ST TDA7491MV User Manual

25 W mono BTL class-D audio amplifier
Features
20 W continuous output power:
R
= 8 , THD = 10% at V
25 W continuous output power:
R
= 6 , THD = 10% at V
Wide range single supply operation (5 V - 18 V)
High efficiency (η = 90%)
Four selectable, fixed gain settings of
nominally 20 dB, 26 dB, 30 dB and 32 dB
Differential inputs minimize common-mode
noise
Filterless operation
No ‘pop’ at turn-on/off
Standby and mute features
Short-circuit protection
Thermal overload protection
Externally synchronizable
CC
CC
= 18 V
= 16 V
TDA7491MV
PowerSSO-36 with exposed pad down
Description
The TDA7491MV is a mono BTL class-D audio amplifier with single power supply designed for LCD TVs and monitors.
Thanks to the high efficiency and an exposed-pad-down (EPD) package no heatsink is required.
Furthermore, the filterless operation allows a reduction in the external component count.
The TDA7491MV is pin to pin compatible with the TDA7491P, TDA7491LP and TDA7491HV for the left channel as given in Section 6.1 on page 19.

Table 1. Device summary

Order code Operating temp. range Package Packaging
TDA7491MV 0 to 70 °C PowerSSO-36 EPD Tube
TDA7491MV13TR 0 to 70 °C PowerSSO-36 EPD Tape and reel
May 2009 Doc ID 14576 Rev 2 1/28
www.st.com
28
Contents TDA7491MV
Contents
1 Device block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Pin out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 Characterization curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1 Test board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6 Applications circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1 Compatibility with TDA7491 stereo BTL family . . . . . . . . . . . . . . . . . . . . 19
7 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.1 Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.2 Gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.3 Input resistance and capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.4 Internal and external clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.4.1 Master mode (internal clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.4.2 Slave mode (external clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.5 Filterless modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.6 Output low-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.7 Protection function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.8 Diagnostic output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.9 Heatsink requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2/28 Doc ID 14576 Rev 2
TDA7491MV List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin description list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 4. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 5. Electrical specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 6. PowerSSO-36 slug down dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 7. Mode settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 8. Gain settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 9. How to set up SYNCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 10. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Doc ID 14576 Rev 2 3/28
List of figures TDA7491MV
List of figures
Figure 1. Internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Pin connection (top view, PCB view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. Output power vs supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 4. THD vs output power (1 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5. THD vs output power (100 Hz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 6. THD vs Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 7. Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 8. FFT (0 dB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 9. FFT (-60 dB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 10. Closed-loop gain vs frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 11. Power dissipation and efficiency vs output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 12. Attenuation vs mute voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 13. Current consumption vs voltage on pin STBY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 14. Attenuation vs voltage on pin STBY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 15. Power supply rejection ratio vs frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 16. Test board (TDA7491HV) layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 17. PowerSSO-36 slug down outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 18. Applications circuit for class-D amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 19. Standby and mute circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 20. Turn-on/off sequence for minimizing speaker “pop” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 21. Device input circuit and frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 22. Master and slave connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 23. Unipolar PWM output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 24. Typical LC filter for a 8- speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 25. Typical LC filter for a 4- speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 26. Behavior of pin DIAG for various protection conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 27. Power derating curves for PCB used as heatsink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4/28 Doc ID 14576 Rev 2
TDA7491MV Device block diagram

1 Device block diagram

Figure 1 shows the block diagram of the TDA7491MV.

Figure 1. Internal block diagram

Doc ID 14576 Rev 2 5/28
Pin description TDA7491MV

2 Pin description

2.1 Pin out

Figure 2. Pin connection (top view, PCB view)

SUB_GND
NC
NC
NC
NC
NC
NC
NC
NC
OUTN
OUTN
PVCC
PVCC
PGND
PGND
OUTP
OUTP
PGND
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Exposed pad down
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
VSS
SVCC
VREF
SGND
VDDS
GAIN1
GAIN0
SVR
DIAG
SGND
VDDS
SYNCLK
ROSC
INN
INP
MUTE
STBY
VDDPW
6/28 Doc ID 14576 Rev 2
TDA7491MV Pin description

2.2 Pin list

Table 2. Pin description list

Number Name Type Description
1 SUB_GND POWER Connect to the frame
2,3 NC - No internal connection
4,5 NC - No internal connection
6,7 NC - No internal connection
8,9 NC - No internal connection
10,11 OUTN OUT Negative PWM output
12,13 PVCC POWER Power supply
14,15 PGND POWER Power stage ground
16,17 OUTP OUT Positive PWM output
18 PGND POWER Power stage ground
19 VDDPW OUT
3.3 V (nominal) regulator output referred to ground for power stage
20 STBY INPUT Standby mode control
21 MUTE INPUT Mute mode control
22 INP INPUT Positive differential input
23 INN INPUT Negative differential input
24 ROSC OUT Master oscillator frequency-setting pin
25 SYNCLCK IN/OUT Clock in/out for external oscillator
26 VDDS OUT
3.3 V (nominal) regulator output referred to ground for signal blocks
27 SGND POWER Signal ground
28 DIAG OUT Open-drain diagnostic output
29 SVR OUT Supply voltage rejection
30 GAIN0 INPUT Gain setting input 1
31 GAIN1 INPUT Gain setting input 2
32 VDDS POWER To be connected to VDDS (pin 26)
33 SGND POWER Signal ground
34 VREF OUT Half VDDS (nominal) referred to ground
35 SVCC POWER Signal power supply
36 VSS OUT 3.3 V (nominal) regulator output referred to power supply
Doc ID 14576 Rev 2 7/28
Electrical specifications TDA7491MV

3 Electrical specifications

3.1 Absolute maximum ratings

Table 3. Absolute maximum ratings

Symbol Parameter Value Unit
V
CC
T
op
T
j
T
stg
DC supply voltage for pins PVCCA, PVCCB, SVCC 24 V
Operating temperature 0 to 70 °C
Junction temperature -40 to 150 °C
Storage temperature -40 to 150 °C

3.2 Thermal data

Table 4. Thermal data

Symbol Parameter Min Typ Max Unit
R
th j-case
R
th j-amb
1. FR4 with vias to copper area of 9 cm2 (see also Section 7.9: Heatsink requirements on page 26).
Thermal resistance, junction to case - 2 3
Thermal resistance, junction to ambient (mounted on recommended PCB)

3.3 Electrical specifications

Unless otherwise stated, the results in Ta bl e 5 below are given for the conditions: V
=18V, RL (load) = 8 Ω, R
CC
Tamb = 25 °C.

Table 5. Electrical specifications

OSC
(1)
-24-
= R3 = 39 kΩ, C8 = 100 nF, f = 1 kHz, GV = 20 dB, and
°C/W
Symbol Parameter Condition Min Typ Max Unit
V
CC
I
q
I
qSTBY
V
OS
V
OS
I
OCP
T
R
V
j
i
OVP
Supply voltage for pins PVCC, SVCC
Total quiescent Without LC filter - 26 35 mA
Quiescent current in standby - - 2.5 5.0 µA
Output offset voltage Play mode -150 - 150 mV
Output offset voltage Mute mode -60 - 60 mV
Overcurrent protection threshold RL = 0 35- A
Junction temperature at thermal shut-down
Input resistance Differential input 55 60 - k
Overvoltage protection threshold - 19 21 - V
8/28 Doc ID 14576 Rev 2
-5-18V
- - 150 - °C
TDA7491MV Electrical specifications
Table 5. Electrical specifications (continued)
Symbol Parameter Condition Min Typ Max Unit
V
R
P
P
P
P
UVP
dsON
o
o
o
D
Undervoltage protection threshold
Power transistor on resistance
Output power
Output power
Output power
Dissipated power Po = 20 W THD = 10% - 2.0 - W
η Efficiency P
THD Total harmonic distortion P
G
V
Closed loop gain
- --4V
High side - 0.2 -
Low side - 0.2 -
THD = 10% - 20 -
W
THD = 1% - 16 -
R
= 8 Ω, THD = 10%
L
=12V
V
CC
= 8 Ω, THD = 1%
R
L
VCC=12V
R
= 6 Ω, THD = 10%
L
VCC=16V
-9.5-
W
-7.2-
-20-
W
= 6 Ω, THD = 1%
R
L
VCC=16V
= 20 W 80 90 - %
o
= 1 W - 0.1 0.2 %
o
-16-
GAIN0 = L, GAIN1 = L 18 20 22
GAIN0 = L, GAIN1 = H 24 26 28
dB
GAIN0 = H, GAIN1 = L 28 30 32
GAIN0 = H, GAIN1 = H 30 32 34
G
V
eN Total input noise
Gain matching - -1 - 1 dB
A Curve, G
= 20 dB - 20 -
V
µV
f = 22 Hz to 22 kHz - 25 35
SVRR Supply voltage rejection ratio
, T
T
r
f
SW
f
SWR
V
inH
V
inL
A
MUTE
Rise and fall times - - 50 - ns
f
Switching frequency Internal oscillator 290 310 330 kHz
Output switching frequency
Digital input high (H)
Digital input low (L) - - 0.8
Mute attenuation V
fr = 100 Hz, Vr = 0.5 V, C
= 10 µF
SVR
With internal oscillator
With external oscillator
40 50 - dB
(1)
250 - -
(2)
250 - -
2.3 - -
-
= 1 V 60 80 - dB
MUTE
kHz
V
Doc ID 14576 Rev 2 9/28
Electrical specifications TDA7491MV
Table 5. Electrical specifications (continued)
Symbol Parameter Condition Min Typ Max Unit
V
Function mode
Standby, mute and play modes
1. fSW = 106 / ((16 * R
2. f
SW
= f
/ 2 with the frequency of the external oscillator.
SYNCLK
+ 182) * 4) kHz, f
OSC
< 0.5 V, V
STBY
V
> 2.5 V,
STBY
V
< 0.8 V
MUTE
V
> 2.5 V,
STBY
> 2.5 V
V
MUTE
= 2 * fSW with R3 = 39 k (see Figure 18.)
SYNCLK
MUTE
= X
Standby -
Mute -
Play -
10/28 Doc ID 14576 Rev 2
TDA7491MV Characterization curves

4 Characterization curves

The following characterization curves were made using the TDA7491MV demo board. The LC filter for the 8- load uses components of 33 µH and 220 nF.
All other test conditions are given along side the corresponding curves.

Figure 3. Output power vs supply voltage

Output Power vs. Supply Voltage(8 ohm)
Test Condition :
Vcc = 5~18V,
RL = 8 ohm,
Rosc =39kO, Cosc =100nF,
f =1kHz,
Gv =30dB,
Tamb =25
Specification Limit:
Typical:
Vs =18V,Rl = 8 ohm
Po =20W @THD =10%
Po =16W @THD =1%
Output Power vs. Supply Voltage(8 ohm)
22
22 20
20 18
18 16
16 14
14 12
12 10
10
Output Power (W)
Output Power (W)
Rl =8 ohm f =1kHz
8
8 6
6 4
4 2
2 0
0
5 6 7 8 9 101112 131415161718
5 6 7 8 9 101112 131415161718
Supply Voltage (V)
Supply Voltage (V)
THD =10%
THD =1%

Figure 4. THD vs output power (1 kHz)

THD (%)
10
Test Condition:
Vcc =18V,
RL= 8 ohm,
Rosc =39kΩ, Cosc =100nF,
f =1kHz,
Gv =30dB,
Tamb =25
Specification Limit:
Typical:
Po =20W @ THD =10%
5
2
1
0.5
0.2
0.1
0.05
0.02
0.01
0.005 100m 30200m 500m 1 2 5 10 20
Output Power (W)
Doc ID 14576 Rev 2 11/28
Characterization curves TDA7491MV

Figure 5. THD vs output power (100 Hz)

THD (%)
10
Test Condition:
Vcc =18V,
RL= 8 ohm,
Rosc =39kΩ, Cosc =100nF,
f =100Hz,
Gv =30dB,
Tamb =25
Specification Limit:
Typical:
Po =20W @ THD =10%
5
2
1
0.5
0.2
0.1
0.05
0.02
0.01
0.005 100m 30200m 500m 1 2 5 10 20
Output Power (W)

Figure 6. THD vs Frequency

THD (%)
Test Condition:
Vcc =18V,
RL= 8 ohm,
Rosc =39kΩ, Cosc =100nF,
f =1kHz,
Gv =30dB,
Po =1W
Tamb =25
1
0.5
0.2
0.1
0.05
Specification Limit:
Typical: THD<0.5%
0.02
0.01 20 20k50 100 200 500 1k 2k 5k 10k
Frequency (Hz)

Figure 7. Frequency Response

Ampl (dB)
Test Condition:
Vcc =18V,
RL= 8 ohm,
Rosc =39kΩ, Cosc =100nF,
f =1kHz,
Gv =30dB,
Po =1W
Tamb =25
Specification Limit:
Max: +/-3dB
@20Hz to 20kHz
+2
+1
-0
-1
-2
-3
-4
-5 10 30k20 50 100 200 500 1k 2k 5k 10k
Frequency (Hz)
12/28 Doc ID 14576 Rev 2
TDA7491MV Characterization curves

Figure 8. FFT (0 dB)

FFT (dB)
+10
Test Condition:
Vcc =18V,
RL= 8 ohm,
Rosc =39kΩ, Cosc =100nF,
f = 1kHz,
Gv =30dB,
Po =1W
Tamb =25
Specification Limit:
Typical: >60dB
for the harmonic frequency
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
20 20k50 100 200 500 1k 2k 5k 10k
Frequency (Hz)

Figure 9. FFT (-60 dB)

FFT (dB)
+0
Test Condition:
Vcc =18V,
RL= 8 ohm,
Rosc =39kΩ, Cosc =100nF,
f =1kHz,
Gv =30dB,
Po = -60dB (@ 1W =0dB)
Tamb =25
Specification Limit:
Typical: > 90dB
for the harmonic frequency
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
20 20k50 100 200 500 1k 2k 5k 10k
Frequency (Hz)

Figure 10. Closed-loop gain vs frequency

5
Test Condition :
Vcc = 18V,
RL = 8 ohm,
Rosc =39kO, Cosc =100nF,
0dB@f=1kHz, Po=1w, Gv=32dB,
Tamb =25
+0.
Gain=32dB
0
-
5
-0.
1
-
5
-1.
d
2
-
B r
5
-2.
A
3
-
5
-3.
4
-
-4.5
-5 20 30k50 100 200 500 1k 2k 5k 10k 20k
Gain=26dB
Gain=30dB
Gain=22dB
Vcc=18V,
Rload=8ohm,
0dB@f=1kHz, Po=1w, Gv=32dB
TDA7491MV 8ohm Closed-loop gain vs F req.at27
Hz
Doc ID 14576 Rev 2 13/28
Characterization curves TDA7491MV

Figure 11. Power dissipation and efficiency vs output power

Power dissipation & Efficiency vs Output power
Test Condition :
Vcc = 18V,
RL = 8 ohm,
Rosc =39kO, Cosc =100nF,
f =1kHz,
Gv =30dB,
Tamb =25
Efficiency (%)
Efficiency (%)
90
90
80
80
70
70
60
60
50
50
40
40
30
30
20
20
10
10
Power dissipation & Efficiency vs Output power
Vcc=18V
Rload=8ohm
Gain=30dB
f=1kHz
0
0
0 5 10 15 20
0 5 10 15 20
Output power per channel (W)
Output power per channel (W)
4
4
3.5
3.5
3
3
2.5
2.5
2
2
1.5
1.5
1
1
0.5
0.5
0
0
Dissipation Power (W)
Dissipation Power (W)

Figure 12. Attenuation vs mute voltage

Attenuation vs Mute voltage
Test Condition :
Vcc = 18V,
RL = 8 ohm,
Rosc =39kO, Cosc =100nF,
0dB@f =1kHz, Po=1w
Gv =30dB,
Tamb =25
10
10
0
0
-10
-10
-20
-20
-30
-30
-40
-40
-50
-50
-60
-60
Attenuation (dB)
Attenuation (dB)
-70
-70
-80
-80
-90
-90 0 0.5 1 1.5 2 2.5 3 3.5
0 0.5 1 1.5 2 2.5 3 3.5
Attenuation vs Mute voltage
Vcc=18V
Rload=8ohm
Gain=30dB
0dB@f=1kHz,Po=1w
Mute voltage (V)
Mute voltage (V)

Figure 13. Current consumption vs voltage on pin STBY

Test Condition :
Vcc = 18V,
RL = 8 ohm,
Rosc =39kO, Cosc =100nF,
Vin=0,
Gv =30dB,
Tamb =25
14/28 Doc ID 14576 Rev 2
30
30
25
25
20
20
15
15
10
10
Iquiescent (mA)
Iquiescent (mA)
5
5
0
0
0 0.5 1 1.5 2 2.5 3 3.5
0 0.5 1 1.5 2 2.5 3 3.5
Iquiescent vs Standby voltage
Iquiescent vs Standby voltage
Vcc=18V
Rload=8ohm
Gain=30dB
Vin=0
Standby voltage (V)
Standby voltage (V)
TDA7491MV Characterization curves

Figure 14. Attenuation vs voltage on pin STBY

Attenuation vs Standby voltage
Test Condition :
Vcc = 5~18V,
RL = 8 ohm,
Rosc =39k
O, Cosc =100nF,
0dB@f=1kHz, Po=1w,
Gv =30dB,
Tamb =25
10
10
0
0
-10
-10
-20
-20
-30
-30
-40
-40
-50
-50
-60
-60
-70
-70
-80
-80
Attenuation (dB)
Attenuation (dB)
-90
-90
-100
-100
-110
-110
-120
-120
-130
-130
00.5 11.5 22.5 33.5
00.5 11.5 22.5 33.5
Attenuation vs Standby voltage
Vcc=18V
Rload=8ohm
Gain=30dB
0dB@f=1kHz,Po=1W
Standby voltage (V)
Standby voltage (V)

Figure 15. Power supply rejection ratio vs frequency

+0
Test Condition :
Vcc = 18V,
RL = 8 ohm,
Rosc =39k
O, Cosc =100nF,
Vin=0,
Gv =30dB,
Tamb =25
d
B
r
A
T
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100 20 20k50 100 2 00 500 1k 2k 5k 10k
Ripple frequency=100Hz
Ripple voltage=500mV
Hz
Doc ID 14576 Rev 2 15/28
Characterization curves TDA7491MV

4.1 Test board

Figure 16. Test board (TDA7491HV) layout

16/28 Doc ID 14576 Rev 2
TDA7491MV Package mechanical data

5 Package mechanical data

The TDA7491MV comes in a 36-pin PowerSSO package with exposed pad down.
Figure 17 below shows the package outline and Tab le 6 gives the dimensions.

Figure 17. PowerSSO-36 EPD outline drawing

h x 45°
Doc ID 14576 Rev 2 17/28
Package mechanical data TDA7491MV

Table 6. PowerSSO-36 EPD dimensions

Dimensions in mm Dimensions in inches
Symbol
Min Typ Max Min Typ Max
A 2.15 - 2.47 0.085 - 0.097
A2 2.15 - 2.40 0.085 - 0.094
a1 0.00 - 0.10 0.000 - 0.004
b 0.18 - 0.36 0.007 - 0.014
c 0.23 - 0.32 0.009 - 0.013
D 10.10 - 10.50 0.398 - 0.413
E 7.40 - 7.60 0.291 - 0.299
e - 0.5 - - 0.020 -
e3 - 8.5 - - 0.335 -
F - 2.3 - - 0.091 -
G- - 0.10 - - 0.004
H 10.10 - 10.50 0.398 - 0.413
h- - 0.40 - - 0.016
k 0 - 8 degrees 0 - 8 degrees
L 0.60 - 1.00 0.024 - 0.039
M - 4.30 - - 0.169 -
N - - 10 degrees - - 10 degrees
O - 1.20 - - 0.047 -
Q - 0.80 - - 0.031 -
S - 2.90 - - 0.114 -
T - 3.65 - - 0.144 -
U - 1.00 - - 0.039 -
X 4.10 - 4.70 0.161 - 0.185
Y 6.50 - 7.10 0.256 - 0.280
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK®
®
is an ST trademark.
18/28 Doc ID 14576 Rev 2
TDA7491MV Applications circuit

6 Applications circuit

Figure 18. Applications circuit for class-D amplifier

TDA7491MV
Input settings for gain:
GAIN0 : GAIN1 Nominal gain
0 V : 0 V 20 dB 0 V : 3.3 V 26 dB
3.3 V : 0 V 30 dB
3.3 V : 3.3 V 32 dB
Input settings for standby, mute and play:
STBY : MUTE Mode
0 V : 0 V Standby 0 V : 3.3 V Standby
3.3 V : 0 V Mute
3.3 V : 3.3 V Play

6.1 Compatibility with TDA7491 stereo BTL family

TDA7491MV mono BTL analog class-D amplifier is derived from the TDA7491 stereo analog class-D BTL family. TDA7491MV has only the left channel of the stereo BTL family.
In order to guarantee the pin to pin compatibility when moving the application from stereo to mono, it is necessary to connect the right channel inputs (pins 32 and 33 of TDA7491 BTL family) to V
and GND, that is, pin 32 to VDDS and pin 33 to SGND.
CC
Doc ID 14576 Rev 2 19/28
Application information TDA7491MV

7 Application information

7.1 Mode selection

The three operating modes of the TDA7491MV are set by the two inputs STBY (pin 20) and MUTE (pin 21).
z Standby mode: all circuits are turned off, very low current consumption.
z Mute mode: inputs are connected to ground and the positive and negative PWM
outputs are at 50% duty cycle.
z Play mode: the amplifiers are active.
The protection functions of the TDA7491MV are realized by pulling down the voltages of the STBY and MUTE inputs shown in Figure 19. The input current of the corresponding pins must be limited to 200 µA.

Table 7. Mode settings

Mode Selection STBY MUTE
Standby L
Mute H
Play H H
(1)
(1)
X (don’t care)
L
1. Drive levels defined in Table 5: Electrical specifications on page 8

Figure 19. Standby and mute circuits

0 V
0 V
Standby
3.3 V
Mute
3.3 V
R2 30 k
R4 30 k
C7
2.2 µF
C15
2.2 µF
STBY
TDA7491MV
MUTE

Figure 20. Turn-on/off sequence for minimizing speaker “pop”

20/28 Doc ID 14576 Rev 2
TDA7491MV Application information

7.2 Gain setting

The gain of the TDA7491MV is set by the two inputs, GAIN0 (pin 30) and GAIN1 (pin 31). Internally, the gain is set by changing the feedback resistors of the amplifier.

Table 8. Gain settings

GAIN0 GAIN1 Nominal gain, Gv (dB)
0020
0126
1030
1132

7.3 Input resistance and capacitance

The input impedance is set by an internal resistor Ri = 60 k (typical). An input capacitor (Ci) is required to couple the AC input signal.
The equivalent circuit and frequency response of the input components are shown in
Figure 21. For Ci = 220 nF the high-pass filter cut-off frequency is below 20 Hz:
fc = 1 / (2 * π * Ri * Ci)

Figure 21. Device input circuit and frequency response

Rf
Input signal
Input
Ci
pin
Ri
Doc ID 14576 Rev 2 21/28
Application information TDA7491MV

7.4 Internal and external clocks

The clock of the class-D amplifier can be generated internally or can be driven by an external source.
If two or more class-D amplifiers are used in the same system, it is recommended that all devices operate at the same clock frequency. This can be implemented by using one TDA7491MV as master clock, while the other devices are in slave mode (that is, externally clocked. The clock interconnect is via pin SYNCLK of each device. As explained below, SYNCLK is an output in master mode and an input in slave mode.

7.4.1 Master mode (internal clock)

Using the internal oscillator, the output switching frequency, fSW, is controlled by the resistor, R
fSW = 106 / ((16 * R
where R
In master mode, pin SYNCLK is used as a clock output pin, whose frequency is:
f
SYNCLK
For master mode to operate correctly then resistor R below in Ta bl e 9 .
, connected to pin ROSC:
OSC
OSC
is in kΩ.
OSC
= 2 * fSW
+ 182) * 4) kHz
must be less than 60 k as given
OSC

7.4.2 Slave mode (external clock)

In order to accept an external clock input the pin ROSC must be left open, that is, floating. This forces pin SYNCLK to be internally configured as an input as given in Ta bl e 9 .
The output switching frequency of the slave devices is:
f
= f
SW
SYNCLK
Table 9. How to set up SYNCLK
Master R
Slave Floating (not connected) Input
Figure 22. Master and slave connection
/ 2
Mode ROSC SYNCLK
ROSC SYNCLK
Cosc 100 nF
< 60 k Output
OSC
Master Slave
TDA7491MV
Output
Rosc 39 k
TDA7491MV
SYNCLK ROSC
Input
22/28 Doc ID 14576 Rev 2
TDA7491MV Application information

7.5 Filterless modulation

The output modulation scheme of the BTL is called unipolar pulse width modulation (PWM). The differential output voltages change between 0 V and +V This is in contrast to the traditional bipolar PWM outputs which change between +V and -VCC.
An advantage of this scheme is that it effectively doubles the switching frequency of the differential output waveform. The OUTP and OUTN are in the same phase when the input is zero, then the switching current is low and the loss in the load is small. In practice, a short delay is introduced between these two outputs in order to avoid the BTL output switching at the same time.
TDA7491MV can be used without a filter before the speaker, because the frequency of the TDA7491MV output is beyond the audio frequency, the audio signal can be recovered by the inherent inductance of the speaker and natural filter of the human ear.

Figure 23. Unipolar PWM output

INP
INN
and between 0 V and -VCC.
CC
CC
OUTP
OUTN
Differential OUT
Doc ID 14576 Rev 2 23/28
Application information TDA7491MV

7.6 Output low-pass filter

To avoid EMI problems, it may be necessary to use a low-pass filter before the speaker. The cutoff frequency should be larger than 22 kHz and much lower than the output switching frequency. It is necessary to choose the L-C component values depending on the loud speaker impedance. Some typical values, which give a cut-off frequency of 27 kHz, are shown in Figure 24 and Figure 25 below.
Figure 24. Typical LC filter for a 8- speaker
Figure 25. Typical LC filter for a 4- speaker
24/28 Doc ID 14576 Rev 2
TDA7491MV Application information

7.7 Protection function

The TDA7491MV is fully protected against overvoltages, undervoltages, overcurrents and thermal overloads as explained here.
Overvoltage protection (OVP)
If the supply voltage exceeds the value for V
given in Table 5: Electrical specifications on
OVP
page 8 the overvoltage protection is activated which forces the outputs to the
high-impedance state. When the supply voltage drops to below the threshold value the device restarts.
Undervoltage protection (UVP)
If the supply voltage drops below the value for V
specifications on page 8 the undervoltage protection is activated which forces the outputs to
the high-impedance state. When the supply voltage recovers the device restarts.
given in Table 5: Electrical
UVP
Overcurrent protection (OCP)
If the output current exceeds the value for I
page 8 the overcurrent protection is activated which forces the outputs to the
high-impedance state. Periodically, the device attempts to restart. If the overcurrent condition is still present then the OCP remains active. The restart time, T by the R-C components connected to pin STBY.
given in Table 5: Electrical specifications on
OCP
, is determined
OC
Thermal protection (OTP)
If the junction temperature, Tj, reaches 145 °C (nominal), the device goes to mute mode and the positive and negative PWM outputs are forced to 50% duty cycle. If the junction temperature exceeds the value for Tj given in Table 5: Electrical specifications on page 8 the device shuts down and the output is forced to the high impedance state. When the device cools sufficiently the device restarts.

7.8 Diagnostic output

The output pin DIAG is an open drain transistor. When the protection is activated it is in the high-impedance state. The pin can be connected to a power supply (< 18 V) by a pull-up resistor whose value is limited by the maximum sinking current (200 µA) of the pin.

Figure 26. Behavior of pin DIAG for various protection conditions

VDD
Overcurrent protection
VDD
TDA7491MV
Protection logic
Restart
DIAG
R1
OV, UV, OT protection
Restart
Doc ID 14576 Rev 2 25/28
Application information TDA7491MV
g

7.9 Heatsink requirements

A thermal resistance of 24 °C/W can be obtained using the PCB copper ground layer with 16 vias connecting it to the contact area for the exposed pad. Ensure that the copper ground area is a nominal 9 cm
Figure 27 shows the derating curves for copper areas of 4 cm
As with most amplifiers, the power dissipated within the device depends primarily on the supply voltage, the load impedance and the output modulation level.
The maximum estimated power dissipation for the TDA7491MV is less than 4 W. When properly mounted on the above PCB the junction temperature could increase by 96 °C. However, with a musical program the dissipated power is about 40% less, leading to a temperature increase of around 60 °C. Even at the maximum recommended ambient temperature for consumer applications of 50 °C there is still a clear safety margin before the maximum junction temperature (150 °C) is reached.

Figure 27. Power derating curves for PCB used as heatsink

for 24 °C/W.
and 9 cm2.
Pd (W)
8
7
6
5
Copper Area 3x3 cm and via holes
TDA7491MV
TDA7491P
PowerSSO-36
PSSO36
4
3
2
Copper Area 2x2 cm and via holes
1
0
0 20 40 60 80 100 120 140 160
Tamb ( °C)
26/28 Doc ID 14576 Rev 2
TDA7491MV Revision history

8 Revision history

Table 10. Document revision history

Date Revision Changes
21-Oct-2008 1 Initial release.
Updated text concerning oscillator R and C in Section 3.3:
Electrical specifications on page 8
, updated STBY and
UVP
29-May-2009 2
Updated test condition for Iq, added V MUTE voltages and rectified several anomalies in Ta bl e 5 :
Electrical specifications on page 8
Updated equation for f
on page 10 and on page 22
SW
Updated Figure 16: Test board (TDA7491HV) layout on page 16 Updated Figure 17: PowerSSO-36 EPD outline drawing on
page 17 and Table 6: PowerSSO-36 EPD dimensions on page 18
Updated Figure 18: Applications circuit for class-D amplifier on
page 19
Doc ID 14576 Rev 2 27/28
TDA7491MV
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2009 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
28/28 Doc ID 14576 Rev 2
Loading...