Features
■ High junction temperature capability
■ Avalanche rated
■ Low leakage current
■ Good trade-off between leakage current and
forward voltage drop
■ High frequency operation
Description
Dual centre tab Schottky rectifier suited for high
frequency switch mode power supply.
Packaged in TO-220FPAB, TO-220AB, TO-247,
2
I
PAK, and D2PAK, this device is intended to be
used in notebook and LCD adaptors and desktop
SMPS. In these applications the STPS30H60C
provides a good margin between the remaining
voltages applied on the diode and the voltage
capability of the diode.
A1
A2
TO-220AB
STPS30H60CT
K
STPS30H60C
Power Schottky rectifier
K
A2
K
A1
TO-220FPAB
STPS30H60CFP
A1
A2
K
2
I
PAK
STPS30H60CR
A1
A2
K
A2
A1
2
PAK
D
STPS30H60CG
Table 1. Device summary
TO-247
STPS30H60CW
A1
A2
K
Symbol Value
I
F(AV)
V
V
F (typ)
RRM
T
j
2 X 15 A
60 V
175 °C
0.535 V
July 2011 Doc ID 12123 Rev 3 1/11
www.st.com
11
Characteristics STPS30H60C
1 Characteristics
Table 2. Absolute ratings (limiting values per diode)
Symbol Parameter Value Unit
V
I
F(RMS)
I
F(AV)
I
P
T
1. condition to avoid thermal runaway for a diode on its own heatsink
Table 3. Thermal parameters
Repetitive peak reverse voltage 60 V
RRM
Forward rms current 30 A
TO-220AB
= 155 °C
T
c
Average forward current, δ = 0.5
TO-220FPAB
T
= 125 °C
c
TO-220FPAB
T
= 90 °C
c
Surge non repetitive forward current tp = 10 ms sinusoidal 230 A
FSM
Releative peak avalanche power Tj = 25 °C tp = 1 µs 10 200 W
ARM
Storage temperature range -65 to + 175 °C
stg
Maximum operating junction temperature
T
j
dPtot
dTj
<
Rth(j-a)
1
(1)
Per diode 15
Total package 30
Per diode 15
Total package 30
175 °C
Symbol Parameter Value Unit
Per diode 1.5
Total 0.8
Per diode 4.7
To t al 3 . 95
°C/W
R
R
Table 4. Static electrical characteristics
th(j-c)
th(c)
Junction to case
Coupling
TO-220AB, I2PA K,
D2PAK, TO-247
TO-220FPAB
2
TO-220AB, I
PA K , D2PAK, TO-247 0.1
TO-220FPAB 3.2
Symbol Parameter Test conditions Min. Typ. Max. Unit
A
A
= 25 °C
T
(1)
I
V
1. Pulse test: tp = 5 ms, δ < 2%
2. Pulse test: t
Reverse leakage current
R
(2)
Forward voltage drop
F
= 380 µs, δ < 2%
p
j
= 125 °C 8 25
T
j
T
= 25 °C
j
= 125 °C 435 470
T
j
= 25 °C
T
j
= 125 °C 535 570
T
j
= 25 °C
T
j
= 125 °C 635 690
T
j
V
= V
R
I
= 7.5 A
F
I
= 15 A
F
I
= 30 A
F
RRM
To evaluate the conduction losses use the following equation: P = 0.45 x I
2/11 Doc ID 12123 Rev 3
+ 0.008 x I
F(AV)
60 µA
550
660
820
F2(RMS)
mA
mV
STPS30H60C Characteristics
Figure 1. Conduction losses versus
average forward current
P (W)
F(AV)
12
10
8
6
4
2
0
0 2 4 6 8 10 12 14 16 18
δ=0.05
δ=0.1 δ=0.2
I (A)
F(AV)
δ
δ=0.5
T
=tp/T
Figure 3. Normalized avalanche power
derating versus pulse duration
P( tp)
ARM
P (1µs)
ARM
1
Figure 2. Average forward current versus
ambient temperature
(δ = 0.5, per diode)
I (A)
F(AV)
δ =1
tp
18
16
14
12
10
8
6
4
2
0
0 25 50 75 100 125 150 175
R
th(j-a)
=15 °C/W
T (°C)
amb
R
TO-220FPAB
th(j-a)=Rth(j-c)
Figure 4. Normalized avalanche power
derating versus junction
temperature
P( T)
ARM j
P (25 °C)
ARM
1.2
1
0.1
0.01
t (µs)
0.001
0.1 0.01 1
10 100
p
1000
Figure 5. Non repetitive surge peak forward
current versus overload duration
(maximum values, per diode)
I (A)
M
200
180
160
140
120
100
80
60
40
I
M
20
0
1.E-03 1.E-02 1.E-01 1.E+00
t
δ
=0.5
TO-220AB,TO-247 D PAK, I PAK
t(s)
22
TC=50°C
TC=75°C
TC=125°C
0.8
0.6
0.4
0.2
T (°C)
0
25 50 75 100 125
j
Figure 6. Non repetitive surge peak forward
current versus overload duration
(maximum values, per diode)
I (A)
M
120
100
80
60
40
I
M
20
0
1.E-03 1.E-02 1.E-01 1.E+00
t
=0.5
δ
t(s)
TO-220FPAB
TC=50 °C
TC=75 °C
TC=125 °C
150
Doc ID 12123 Rev 3 3/11
Characteristics STPS30H60C
Figure 7. Relative variation of thermal
impedance junction to case versus
pulse duration
Z/ R
th(j-c) th(j-c)
1.0
TO-220AB,TO-247 D PAK, I PAK
0.9
0.8
0.7
δ=0.5
0.6
0.5
δ=0.2
0.4
0.3
δ=0.1
0.2
Single pulse
0.1
0.0
1.E-03 1.E-02 1.E-01 1.E+00
22
t (s)
T
tp
=tp/T
p
δ
Figure 8. Relative variation of thermal
impedance junction to case versus
pulse duration
Z/ R
th(j-c) th(j-c)
1.0
TO-220FPAB
0.9
0.8
0.7
δ=0.5
0.6
0.5
0.4
δ=0.2
0.3
δ=0.1
0.2
0.1
Single pulse
0.0
1.E-03 1.E-02 1.E-01 1.E+00 1.E+01
t (s)
p
δ
T
=tp/T
tp
Figure 9. Reverse leakage current versus
reverse voltage applied
(typical values, per diode)
I (mA)
R
1.E+02
1.E+01
1.E+00
1.E-01
1.E-02
1.E-03
0 5 10 15 20 25 30 35 40 45 50 55 60
Tj=150°C
Tj=125°C
Tj=100°C
Tj=75°C
Tj=50°C
Tj=25°C
V (V)
R
Figure 11. Forward voltage drop versus
forward current (per diode)
I (A)
FM
100
T J =125 °C
TJ=125 °C
Maxim um v alues
Maximum values
T J =125 °C
TJ=125 °C
T ypical v alues
Typical values
10
1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Maximum values
V (V)
FM
TJ=25 °C
Figure 10. Junction capacitance versus
reverse voltage applied
(typical values, per diode)
C(nF)
10.0
1.0
V (V)
0.1
1 10 100
R
V
osc
F=1MHz
=30mV
Tj=25°C
RMS
Figure 12. Thermal resistance junction to
ambient versus copper surface
under tab
R (°C/W)
th(j-a)
80
epoxy printed board FR4, copper thickness = 35 µm
70
60
50
40
30
20
10
0
0 5 10 15 20 25 30 35 40
S(cm²)
2
D PAK
4/11 Doc ID 12123 Rev 3