foldback diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 30. Data validity on the I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 31. Timing diagram on the I2C bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 32. Acknowledge on the I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 33. Flexiwatt25 (horizontal) mechanical data and package dimensions. . . . . . . . . . . . . . . . . . 30
Figure 34. Flexiwatt25 (vertical) mechanical data and package dimensions. . . . . . . . . . . . . . . . . . . . 31
Figure 35. PowerSO36 (slug up) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . 32
Doc ID 12734 Rev 3 5/34
Block diagrams and application circuit TDA7564B

1 Block diagrams and application circuit

Figure 1. Block diagram

VCC2VCC1
REFERENCE
CLIP
DETECTOR
CD_OUT
THERMAL
PROTECTION
& DUMP
DATACLK
I2CBUS
MUTE1 MUTE2
IN RF
IN RR
IN LF
IN LR

Figure 2. Application circuit

C8
0.1μFC73300μF
DATA
I2C BUS
CLK
C1 0.22μF
IN RF
C2 0.22μF
IN RR
C3 0.22μF
IN LF
C4 0.22μF
IN LR
S-GND
12/26dB
12/26dB
12/26dB
12/26dB
AC_GND RF RR LF
S_GNDTABSVR
Vcc1
620
25
22
15
14
11
Vcc2
SHORT CIRCUIT
PROTECTION &
DIAGNOSTIC
SHORT CIRCUIT
PROTECTION &
DIAGNOSTIC
SHORT CIRCUIT
PROTECTION &
DIAGNOSTIC
SHORT CIRCUIT
PROTECTION &
DIAGNOSTIC
+
17
18
19
­+
21
24
23
­+
9
8
7
­+
5
PW_GND
2
47K
3
-
TAB
1
V
D00AU1212
12
13
16 10 4
C5
1μF
C6
10μF
CD OUT
OUT RF+
OUT RF-
OUT RR+
OUT RR-
OUT LF+
OUT LF-
OUT LR+
OUT LR-
LR
D00AU1211
OUT RF
OUT RR
OUT LF
OUT LR
6/34 Doc ID 12734 Rev 3
TDA7564B Pins description

2 Pins description

Figure 3. Flexiwatt25 pins connection diagram (top of view)

25
24
23
22
20
19
18
17
16
15
Vertical Horizontal
14
13
12
11
10
9
8
7
6
4
3
2
1
DATA
PW_GND RR
OUT RR-
CK
OUT RR+
V
CC2
OUT RF-
PW_GND RF
OUT RF+
AC GND
IN RF
IN RR
S GND
IN LR
IN LF
SVR
OUT LF+
PW_GND LF
OUT LF-
V
CC1
OUT LR+
CD-OUT
OUT LR-
PW_GND LR
TAB
D99AU1037
25
24
23
22
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
4
3
2
1

Figure 4. PowerSO36 (slug-up) pins connection diagram (top of view)

DATA
PW_GND RR
OUT RR-
CK
OUT RR+
V
CC2
OUT RF-
PW_GND RF
OUT RF+
AC GND
IN RF
IN RR
S GND
IN LR
IN LF
SVR
OUT LF+
PW_GND LF
OUT LF-
V
CC1
OUT LR+
CD-OUT
OUT LR-
PW_GND LR
TAB
AU1037_H
VCC
OUT3-
N.C.
N.C.
PWGND
OUT3+
ACGND
IN3
IN4
SGND 1027
IN2
IN1
SVR 1324
OUT1+
PWGND
N.C.
OUT1-
VCC
36
35
34
33
32
31
30
29
28
1
2
3
4
5
6
7
8
9
TAB
CK
N.C.
OUT4+
N.C.
PWGND
VCC
DATA
OUT4-
OUT2-
26
25
11
12
N.C.
VCC
PWGND
23
22
21
20
19
AC00182
14
15
16
17
18
N.C.
OUT2+
N.C.
N.C.
CD
Doc ID 12734 Rev 3 7/34
Electrical specifications TDA7564B

3 Electrical specifications

3.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

Symbol Parameter Value Unit
V
V
T
V
V
peak
V
DATA
I
I
P
stg
Operating supply voltage 18 V
op
DC supply voltage 28 V
S
Peak supply voltage (for t = 50 ms) 50 V
CK pin voltage 6 V
CK
Data pin voltage 6 V
Output peak current (not repetitive t = 100 ms) 8 A
O
Output peak current (repetitive f > 10 Hz) 6 A
O
Power dissipation T
tot
= 70 °C 85 W
case
, TjStorage and junction temperature -55 to 150 °C

3.2 Thermal data

Table 3. Thermal data

Symbol Parameter PowerSO Flexiwatt Unit
R
th j-case
Thermal resistance junction-to-case Max. 1 1 °C/W

3.3 Electrical characteristics

Refer to the test circuit,
VS = 14.4 V; RL = 4 Ω; f = 1 kHz;
GV = 30 dB; T
= 25 °C; unless
amb
otherwise specified.
Table 4. Electrical characteristics
Symbol Parameter Test condition Min. Typ. Max. Unit
Power amplifier
V
S
I
d
P
O
8/34 Doc ID 12734 Rev 3
Supply voltage range - 8 - 18 V
Total quiescent drain current - - 170 300 mA
Output power
Max. power (VS = 15.2 V, square wave input (2 Vrms))
THD = 10 % THD = 1 %
-50-W
25 20
28 22
-W
TDA7564B Electrical specifications
Table 4. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
R
P
O
Output power
= 2 Ω; EIAJ (VS = 13.7V)
L
= 2 Ω; THD 10%
R
L
= 2 Ω; THD 1%
R
L
RL = 2 Ω; max. power
55 40 32 60
68 50 40 75
-W
THD Total harmonic distortion
Cross talk f = 1 kHz to 10 kHz, Rg = 600 Ω 50 60 - dB
C
T
R
G
ΔG
G
ΔG
E
E
Input impedance - 60 100 130 kΩ
IN
Voltage gain 1 - 25 26 27 dB
V1
Voltage gain match 1 - -1 - 1 dB
V1
Voltage gain 2 - 11 12 13 dB
V2
Voltage gain match 2 - -1 - 1 dB
V2
Output noise voltage 1 Rg = 600 Ω 20 Hz to 22 kHz - 35 100 µV
IN1
Output noise voltage 2
IN2
SVR Supply Voltage Rejection
= 1 W to 10 W; STD mode
P
O
HE MODE; PO = 1.5 W HE MODE; P
G
= 12 dB; STD mode
V
= 0.1 to 5 V
V
O
= 8 W
O
RMS
Rg = 600 Ω; GV = 12 dB 20 Hz to 22 kHz
f = 100 Hz to 10 kHz; V
= 600 Ω
R
g
= 1 Vpk;
r
0.02
-
0.015
0.15
- 0.02 0.05 %
-123V
50 60 - dB
0.1
0.1
0.5
BW Power bandwidth - 100 - - kHz
A
V
V
CMRR Input CMRR V
T
T
CD
CD
Standby attenuation - 90 110 - dB
SB
I
Standby current V
SB
Mute attenuation - 80 100 - dB
A
M
Offset voltage Mute and play -100 0 100 mV
OS
Min. supply mute threshold - 6.5 7 8 V
AM
Turn ON Delay D2/D1 (IB1) 0 to 1 - 20 40 ms
ON
Turn OFF Delay D2/D1 (IB1) 1 to 0 - 20 40 ms
OFF
Clip det high leakage current CD off - 0 5 μA
LK
Clip det sat. voltage CD on; ICD = 1 mA - 150 300 mV
SAT
= 0 - 25 50 µA
st-by
= 1 Vpk-pk; Rg = 0 Ω -55-dB
CM
D0 (IB1) = 1 5 10 15 %
CD
Clip det THD level
THD
D0 (IB1) = 0 1 2 3 %
%
Doc ID 12734 Rev 3 9/34
Electrical specifications TDA7564B
Table 4. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Turn on diagnostics 1 (Power amplifier mode)
Short to GND det. (below this
Pgnd
Pvs
Pnop
Lsc Shorted load det. - - 0.5 Ω
Lop Open load det. 85 - - Ω
Lnop Normal load det. 1.5 - 45 Ω
Turn on diagnostics 2 (Line driver mode)
Pgnd
limit, the output is considered in short circuit to GND)
Short to Vs det. (above this limit, the output is considered in short circuit to V
)
S
Normal operation thresholds. (Within these limits, the output is considered without faults).
Short to GND det. (below this limit, the output is considered in short circuit to GND)
--1.2V
Vs -1.2 - - V
Power amplifier in standby
1.8 - Vs -1.8 V
Power amplifier in standby - - 1.2 V
Short to Vs det. (above this limit,
Pvs
the output is considered in short
- Vs -1.2 - - V
circuit to VS)
Normal operation thresholds.
Pnop
(Within these limits, the output is
- 1.8 - Vs -1.8 V
considered without faults).
Lsc Shorted load det. - - - 2 Ω
Lop Open load det. - 330 - - Ω
Lnop Normal load det. - 7 - 180 Ω
Permanent diagnostics 2 (Power amplifier mode or line driver mode)
Short to GND det. (below this
Pgnd
limit, the output is considered in
--1.2V
short circuit to GND)
Power amplifier in mute or play, one or more short circuits protection activated
Vs -1.2 - - V
Pvs
Short to Vs det. (above this limit, the output is considered in short circuit to VS)
Normal operation thresholds.
Pnop
(within these limits, the output is
1.8 - Vs -1.8 V
considered without faults).
Pow. amp. mode - - 0.5 Ω
L
I
Shorted load det.
SC
Offset detection
V
O
Normal load current detection VO < (VS - 5)pk IB2 (D7) = 0 500 - - mA
NLH
Line driver mode - - 2 Ω
Power amplifier in play, AC Input signals = 0
±1.5 ±2 ±2.5 V
10/34 Doc ID 12734 Rev 3
TDA7564B Electrical specifications
(V)
(V)
(V)
)
Table 4. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
I
I
I
2
I
C bus interface
S
V
Normal load current detection VO < (VS - 5)pk IB2 (D7) = 1 250 - mA
NLL
Open load current detection VO < (VS - 5)pk IB2 (D7) = 0 - - 250 mA
OLH
Open load current detection VO < (VS - 5)pk IB2 (D7) =1 - - 125 mA
OLL
Clock frequency - - - 400 kHz
CL
V
Input low voltage - - - 1.5 V
IL
Input high voltage - 2.3 - - V
IH

3.4 Electrical characteristics curves

Figure 5. Quiescent current vs. supply
voltage
Id (mA)
250
230
210
190
170
150
130
110
90
70
Vin = 0
NO LOADS
8 1012141618
Vs
Figure 6. Output power vs. supply voltage
Po (W)
70
65
60
55
50
45
40
35
30
25
20
15
10
5
8 9 10 11 12 13 14 15 16 17 18
(4 Ω)
RL = 4 Ohm f = 1 KHz
Po-max
THD = 10 %
THD = 1 %
Vs
Figure 7. Output power vs. supply voltage
(2 Ω)
Po (W)
100
90
80
70
60
50
40
30
20
10
RL = 2 Ohm f = 1 KHz
8 9 10 11 12 13 14 15 16
Vs
Po-max
THD = 10 %
THD = 1 %
Doc ID 12734 Rev 3 11/34
Figure 8. Distortion vs. output power (4 Ω,
STD)
THD (%)
10
STANDARD MODE Vs = 14.4 V RL = 4 Ohm
1
f = 10 KHz
0.1
f = 1 KHz
0.01
0.1 1 10 Po (W
Electrical specifications TDA7564B
(W)
(W)
(Hz)
(Hz)
(Hz)
(Hz)
Figure 9. Distortion vs. output power (4 Ω, HI-
EFF)
THD (%)
10
HI-EFF MODE Vs = 14.4 V RL = 4 Ohm
1
f = 10 KHz
0.1
f = 1 KHz
0.01
0.001
0.1 1 10 Po
Figure 10. Distortion vs. output power (2 Ω,
STD)
THD (%)
10
STANDARD MODE Vs = 14.4 V RL = 2 Ohm
1
0.1
0.01
0.1 1 10
f = 10 KHz
f = 1 KHz
Po
Figure 11. Distortion vs. frequency (4 Ω) Figure 12. Distortion vs. frequency (2 Ω)
10
1
THD (%)
STANDARD MODE Vs = 14.4 V RL = 4 Ohm Po = 4 W
10
1
THD (%)
STANDARD MODE Vs = 14.4 V RL = 2 Ohm Po = 8 W
0.1
0.01 10 100 1000 10000
f
0.1
10 100 1000 10000
f

Figure 13. Crosstalk vs. frequency Figure 14. Supply voltage rejection vs. freq.

CROSSTALK (dB)
90
80
70
60
STANDARD MODE RL = 4 Ohm
50
Po = 4 W Rg = 600 Ohm
40
30
20
10 100 1000 10000
f
SVR (dB)
90
80
70
60
50
STD & HE MODE
40
Rg = 600 Ohm Vripple = 1 Vpk
30
20
10 100 1000 10000
f
12/34 Doc ID 12734 Rev 3
TDA7564B Electrical specifications
(W)
(W)
(W)
(W)
Figure 15. Power dissipation and efficiency vs.
output power (4 Ω, STD, SINE)
n
Ptot
n (%)
90
80
70
60
50
40
30
20
10
0
Ptot (W)
90
80
STANDARD MODE Vs = 14.4 V
70
RL = 4 x 4 Ohm f = 1 KHz SINE
60
50
40
30
20
10
0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Po
Figure 17. Power dissipation vs. average
output power (audio program simulation, 4 Ω)
Ptot (W)
45
40
Vs = 14 V RL = 4 x 4 Ohm
35
GAUSSIAN NOISE
30
25
20
15
10
5
0
012345
Po
CLIP
START
STD MODE
HI-EFF MODE
Figure 16. Power dissipation and efficiency vs.
output power (4 Ω, Hi-eff, SINE)
Ptot (W)
90
80
HI-EFF MODE Vs = 14.4 V
70
RL = 4 x 4 Ohm f = 1 KHz SINE
60
50
40
30
20
10
0
0.1 1 10 Po
Ptot
n
n (%)
90
80
70
60
50
40
30
20
10
0
Figure 18. Power dissipation vs. average
output power (audio program simulation, 2 Ω)
Ptot (W)
90
80
Vs = 14 V RL = 4 x 2 Ohm
70
GAUSSIAN NOISE
60
50
40
30
20
10
0
0123456789
Po
CLIP
START
STD MODE
HI-EFF MODE
Doc ID 12734 Rev 3 13/34
Diagnostics functional description TDA7564B

4 Diagnostics functional description

4.1 Turn-on diagnostic

It is activated at the turn-on (standby out) under I2C bus request. Detectable output faults are:
Short to GND
Short to Vs
Short across the speaker
Open speaker
To verify if any of the above misconnections are in place, a subsonic (inaudible) current pulse (Figure 19) is internally generated, sent through the speaker(s) and sunk back.The Turn-on diagnostic status is internally stored until a successive diagnostic pulse is requested (after a I
If the "standby out" and "diag. enable" commands are both given through a single programming step, the pulse takes place first (power stage still in standby mode, low, outputs = high impedance).
Afterwards, when the amplifier is biased, the permanent diagnostic takes place. The previous turn-on state is kept until a short appears at the outputs.
2
C reading).

Figure 19. Turn - on diagnostic: working principle

Vs~5V
Isource
CH+
CH-
Isink
I (mA)
Isource
Isink
~100mS
Measure time
t (ms)
Figure 20 and 21 show SVR and output waveforms at the turn-on (standby out) with and
without turn-on diagnostic.

Figure 20. SVR and output behavior (case 1: without turn-on diagnostic)

Vsvr
Out
Permanent diagnostic
acquisition time (100mS Typ)
Bias (power amp turn-on)
Diagnostic Enable
(Permanent)
FAULT
event
Read Data
t
I2CB DATA
14/34 Doc ID 12734 Rev 3
Permanent Diagnostics data (output)
permitted time
TDA7564B Diagnostics functional description

Figure 21. SVR and output pin behavior (case 2: with turn-on diagnostic)

Vsvr
Out
Turn-on diagnostic
acquisition time (100mS Typ)
Permanent diagnostic acquisition time (100mS Typ)
I2CB DATA
Diagnostic Enable
(Turn-on)
Bias (power amp turn-on)
permitted time
Turn-on Diagnostics data (output)
permitted time
Read Data
Diagnostic Enable
(Permanent)
Permanent Diagnostics data (output)
FAULT
event
permitted time
The information related to the outputs status is read and memorized at the end of the current pulse top. The acquisition time is 100 ms (typ.). No audible noise is generated in the process. As for short to GND / Vs the fault-detection thresholds remain unchanged from 26 dB to 12 dB gain setting. They are as follows:

Figure 22. Short circuit detection thresholds

t
S.C. to GND x S.C. to Vs
0V 1.8V VS-1.8V V
1.2V VS-1.2V
xNormal Operation
D01AU1253
S
Concerning short across the speaker / open speaker, the threshold varies from 26 dB to 12 dB gain setting, since different loads are expected (either normal speaker's impedance or high impedance). The values in case of 26 dB gain are as follows:

Figure 23. Load detection thresholds - high gain setting

S.C. across Load x Open Load
0V 1.5Ω
0.5Ω
45Ω
xNormal Operation
85Ω
AC00060
Infinite
If the line-driver mode (Gv= 12 dB and Line Driver Mode diagnostic = 1) is selected, the same thresholds will change as follows:

Figure 24. Load detection threshold - low gain setting

S.C. across Load x Open Load
0Ω 7Ω 180Ω infinite
2Ω 330Ω
Doc ID 12734 Rev 3 15/34
xNormal Operation
D02AU1340
Diagnostics functional description TDA7564B

4.2 Permanent diagnostics

Detectable conventional faults are:
Short to GND –Short to V – Short across the speaker
The following additional features are provided:
Output offset detection
The TDA7564B has 2 operating statuses:
1. Restart mode. The diagnostic is not enabled. Each audio channel operates independently from each other. If any of the a.m. faults occurs, only the channel(s) interested is shut down. A check of the output status is made every 1 ms (Figure 25). Restart takes place when the overload is removed.
2. Diagnostic mode. It is enabled via I (such to cause the intervention of the short-circuit protection) occurs to the speakers outputs. Once activated, the diagnostics procedure develops as follows (Figure 26):
To avoid momentary re-circulation spikes from giving erroneous diagnostics, a
check of the output status is made after 1ms: if normal situation (no overloads) is detected, the diagnostic is not performed and the channel returns back active.
Instead, if an overload is detected during the check after 1 ms, then a diagnostic
cycle having a duration of about 100 ms is started.
After a diagnostic cycle, the audio channel interested by the fault is switched to
restart mode. The relevant data are stored inside the device and can be read by the microprocessor. When one cycle has terminated, the next one is activated by an I operating time.
To check the status of the device a sampling system is needed. The timing is
chosen at microprocessor level (over half a second is recommended).
S
2
C bus and self activates if an output overload
2
C reading. This is to ensure continuous diagnostics throughout the car-radio
Figure 25. Restart timing without diagnostic enable (permanent) - Each 1mS time, a
sampling of the fault is done
1-2mS
Overcurrent and short
circuit protection intervention
(i.e. short circuit to GND)
1mS 1mS 1mS

Figure 26. Restart timing with diagnostic enable (permanent)

1-2mS 100/200mS 1mS1mS
Overcurrent and short
circuit protection intervention
(i.e. short circuit to GND)
16/34 Doc ID 12734 Rev 3
1mS
Out
t
Short circuit removed
t
Short circuit removed
TDA7564B Diagnostics functional description

4.3 Output DC offset detection

Any DC output offset exceeding ±2 V are signalled out. This inconvenient might occur as a consequence of initially defective or aged and worn-out input capacitors feeding a DC component to the inputs, so putting the speakers at risk of overheating.
This diagnostic has to be performed with low-level output AC signal (or Vin = 0).
The test is run with selectable time duration by microprocessor (from a "start" to a "stop" command):
Start = Last reading operation or setting IB1 - D5 - (offset enable) to 1 – Stop = Actual reading operation
Excess offset is signalled out if persistent throughout the assigned testing time. This feature is disabled if any overloads leading to activation of the short-circuit protection occurs in the process.

4.4 AC diagnostic

It is targeted at detecting accidental disconnection of tweeters in 2-way speaker and, more in general, presence of capacitive (AC) coupled loads.
This diagnostic is based on the notion that the overall speaker's impedance (woofer + parallel tweeter) will tend to increase towards high frequencies if the tweeter gets disconnected, because the remaining speaker (woofer) would be out of its operating range (high impedance). The diagnostic decision is made according to peak output current thresholds, and it is enabled by setting (IB2-D2) = 1. Two different detection levels are available:
High current threshold IB2 (D7) = 0
Iout > 500 mApk = normal status Iout < 250 mApk = open tweeter
Low current threshold IB2 (D7) = 1
Iout > 250 mApk = normal status Iout < 125 mApk = open tweeter
To correctly implement this feature, it is necessary to briefly provide a signal tone (with the amplifier in "play") whose frequency and magnitude are such to determine an output current higher than 500 mApk with IB2(D7)=0 (higher than 250mApk with IB2(D7)=1) in normal conditions and lower than 250 mApk with IB2(D7)=0 (lower than 125 mApk with IB2(D7)=1) should the parallel tweeter be missing.
The test has to last for a minimum number of 3 sine cycles starting from the activation of the AC diagnostic function IB2<D2>) up to the I confirm presence of tweeter, it is necessary to find at least 3 current pulses over the above threadless over all the measuring period, else an "open tweeter" message will be issued.
The frequency / magnitude setting of the test tone depends on the impedance characteristics of each specific speaker being used, with or without the tweeter connected (to be calculated case by case). High-frequency tones (> 10 kHz) or even ultrasonic signals are recommended for their negligible acoustic impact and also to maximize the impedance module's ratio between with tweeter-on and tweeter-off.
Figure 27 shows the load impedance as a function of the peak output voltage and the
relevant diagnostic fields.
Doc ID 12734 Rev 3 17/34
2
C reading of the results (measuring period). To
Diagnostics functional description TDA7564B
This feature is disabled if any overloads leading to activation of the short-circuit protection occurs in the process.

Figure 27. Current detection high: load impedance |Z| vs. output peak voltage

Load |z| (Ohm)
50
Low current detection area
30
D5 = 1 of the DBx byres
20
(Open load)
Iout (peak) <250mA
Iout (peak) >500mA
10
IB2(D7) = 0
5
3
2
1
12345678
High current detection area
(Normal load)
D5 = 0 of the DBx bytes
Vout (Peak)

Figure 28. Current detection low: load impedance |Z| vs. output peak voltage

Load |z| (Ohm)
50
Low current dete ction area
30
D5 = 1 of the DBx byres
20
10
5
3
2
1
0.5
(Open load)
1
1.5
High current detection area
(Normal load)
D5 = 0 of the DBx bytes
2
Vout (Peak)
2.5
3
3.5 4
Iout (peak) <125mA
Iout (peak) >250mA
IB2(D7) = 1
18/34 Doc ID 12734 Rev 3
TDA7564B Multiple faults

5 Multiple faults

When more misconnections are simultaneously in place at the audio outputs, it is guaranteed that at least one of them is initially read out. The others are notified after successive cycles of I This is true for both kinds of diagnostic (turn-on and permanent).
The table below shows all the couples of double-fault possible. It should be taken into account that a short circuit with the 4 ohm speaker unconnected is considered as double fault.

Table 5. Double fault table for turn-on diagnostic

2
C reading and faults removal, provided that the diagnostic is enabled.
S. GND (so) S. GND (sk) S. Vs S. Across L. Open L.
S. GND (so) S. GND S. GND
S. GND (sk) / S. GND S. Vs S. GND Open L. (*)
S. Vs / / S. Vs S. Vs S. Vs
S. Across L. / / / S. Across L. N.A.
Open L. / / / / Open L. (*)
S. GND (so) / S. GND (sk) in the above table make a distinction according to which of the 2 outputs is shorted to ground (test-current source side= so, test-current sink side = sk). More precisely, in Channels LF and RR, so = CH+, sk = CH-; in Channels LR and RF, so = CH-, sk = CH+.
In permanent diagnostic the table is the same, with only a difference concerning open load (*), which is not among the recognizable faults. Should an Open Load be present during the device's normal working, it would be detected at a subsequent Turn on Diagnostic cycle (i.e. at the successive car radio turn-on).

5.1 Faults availability

All the results coming from I2C bus, by read operations, are the consequence of measurements inside a defined period of time. If the fault is stable throughout the whole period, it will be sent out.
S. Vs + S.
GND
S. GND S. GND
To guarantee always resident functions, every kind of diagnostic cycles (turn-on, permanent, offset) will be reactivate after any I
2
C reading operation. So, when the micro reads the I2C, a new cycle will be able to start, but the read data will come from the previous diag. cycle (i.e. The device is in turn-on state, with a short to GND, then the short is removed and micro reads I cycle. If another I to observe a change in diagnostic bytes, two I
2
C. The short to GND is still present in bytes, because it is the result of the previous
2
C reading operation occurs, the bytes do not show the short). In general
Doc ID 12734 Rev 3 19/34
2
C reading operations are necessary.
Thermal protection TDA7564B

6 Thermal protection

Thermal protection is implemented through thermal foldback (Figure 29).
Thermal foldback begins limiting the audio input to the amplifier stage as the junction temperatures rise above the normal operating range. This effectively limits the output power capability of the device thus reducing the temperature to acceptable levels without totally interrupting the operation of the device.
The output power will decrease to the point at which thermal equilibrium is reached. Thermal equilibrium will be reached when the reduction in output power reduces the dissipated power such that the die temperature falls below the thermal foldback threshold. Should the device cool, the audio level will increase until a new thermal equilibrium is reached or the amplifier reaches full power. Thermal foldback will reduce the audio output level in a linear manner.
Three thermal warning are available through the I

Figure 29. Thermal foldback diagram

TH. WARN.
Vout
TH. WARN.
ON
TH. WARN.
ON
ON
2
C bus data.
Vout
CD out
125°
140°
< T
155°
SD
TH. SH. START
(with same input
> T
SD
signal)

6.1 I2C programming/reading sequences

A correct turn on/off sequence respectful of the diagnostic timings and producing no audible noises could be as follows (after battery connection):
Turn-on: (standby out + diag enable) --- 500 ms (min.) --- muting out
Turn-off: muting in --- 20 ms --- (diag disable + standby in) Car radio Installation: diag enable (write) --- 200 ms --- I disappear).
AC test: feed h.f. tone -- AC diag enable (write) --- wait > 3 cycles --- I (repeat I
Offset test: device in play (no signal) -- offset enable - 30ms - I (repeat I
2
C reading until tweeter-off message disappears).
2
C reading until high-offset message disappears).
TH. SH.
END
2
C read (repeat until all faults
2
°C)
Tj (
Tj ( °C)
Tj ( °C)
2
C read
C reading
20/34 Doc ID 12734 Rev 3
TDA7564B Fast muting

7 Fast muting

The muting time can be shortened to less than 1.5ms by setting (IB2) D5 = 1. This option can be useful in transient battery situations (i.e. during car engine cranking) to quickly turnoff the amplifier for avoiding any audible effects caused by noise/transients being injected by preamp stages. The bit must be set back to “0” shortly after the mute transition.
Doc ID 12734 Rev 3 21/34
I2C bus interface TDA7564B

8 I2C bus interface

Data transmission from microprocessor to the TDA7564B and vice versa takes place through the 2 wires I
2
C bus interface, consisting of the two lines SDA and SCL (pull-up
resistors to positive supply voltage must be connected).

8.1 Data validity

As shown by Figure 30, the data on the SDA line must be stable during the high period of the clock. The high and low state of the data line can only change when the clock signal on the SCL line is LOW.

8.2 Start and stop conditions

As shown by Figure 31 a start condition is a high to low transition of the SDA line while SCL is high. The stop condition is a low to high transition of the SDA line while SCL is high.

8.3 Byte format

Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first.

8.4 Acknowledge

The transmitter* puts a resistive high level on the SDA line during the acknowledge clock pulse (see Figure 32). The receiver** the acknowledges has to pull-down (low) the SDA line during the acknowledge clock pulse, so that the SDA line is stable low during this clock pulse.
* Transmitter
–master (μP) when it writes an address to the TDA7564B slave (TDA7564B) when the μP reads a data byte from TDA7564B
** Receiver
slave (TDA7564B) when the μP writes an address to the TDA7564B – master (µP) when it reads a data byte from TDA7564B
Figure 30. Data validity on the I
SDA
SCL
STABLE, DATA
2
DATA LINE
VALID
C bus
CHANGE
DATA
ALLOWED
D99AU1031
22/34 Doc ID 12734 Rev 3
TDA7564B I2C bus interface

Figure 31. Timing diagram on the I2C bus

SCL
2
I
CBUS
SDA
START
Figure 32. Acknowledge on the I
SCL
SDA
START
1
MSB
D99AU1032
2
C bus
23789
D99AU1033
STOP
ACKNOWLEDGMENT
FROM RECEIVER
Doc ID 12734 Rev 3 23/34
Software specifications TDA7564B

9 Software specifications

All the functions of the TDA7564B are activated by I2C interface.
The bit 0 of the "Address byte" defines if the next bytes are write instruction (from µP to TDA7564B) or read instruction (from TDA7564B to µP).
D7 D0
1101100XD8 Hex
X = 0 Write to device X = 1 Read from device
If R/W = 0, the μP sends 2 "Instruction bytes": IB1 and IB2.

Table 6. IB1

Bit Instruction decoding bit
D7 0
D6
D5
D4
D3
Diagnostic enable (D6 = 1) Diagnostic defeat (D6 = 0)
Offset Detection enable (D5 = 1) Offset Detection defeat (D5 = 0)
Front Channel Gain = 26dB (D4 = 0) Gain = 12dB (D4 = 1)
Rear Channel Gain = 26dB (D3 = 0) Gain = 12dB (D3 = 1)
D2
D1
D0
24/34 Doc ID 12734 Rev 3
Mute front channels (D2 = 0) Unmute front channels (D2 = 1)
Mute rear channels (D1 = 0) Unmute rear channels (D1 = 1)
Clip detector 2% (D0 = 0) Clip detector 10% (D0 = 1)
TDA7564B Software specifications

Table 7. IB2

Bit Instruction decoding bit
Current detection threshold
D7
High th (D7 = 0) Low th (D7 =1)
D6 0
D5
D4
D3
D2
Normal muting time (D5 = 0) Fast muting time (D5 = 1) Standby on - Amplifier not working - (D4 = 0)
Standby off - Amplifier working - (D4 = 1) Power amplifier mode diagnostic (D3 = 0)
Line driver mode diagnostic (D3 = 1) Current detection diagnostic enabled (D2 = 1)
Current detection diagnostic defeat (D2 = 0) Right Channels
D1
Power amplifier working in standard mode (D1 = 0) Power amplifier working in high efficiency mode (D1 = 1)
Left Channels
D0
Power amplifier working in standard mode (D0 = 0) Power amplifier working in high efficiency mode (D0 = 1)
If R/W = 1, the TDA7564B sends 4 "Diagnostics Bytes" to μP: DB1, DB2, DB3 and DB4.

Table 8. DB1

Bit Instruction decoding bit
D7 Thermal warning 1 active (D7 = 1) T=155 °C
D6
D5
D4
D3
D2
D1
D0
Diag. cycle not activated or not terminated (D6 = 0) Diag. cycle terminated (D6 = 1) Channel LF Current detection IB2 (D7) = 0 Output peak current < 250 mA - Open load (D5 = 1) Output peak current > 500 mA - Normal load (D5 = 0) Channel LF Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1) Channel LF Normal load (D3 = 0) Short load (D3 = 1) Channel LF Turn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Offset diag.: No output offset (D2 = 0) Output offset detection (D2 = 1) Channel LF No short to Vcc (D1 = 0) Short to Vcc (D1 = 1) Channel LF No short to GND (D1 = 0) Short to GND (D1 = 1)
Channel LF Current detection IB2 (D7) = 1 Output peak current < 125 mA - Open load (D5 = 1) Output peak current > 250 mA - Normal load (D5 = 0)
Doc ID 12734 Rev 3 25/34
Software specifications TDA7564B

Table 9. DB2

Bit Instruction decoding bit
Offset detection not activated (D7 = 0)
D7
Offset detection activated (D7 = 1)
Current sensor not activated (D6 = 0)
D6
Current sensor activated (D6 = 1)
Channel LR Current detection IB2 (D7) = 0
D5
Output peak current < 250 mA - Open load (D5 = 1) Output peak current > 500 mA - Normal load (D5 = 0)
Channel LR Current detection IB2 (D7) = 1 Output peak current < 250 mA - Open load (D5 = 1) Output peak current > 500 mA - Normal load (D5 = 0)
Channel LR
D4
Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1)
Channel LR
D3
Normal load (D3 = 0) Short load (D3 = 1)
Channel LR Turn-on diag.: No open load (D2 = 0)
D2
Open load detection (D2 = 1) Permanent diag.: No output offset (D2 = 0) Output offset detection (D2 = 1)
Channel LR
D1
No short to Vcc (D1 = 0) Short to Vcc (D1 = 1)
Channel LR
D0
No short to GND (D1 = 0) Short to GND (D1 = 1)
26/34 Doc ID 12734 Rev 3
TDA7564B Software specifications

Table 10. DB3

Bit Instruction decoding bit
D7 Standby status (= IB2 - D4)
D6 Diagnostic status (= IB1 - D6)
Channel RF Current detection IB2 (D7) = 0
D5
Output peak current < 250 mA - Open load (D5 = 1) Output peak current > 500 mA - Normal load (D5 = 0)
Channel RF Current detection IB2 (D7) = 1 Output peak current < 250 mA - Open load (D5 = 1) Output peak current > 500 mA - Normal load (D5 = 0)
Channel RF
D4
Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1)
Channel RF
D3
Normal load (D3 = 0) Short load (D3 = 1)
Channel RF Turn-on diag.: No open load (D2 = 0)
D2
Open load detection (D2 = 1) Permanent diag.: No output offset (D2 = 0) Output offset detection (D2 = 1)
Channel RF
D1
No short to Vcc (D1 = 0) Short to Vcc (D1 = 1)
Channel RF
D0
No short to GND (D1 = 0) Short to GND (D1 = 1)
Doc ID 12734 Rev 3 27/34
Software specifications TDA7564B

Table 11. DB4

Bit Instruction decoding bit
D7 Thermal warning 2 active (D7 =1) T=140°C
D6 Thermal warning 3 active (D6 =1) T=125°C
Channel RR Current detection IB2 (D7) = 0
D5
Output peak current < 250 mA - Open load (D5 = 1) Output peak current > 500 mA - Normal load (D5 = 0)
Channel RR Current detection IB2 (D7) = 1 Output peak current < 250 mA - Open load (D5 = 1) Output peak current > 500 mA - Normal load (D5 = 0)
Channel RR
D4
Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1)
Channel RR
D3
Normal load (D3 = 0) Short load (D3 = 1)
Channel RR Turn-on diag.: No open load (D2 = 0)
D2
Open load detection (D2 = 1) Permanent diag.: No output offset (D2 = 0) Output offset detection (D2 = 1)
Channel RR
D1
No short to Vcc (D1 = 0) Short to Vcc (D1 = 1)
Channel RR
D0
No short to GND (D1 = 0) Short to GND (D1 = 1)
28/34 Doc ID 12734 Rev 3
TDA7564B Examples of bytes sequence

10 Examples of bytes sequence

1 - Turn-on diagnostic - Write operation
Start Address byte with D0 = 0 ACK IB1 with D6 = 1 ACK IB2 ACK STOP
2 - Turn-on diagnostic - Read operation
Start Address byte with D0 = 1 ACK DB1 ACK DB2 ACK DB3 ACK DB4 ACK STOP
The delay from 1 to 2 can be selected by software, starting from 1 ms
3a - Turn-on of the power amplifier with 26dB gain, mute on, diagnostic defeat, High eff. mode both channels.
.
Start Address byte with D0 = 0 ACK IB1 ACK IB2 ACK STOP
X000000X XXX1X011
3b - Turn-off of the power amplifier
Start Address byte with D0 = 0 ACK IB1 ACK IB2 ACK STOP
X0XXXXXX XXX0XXXX
4 - Offset detection procedure enable
Start Address byte with D0 = 0 ACK IB1 ACK IB2 ACK STOP
XX1XX11X XXX1X0XX
5 - Offset detection procedure stop and reading operation (the results are valid only for the offset detection bits (D2 of the bytes DB1, DB2, DB3, DB4)
.
Start Address byte with D0 = 1 ACK DB1 ACK DB2 ACK DB3 ACK DB4 ACK STOP
The purpose of this test is to check if a D.C. offset (2V typ.) is present on the outputs, produced by input capacitor with anomalous leakage current or humidity between pins.
The delay from 4 to 5 can be selected by software, starting from 1ms
6 - Current detection procedure start (the AC inputs must be with a proper signal that depends on the type of load)
Start Address byte with D0 = 0 ACK IB1 ACK IB2 ACK STOP
XX01111X XXX1X1XX
Current detection reading operation (the results valid only for the current sensor detection bits - D5 of the bytes DB1, DB2, DB3, DB4)
.
Start Address byte with D0 = 1 ACK DB1 ACK DB2 ACK DB3 ACK DB4 ACK STOP
During the test, a sinus wave with a proper amplitude and frequency (depending on the
loudspeaker under test) must be present. The minimum number of periods that are needed to detect a normal load is 5.
The delay from 6 to 7 can be selected by software, starting from 1ms.
Doc ID 12734 Rev 3 29/34
Package information TDA7564B

11 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK
®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK
®
is an ST trademark.

Figure 33. Flexiwatt25 (horizontal) mechanical data and package dimensions

DIM.
A 4.45 4.50 4.65 0.175 0.177 0.1 83 B 1.80 1.90 2.00 0.070 0.074 0.0 79 C 1.40 0.055 D 2.00 0.079 E 0.37 0.39 0.42 0.014 0.015 0.0 16
F (1) 0.57 0.022
G 0.75 1.00 1.25 0.029 0.040 0.049
G1 23.70 24.00 24.30 0.933 0.945 0.957
H (2) 28 .90 29.23 29.30 1.139 1.150 1.1 53
H1 17. 00 0.669 H2 12. 80 0.503 H3 0.80 0.031
L (2) 21.64 22.04 22.44 0.852 0.868 0.883
L1 10.15 10.5 10.85 0.40 0.413 0.427
L2 (2) 15.50 15.70 15.90 0.610 0.618 0.626
L3 7.70 7.85 7.95 0.303 0.309 0.313 L4 5 0.197 L5 5.15 5.45 5.85 0.203 0.214 0.23 L6 1.80 1.95 2.10 0.070 0.077 0.083
M 2.75 3.00 3.50 0.108 0.118 0.138 M1 4.73 0.186 M2 5.61 0.220
N 2.20 0.086 P 3.20 3.50 3.80 0.126 0.138 0.15
R 1.70 0.067 R1 0.50 0.02 R2 0.30 0.12 R3 1.25 0.049 R4 0.50 0.02
V5˚ (Typ.) V1 3˚ (Typ.) V2 20˚ (Typ.) V3 45˚ (Typ.)
(1): dam-bar protusion not included; (2): moldi ng protusion included
mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
OUTLINE AND
MECHANICAL DATA
Flexiwatt25 (Horizontal)
30/34 Doc ID 12734 Rev 3
7399733 A
TDA7564B Package information

Figure 34. Flexiwatt25 (vertical) mechanical data and package dimensions

DIM.
A 4.45 4.50 4.65 0.175 0.177 0.183 B 1.80 1.90 2.00 0.070 0.074 0.079 C 1.40 0.055 D 0.75 0.90 1.05 0.029 0.035 0.041 E 0.37 0.39 0.42 0.014 0.015 0.016
F (1) 0.57 0.022
G 0.80 1.00 1.20 0.031 0.040 0.047
G1 23.75 24.00 24.25 0.935 0.945 0.955
H (2) 28.90 29.23 29.30 1.139 1.150 1.153
H1 17.00 0.669 H2 12.80 0.503 H3 0.80 0.031
L (2) 22.07 22.47 22.87 0.869 0.884 0.904
L1 18.57 18.97 19.37 0.731 0.747 0.762
L2 (2) 15.50 15. 70 15.90 0.610 0.618 0.626
L3 7.70 7.85 7.95 0.303 0.309 0.313
L4 5 0.197
L5 3. 5 0.138
M 3 .70 4.00 4.30 0.145 0.157 0.169
M1 3.60 4.00 4.40 0.142 0.157 0.173
N 2.20 0.086 O 2 0.079
R 1.70 0.067 R1 0.5 0.02 R2 0.3 0.12 R3 1.25 0.049 R4 0.50 0.019
V5˚ (Tp.) V1 3˚ (Typ.) V2 2 0˚ (Typ.) V3 4 5˚ (Typ.)
(1): dam-bar protusion not included (2): molding pr otusion includ ed
L2
mm inch
MIN. TY P. MAX. MIN. TYP. MAX.
V
B
H
V3
OL3 L4
H3
H1
OUTLINE AND
MECHANICAL DATA
Flexiwatt25 (vertical)
C
V
H2
R3
R4
N
R2
R
L
L1
V2
A
V1
V1
Pin 1
R2
G
G1
F
FLEX25ME
R1
R1 R1
L5
M
D
E
M1
7034862
Doc ID 12734 Rev 3 31/34
Package information TDA7564B

Figure 35. PowerSO36 (slug up) mechanical data and package dimensions

DIM.
A 3.270 - 3.410 0.1287 - 0.1343 A2 3.100 - 3.180 0.1220 - 0.1252 A4 0.800 - 1.000 0.0315 - 0.0394 A5 - 0.200 - - 0.0079 -
a1 0.030 -
b 0.220 - 0.380 0.0087 - 0.0150 c 0.230 - 0.320 0.0091 - 0.0126
D 15.800 - 16.000 0.6220 - 0.6299 D1 9.400 - 9.800 0.3701 - 0.3858 D2 - 1.000 - - 0.0394 -
E 13.900 - 14.500 0.5472 - 0.5709 E1 10.900 - 11.100 0.4291 - 0.4370 E2 - - 2.900 - - 0.1142 E3 5.800 - 6.200 0.2283 - 0.2441 E4 2.900 - 3.200 0.1142 - 0.1260
e - 0.650 - - 0.0256 -
e3 - 11.050 - - 0.4350 -
G 0 - 0.075 0 - 0.0031
H 15.500 - 15.900 0.6102 - 0.6260
h - - 1.100 - - 0.0433 L 0.800 - 1.100 0.0315 - 0.0433
N - - 10˚ - - 10˚
s - -8˚- -8˚
(1) “D and E1” do not include mold flash or protusions.
Mold flash or protusions shall not exceed 0.15mm (0.006”).
(2) No intrusion allowed inwards the leads.
mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
-0.040
0.0012 - -0.0016
OUTLINE AND
MECHANICAL DATA
PowerSO36 (SLUG UP)
32/34 Doc ID 12734 Rev 3
7183931 G
TDA7564B Revision history

12 Revision history

Table 12. Document revision history

Date Revision Changes
14-Sep-2006 1 Initial release.
Add new package and part numbers in Table 1: Device
summary on page 1.
Add PowerSO36 pin connections diagram Figure 4 on page 7. Changed the max. value of the “Lonp” parameter in Ta b le 4 on
22-Jan-2007 2
15-Dec-2009 3
page 8.
Modified Figure 23 on page 15. Add PowerSO36 package information Figure 35 on page 32. Changed the min. and typ. value of the V
Ta bl e 4 .
Updated Ta b l e 3 : T h er m a l d a t a .
Updated Figure 35: PowerSO36 (slug up) mechanical data and
package dimensions on page 32.
parameter in the
M
Doc ID 12734 Rev 3 33/34
TDA7564B
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2009 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
34/34 Doc ID 12734 Rev 3
Loading...